JPS6127062B2 - - Google Patents

Info

Publication number
JPS6127062B2
JPS6127062B2 JP53157927A JP15792778A JPS6127062B2 JP S6127062 B2 JPS6127062 B2 JP S6127062B2 JP 53157927 A JP53157927 A JP 53157927A JP 15792778 A JP15792778 A JP 15792778A JP S6127062 B2 JPS6127062 B2 JP S6127062B2
Authority
JP
Japan
Prior art keywords
blood
liquid level
liquid
replacement fluid
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53157927A
Other languages
Japanese (ja)
Other versions
JPS5584169A (en
Inventor
Shiro Osada
Yoshimitsu Harada
Tsutomu Iguchi
Taizo Kirita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15792778A priority Critical patent/JPS5584169A/en
Publication of JPS5584169A publication Critical patent/JPS5584169A/en
Publication of JPS6127062B2 publication Critical patent/JPS6127062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 本発明は分子過膜を使用した過型血液浄化
システムに関するものである。本発明でいう血液
過とは血液より赤血球、白血球、血小板等の細
胞成分の全部あるいは大部分を分離する操作、更
にグロブミン、アルブミン等の蛋白質成分等の全
部あるいは一部の分離等を含む操作をいう。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hypertype blood purification system using a molecular membrane. In the present invention, blood filtration refers to operations that involve separating all or most of cellular components such as red blood cells, white blood cells, and platelets from blood, as well as operations that include separating all or part of protein components such as globumin and albumin. say.

近年、腎不全、肝不全等の患者の血液中に存在
する有毒物質を除去して治療する各種の血液浄化
法が実施される様になつた。これらの血液浄化法
の中で0.002〜2μの孔径を有する体液分離膜を
用いて血液より有毒物質含有体液を過分離し、
分離した液を捨て、有毒物質を含まない別の体
液あるいは人工的に作られた人工体液(以下これ
らを補液と称す)を、得られた血液に混合するこ
とにより血液中の有毒物質を除去する方法(後稀
釈法)、あるいは補液で予じめ稀釈した血液を膜
過する方法(前稀釈法)が注目されている。上
記方法は過器にはいる血液流量と得られた血液
と補液が再混合された後の浄化血液流量とを実質
的に等しくするか、又は所定の流量比に保つこと
が必要である。この流量比が大きくずれたり変動
したりすると患者の循環血液量が増加したり減少
し過ぎたりするため、循環器系に対する負担が大
きくなり非常に憂慮すべき状態となる。
In recent years, various blood purification methods have been implemented to remove and treat toxic substances present in the blood of patients suffering from renal failure, liver failure, etc. Among these blood purification methods, body fluids containing toxic substances are overseparated from blood using a body fluid separation membrane with a pore size of 0.002 to 2μ,
Toxic substances in the blood are removed by discarding the separated fluid and mixing other body fluids that do not contain toxic substances or artificial body fluids (hereinafter referred to as replacement fluids) with the obtained blood. (post-dilution method) or a method in which blood pre-diluted with a replacement fluid is filtered through a membrane (pre-dilution method). The above method requires that the blood flow rate entering the diaphragm and the purified blood flow rate after the obtained blood and replacement fluid are remixed are substantially equal or maintained at a predetermined flow rate ratio. If this flow rate ratio deviates or fluctuates significantly, the patient's circulating blood volume increases or decreases too much, which increases the burden on the circulatory system, resulting in a very alarming situation.

その為に、血液から分離される液量と得られ
た血液に加える補液量を等しく、あるいは所定比
に保持することが是否とも必要となる。このため
従来のシステムでは血液より分離された液を計
量して、その分離された量に対応する量の補液を
ポンプあるいはコツク等を調節して血液と混合す
る方法がとられていた。しかしこの方法では、循
環血液量の変動が大きく、また少量ずつ分離しな
ければならないため操作が非常に煩雑であり、信
頼性にかける等多くの問題があつた。
Therefore, it is necessary to maintain the amount of fluid separated from blood and the amount of replacement fluid added to the obtained blood equal to each other or at a predetermined ratio. For this reason, in conventional systems, a method has been adopted in which a liquid separated from blood is measured, and an amount of replacement fluid corresponding to the separated amount is mixed with the blood by adjusting a pump or a pot. However, this method has many problems, such as large fluctuations in circulating blood volume and the need to separate small amounts, making the operation extremely complicated and reducing reliability.

本発明は上記の点にかんがみ、循環血液量を所
定の流量に保つことができ、かつ自動的、連続的
に操作される信頼性の高い過型血液浄化システ
ムを提供することを目的としている。
In view of the above points, it is an object of the present invention to provide a highly reliable hypertype blood purification system that can maintain the amount of circulating blood at a predetermined flow rate and is automatically and continuously operated.

本発明は血液ポンプを介して生体より取り出さ
れた血液を過器に供給して、過し、得られた
血液を混合器に供給して補液と混合した後、生体
に返還する過型血液浄化システムにおいて、
過器の過ラインと補液の供給ラインのそれぞれ
に計量容器を取り付け、該計量容器の液体取出口
に弁を接続し、しかも該計量容器の上下2ケ所に
取り付けた上部および下部の液面検出器をそれぞ
れ弁を閉止したときに、上部および下部液面検出
器間の液面動作時間が同一となるように設定する
とともに、該2つの計量容器の液面動作時間に差
が生じた場合には、液取り出し圧力を調整して
所定の流量比率に近づける操作を自動的に行うよ
う構成したことを特徴とする過型血液浄化シス
テムである。
The present invention provides hypertype blood purification in which blood taken out from a living body is supplied to a blood vessel via a blood pump, filtered, and the obtained blood is supplied to a mixer where it is mixed with replacement fluid and then returned to the body. In the system,
A measuring container is attached to each of the overline of the overflow device and the supply line of the replacement fluid, a valve is connected to the liquid outlet of the measuring container, and upper and lower liquid level detectors are installed at two locations above and below the measuring container. When each valve is closed, set the liquid level operating time between the upper and lower liquid level detectors to be the same, and if there is a difference in the liquid level operating time of the two measuring containers, This is an overtype blood purification system characterized in that it is configured to automatically perform an operation to adjust the liquid extraction pressure to bring it closer to a predetermined flow rate ratio.

