JPS61270645A - Induction coupled plasma emission analyzing instrument - Google Patents

Induction coupled plasma emission analyzing instrument

Info

Publication number
JPS61270645A
JPS61270645A JP11044385A JP11044385A JPS61270645A JP S61270645 A JPS61270645 A JP S61270645A JP 11044385 A JP11044385 A JP 11044385A JP 11044385 A JP11044385 A JP 11044385A JP S61270645 A JPS61270645 A JP S61270645A
Authority
JP
Japan
Prior art keywords
sample
spectra
wavelength
display
coupled plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11044385A
Other languages
Japanese (ja)
Inventor
Akira Yonetani
明 米谷
Chikayoshi Okamura
岡村 京美
Masao Hashimoto
橋本 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP11044385A priority Critical patent/JPS61270645A/en
Publication of JPS61270645A publication Critical patent/JPS61270645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make possible the efficient correction of background with high accuracy by providing plural display image planes and displaying and comparing simultaneously the spectra of simulation and the spectra of actually measured data. CONSTITUTION:This analyzing instrument is constituted of a sample introducing part 1, an induction coupled plasma light emitting part 2, a spectroscope part 3, a storage device 4, an information inputter 5, a simulator 6, a calculator 7, a display part A8, a display part B9 and a recorder 10. The concn. of a sample and the wavelength for analysis are preliminarily inputted by the information inputter 5 and are stored into the simulator 6. The sample is then introduced from the introducing part 1 into the light emitting part 2 and the wavelength is scanned by the spectroscope 3. The spectral relation of each wavelength is stored into the storage device 4. The spectra of the simulation and the spectra of the actually measured data are displayed and compared superposedly respectively or one side on the display parts 8, 9. The quick correction of the background with a small amt. of the sample is made possible with the good accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導結合プラズマ発光分光分析法に係り、特に
精度の高い分析値を能率的に得るためのバックグランド
補正法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to inductively coupled plasma optical emission spectrometry, and particularly to a background correction method for efficiently obtaining highly accurate analysis values.

〔発明の背景〕[Background of the invention]

誘導結合プラズマ発光分光分析法は、不活性ガスに高周
波を印加して高温度のプラズマを生ぜしめ、この中に導
入された試料が発するスペクトル強度を測定するという
ものである。本分析法は原則的に溶液状態の試料を対象
とし、試料を霧状にしてプラズマ中に導入される。高温
度のプラズマに導入された試料の霧は、分解励起が行な
われて、元素の発光を生ずる。その発光した光を、分光
器に取り入れ、各々のスペクトル強度を計測することに
より、各元素の定性、定量分析が可能となる。
Inductively coupled plasma optical emission spectroscopy involves applying high-frequency waves to an inert gas to generate high-temperature plasma, and measuring the spectral intensity emitted by a sample introduced into the plasma. This analysis method basically targets samples in a solution state, and the sample is atomized and introduced into the plasma. The sample mist introduced into the high-temperature plasma is decomposed and excited to produce light emission of the elements. By taking the emitted light into a spectrometer and measuring the intensity of each spectrum, qualitative and quantitative analysis of each element becomes possible.

しかし、ここで、複合した混合成分があり、発生した元
素のスペクトルは、複合する元素の数が多いほど複雑に
なり、分析するために選択する線をさがすのにむずかし
い。そのため、スペクトルのすその位置を決定し、その
位置から元来のピーク高さを決定し濃度等を知る方法を
取るが、すその位W(以降バックグランド補正位置とよ
ぶ)を決定する場合はあらかじめ、試料を吸入させ、計
測し、スペクトル書き、バックグランド補正位置を入力
し演算させる必要がある。そのためには、試料が複数測
定できる量が必要であり、少量試料には応用しにくい。
However, here, there are complex mixed components, and the spectrum of the generated elements becomes more complex as the number of complex elements increases, making it difficult to find a line to select for analysis. Therefore, the method of determining the base position of the spectrum and determining the original peak height from that position to determine the concentration, etc. is used. However, when determining the base position W (hereinafter referred to as background correction position), In advance, it is necessary to inhale the sample, measure it, write the spectrum, input the background correction position, and perform calculations. For this purpose, a sample quantity that can be measured in multiple quantities is required, making it difficult to apply to small quantities of samples.

また、シュミレータ−により各元素の濃度波長等を入力
し、スペクトルパターンを知り得ることは可能であるが
、それを利用し、バックグランド補正位置等に対する演
算には適応されてない。
Furthermore, although it is possible to obtain the spectrum pattern by inputting the concentration wavelength of each element using a simulator, this method cannot be used to calculate background correction positions and the like.

表示装置における方法としては単一の画面のみで、計測
したスペクトルの表示または、複数本のスペクトルの表
示、また指定された、波長位置や、強度が縮小、拡大さ
れるが、元の形が1一度ごとに外部プリンタに出力する
ことに保存される方法をとり、その出力された、ペーパ
を比較することにより判続していた。すなわち別々の手
続を同時に利用することや、拡大、縮小した部分と、元
の形を同時に表示することができないし複数の表示画面
を持てない。
The method for display devices is to display the measured spectrum or multiple spectra on a single screen, or to reduce or expand the specified wavelength position or intensity, but the original shape remains unchanged. The method used was to save the data by outputting it to an external printer each time, and making decisions by comparing the outputted papers. In other words, it is not possible to use different procedures at the same time, it is not possible to display the enlarged or reduced part and the original form at the same time, and it is not possible to have multiple display screens.

〔発明の目的〕[Purpose of the invention]

本発明は誘導結合プラズマ発光分光分析法におけるバッ
クグランド補正を、シミュレーターと実測データとの組
合により、能率よくしかも高精度分析を行なう手段を供
することにある。
The object of the present invention is to provide a means for performing background correction in inductively coupled plasma optical emission spectroscopy efficiently and with high accuracy by combining a simulator and actual measurement data.

〔発明の概要〕 本発明は、シミュレーターにより元素、波長。[Summary of the invention] The present invention uses a simulator to determine elements and wavelengths.

濃度等を指示し、できたスペク1−ルから、正確なバッ
クグランド位置を指定し補正するものである。
It specifies density, etc., and specifies and corrects an accurate background position from the resulting spectrum.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。バックグランド補正
をする場合に、どのようなスベク1へルパターンかを知
る必要がある。たとえば鋼中のリンの分析を例にとって
説明する、銅の溶液1100ppの中にリン1.ppm
含まれるように試料を調整しておき、試料導入部]によ
り誘導プラズマ発光部2に導入すると試料中の各成分は
、励起されてその成分特有の波長スペクトルを放射する
。分光器3により波長を走査し、各波長のスペクトル関
係が記憶装置4に記憶される。あらかじめ、情報入力器
5により、銅の濃度、リンの濃度および分析するための
波長を入力して、シュミレータ−装置6により記憶しで
ある、線情報から表示部A9゜表示部Bのいずれかに、
スペクl−ルを表わしておき、必要なバックグランド位
置を情報入力器5より、波長設定を行なう。方法は、表
示部内に波長が指定できるカーソル12があり、その位
置が情報入力器から変えられるようになっている。設定
位置を決定した状態を第2図に示す。カーソル12−1
..12−2と12−2.12−3との接線、また第3
図における、銅の濃度が500ppmの場合を示す。同
様に12−4.12−6と12−5.1.2−6との各
接線での、リンの発光強度を求めるとそれぞれ差がでて
しまう。本来ならば、個々のバックグランド補正位置で
も発光強度は同一にならなければ、求められる濃度に差
がでてしまう。そこで、第4図に示されるように、シュ
ミレーションから得たスペクトルパターンによりバック
グランド位置に決定する。なお、第5図に示すように、
一般的に行なわれている、バンクグランド補正は、A、
B両接点を結んだ線をリンのピーク位置との強度S□で
求められる。しかし、実際のリン強度は、S 1+ 8
2であり、82分、誤差を生ずる。また同様に、Bの水
平線上と、リンのピークとの強度S、+S2+S3も誤
差を生ずる。ここで、あらかじめ、シュミレータ−によ
り、各スペクトルを第4図のように表示しておき、関数
計算器により、どのように重なりあうかがわかり、バッ
クグランドの位置を決定する曲線を捜し、指定する。実
際の試料の測定は、これらの情報から測定された強度か
ら濃度を求める。
An embodiment of the present invention is shown in FIG. When performing background correction, it is necessary to know what kind of subekal pattern there is. For example, let's take the analysis of phosphorus in steel as an example. In a copper solution of 1100 pp, 1. ppm
When the sample is adjusted so as to contain the above components and introduced into the induced plasma light emitting section 2 by the sample introduction section, each component in the sample is excited and emits a wavelength spectrum unique to that component. The wavelengths are scanned by the spectroscope 3, and the spectral relationship of each wavelength is stored in the storage device 4. In advance, the copper concentration, the phosphorus concentration, and the wavelength for analysis are input using the information input device 5, and the line information stored in the simulator device 6 is displayed on either display section A9 or display section B. ,
After displaying the spectrum, the required background position and wavelength are set using the information input device 5. In this method, there is a cursor 12 in the display section that allows you to specify a wavelength, and its position can be changed using an information input device. FIG. 2 shows the state in which the setting position has been determined. Cursor 12-1
.. .. The tangent line between 12-2 and 12-2.12-3, and the third
The figure shows the case where the copper concentration is 500 ppm. Similarly, when the phosphorus emission intensities at each tangent line between 12-4.12-6 and 12-5.1.2-6 are determined, a difference appears. Normally, unless the emission intensity is the same at each background correction position, there will be a difference in the required density. Therefore, as shown in FIG. 4, the background position is determined based on the spectrum pattern obtained from simulation. Furthermore, as shown in Fig. 5,
The commonly performed bank ground correction is A.
The line connecting both B contacts is determined by the strength S□ of the phosphorus peak position. However, the actual phosphorus strength is S 1+ 8
2, resulting in an error of 82 minutes. Similarly, the intensity S, +S2+S3 between the horizontal line B and the phosphorus peak also causes an error. Here, each spectrum is displayed in advance using a simulator as shown in Figure 4, and a function calculator is used to determine how they overlap, and then search for and specify the curve that determines the background position. . In actual sample measurements, the concentration is determined from the measured intensity based on this information.

ここで表示部A、Bの2つの画面はシュミレーションに
おけるスペク1−ルと、実際に測定したスペクトルを各
々に表示または片側に重ね合わせて表示することにより
、比較ができ確認ができる。
Here, the two screens of display sections A and B display the simulated spectrum and the actually measured spectrum individually or superimposed on one side for comparison and confirmation.

このように、通常分析する手段としては、少量試料の場
合や、貴重な試料などは、多量に、チェックのために消
費することができない。あらかし吟I/ め、シュミレーションで確認および指定することにより
、少量試料ですむし、迅速分析が出来る。
As described above, as a means for ordinary analysis, a large amount of a small sample or a valuable sample cannot be consumed for checking. By confirming and specifying through simulation, a small amount of sample is required and rapid analysis is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図、第3図は鋼中
のリンの実施例を示す図、第4図はシュミレーションし
た銅とリンのスペクトルパターンを示す図、第5図は銅
とリンのスペクトルパターンでバックグランド補正の方
法を示す図である。 1・・・試料導入部、2・・・誘導結合プラズマ発光部
、3・・・分光器部、4・・・記憶装置、5・・・情報
入力器、6・・・シュミレータ装置、7・・・演算器、
8・・・表示部A、9・・表示部B、10・・・記録器
、12−1〜6・カーソル位置(バックグランド補正位
置)。
Figure 1 is a detailed explanatory diagram of the present invention, Figures 2 and 3 are diagrams showing examples of phosphorus in steel, Figure 4 is a diagram showing simulated spectral patterns of copper and phosphorus, and Figure 5. is a diagram showing a method of background correction using copper and phosphorus spectral patterns. DESCRIPTION OF SYMBOLS 1... Sample introduction part, 2... Inductively coupled plasma light emitting part, 3... Spectrometer part, 4... Storage device, 5... Information input device, 6... Simulator device, 7.・Arithmetic unit,
8... Display section A, 9... Display section B, 10... Recorder, 12-1 to 6. Cursor position (background correction position).

Claims (1)

【特許請求の範囲】[Claims] 1、複数の表示画面を持ち、シユミレシヨンしたスペク
トルおよび実測したスペクトルを同時に表示し、個々の
拡大縮小、それらの重ね合せができ、なおかつその部分
がどこであるかを表示することを特徴とする誘導結合プ
ラズマ発光分析装置。
1. Inductive coupling characterized by having multiple display screens, simultaneously displaying simulated spectra and actually measured spectra, allowing individual enlargement/reduction, superimposition of them, and displaying the location of each part. Plasma emission spectrometer.
JP11044385A 1985-05-24 1985-05-24 Induction coupled plasma emission analyzing instrument Pending JPS61270645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11044385A JPS61270645A (en) 1985-05-24 1985-05-24 Induction coupled plasma emission analyzing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11044385A JPS61270645A (en) 1985-05-24 1985-05-24 Induction coupled plasma emission analyzing instrument

Publications (1)

Publication Number Publication Date
JPS61270645A true JPS61270645A (en) 1986-11-29

Family

ID=14535848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11044385A Pending JPS61270645A (en) 1985-05-24 1985-05-24 Induction coupled plasma emission analyzing instrument

Country Status (1)

Country Link
JP (1) JPS61270645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412233A (en) * 1987-07-06 1989-01-17 Shimadzu Corp Spectrofluorescent photometer
JPH0242341A (en) * 1988-04-09 1990-02-13 Bodenseewerk Perkin Elmer & Co Gmbh Atomic quantometer and spectrochemical analysis for multiple element measurement of element in sample
JPH02203256A (en) * 1988-04-09 1990-08-13 Bodenseewerk Perkin Elmer & Co Gmbh Atomic emission spectroscope
JP2006258633A (en) * 2005-03-17 2006-09-28 Shimadzu Corp Analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412233A (en) * 1987-07-06 1989-01-17 Shimadzu Corp Spectrofluorescent photometer
JPH0242341A (en) * 1988-04-09 1990-02-13 Bodenseewerk Perkin Elmer & Co Gmbh Atomic quantometer and spectrochemical analysis for multiple element measurement of element in sample
JPH02203256A (en) * 1988-04-09 1990-08-13 Bodenseewerk Perkin Elmer & Co Gmbh Atomic emission spectroscope
JP2006258633A (en) * 2005-03-17 2006-09-28 Shimadzu Corp Analyzer
JP4506524B2 (en) * 2005-03-17 2010-07-21 株式会社島津製作所 Optical emission spectrometer

Similar Documents

Publication Publication Date Title
Boumans Detection limits and spectral interferences in atomic emission spectrometry
US7663749B2 (en) Method and system to measure the concentration of constituent elements in an inhomogeneous material using LIBS
US10539520B2 (en) Sample-analyzing system
US10557792B2 (en) Spectral modeling for complex absorption spectrum interpretation
CN110161013A (en) Laser induced breakdown spectroscopy data processing method and system based on machine learning
CN105699356B (en) Judge the method that the fluorescence of Raman spectrum eliminates degree by comentropy
JP4710393B2 (en) Excitation spectrum correction method in fluorescence spectrophotometer
Tharaud et al. uFREASI: user-FRiendly Elemental dAta procesSIng. A free and easy-to-use tool for elemental data treatment
CN108680523A (en) It is connected the determinand assay method of standard curve using a variety of fit approach
JP4324701B2 (en) Optical emission spectrometer
Johnson Abundances of 30 elements in 23 metal-poor stars
JPS61270645A (en) Induction coupled plasma emission analyzing instrument
CN107210181B (en) Scan wide quadrupole RF window rapidly while trigger fracture energy
JP2006317371A (en) Emission spectroscopic analyzing method and emission spectroscopic analyzer
JP2004502160A (en) Apparatus and method for measuring emissions substantially simultaneously
Burkert Electromagnetic excitations of baryon resonances
JPH0829255A (en) Waveform analyzer
Siegele et al. iBAT: A new ion beam batch analysis tool for thin samples
WO2001036943A1 (en) Method for estimating measurement of absorbance and apparatus for estimating measurement of absorbance
JPS5821144A (en) Highly accurate and fully automatic analyzing method for icp
WO2020066161A1 (en) Measurement device, program, and measure device control method
JPH07128260A (en) Fluorescent x-ray analyzing device
US7444259B2 (en) Automatic acquisition of data referenced in user equation
JP2007333501A (en) Emission spectrophotometer
JP6973123B2 (en) Analytical control device, analytical device, analytical control method and analytical method