次に本発明の過型血液処理システムの一実施
例を図面で説明する。第1図は陰圧型のシステム
の例であり、生体から取出された血液は定量ポン
プ12で過器1に送られ、膜で分離された後、
血液中の有毒物質を含有する液は過ラインに
設けられた液計量容器3で計量された後、液
ビン11にためられる。一方得られた血液(過
残血液)は混合器10で補液と混合され、血液加
温器16で体温まで加温された後患者の静脈に一
定量づつ戻される。補液は補液タンク15より補
液ラインに設けられた定量ポンプ4で補液計量容
器2に送られた後ヘツド差を利用して混合器10
に導かれる。
Next, an embodiment of the hypertype blood processing system of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a negative pressure system, in which blood taken from a living body is sent to the filter 1 by a metering pump 12, separated by a membrane, and then
The liquid containing toxic substances in the blood is measured in a liquid measuring container 3 provided in the overline, and then stored in a liquid bottle 11. On the other hand, the obtained blood (excess blood) is mixed with a replacement fluid in a mixer 10, heated to body temperature in a blood warmer 16, and then returned to the patient's vein in fixed amounts. The replacement fluid is sent from the replacement fluid tank 15 to the replacement fluid measuring container 2 by the metering pump 4 installed in the replacement fluid line, and then sent to the mixer 10 using the head difference.
guided by.

液計量容器3および補液計量容器2は密閉容
器であればどのような形状のものを用いてもよ
い。中でも最大液面検出器間の距離よりも余裕を
持つた長さの筒状の容器は、計量容器の位置と液
面検出器の相対的位置が少しずれても検出器間の
距離変化を起さないため好ましく用いられる。液
面検出器に光電管を利用する場合には計量容器の
投受光面は光軸に対して直角で、しかも平面を有
しているのが好ましく、通常柱筒型が用いられ
る。しかし確実に液面をキヤツチ出来れば、円筒
状のものでもかまわない。
The liquid measuring container 3 and the replacement liquid measuring container 2 may be of any shape as long as they are airtight containers. Among them, a cylindrical container with a length that is longer than the distance between the maximum liquid level detectors will cause the distance between the detectors to change even if the relative position of the measuring container and the liquid level detector shifts slightly. It is preferably used because it does not. When a phototube is used as a liquid level detector, the light emitting and receiving surface of the measuring container is preferably perpendicular to the optical axis and has a flat surface, and a cylindrical type is usually used. However, as long as the liquid level can be captured reliably, a cylindrical one may be used.

計量容器の材質は容器の内容積が一定であるこ
と、光電式の液面検出器を利用できること等の条
件より硬質の透明容器であることが必要である。
また補液計量容器を通つた補液は人体に戻される
ので、無害性であり、しかも溶出物等の問題があ
つてはならない。それらの条件にかなうものとし
て硬質塩化ビニル、ボリカーボネート、ポリ4メ
チルペンテン、ポリメチルメタクリレート等の材
料を使用出来る。
The material of the measuring container needs to be a hard transparent container because of the conditions such as that the internal volume of the container is constant and that a photoelectric liquid level detector can be used.
Furthermore, since the replacement fluid that has passed through the replacement fluid measuring container is returned to the human body, it must be harmless and free from problems such as eluates. Materials that meet these conditions include hard vinyl chloride, polycarbonate, poly(4-methylpentene), and polymethyl methacrylate.

計量容器の液面検出器としては、磁気フロート
式、電極式等の公知の検出器を用いることができ
るが、計量容器はデイスポーザルであり、しかも
液面検出器と液または補液との接触をさけるた
め光電管式が好適に用いられる。光電管式の液面
検出器としては動作の確実性から透過性が好まし
く用いられる。また投受光器の光軸のズレが発生
しないような投受光器一体型であるのが好まし
い。光電管アンプは外光、蛍光灯の影響を受け難
い変調方式が望ましい。
As the liquid level detector of the measuring container, a known detector such as a magnetic float type or an electrode type can be used, but the measuring container is disposable and contact between the liquid level detector and the liquid or replacement liquid should be avoided. Therefore, a phototube type is preferably used. A transparent phototube type liquid level detector is preferably used from the viewpoint of reliable operation. Further, it is preferable that the light emitter and receiver be integrated so that the optical axes of the light emitter and receiver do not shift. It is desirable for the phototube amplifier to use a modulation method that is less susceptible to the effects of external light and fluorescent lights.

液及び補液計量容器3,2の液体出口に接続
して設けられた流路閉止弁8,7は各液体の流量
測定のための弁であり、それらは従来公知の弁を
使用できるが、使に捨てを考慮すると流路を外部
より圧追挾持するピンチコツクタイプが好ましく
用いられる。液及び補液の計量容器3,2の導
出口に取り付けられた弁8,7が開いていると各
液は計量容器3,2を素通りして、それぞれ液
ビン11と混合器10に抜けて行く。計量開始信
号が制御器9より発せられると弁8,7は同時に
閉じ、次いでそれぞれの計量容器3,2に液及
び補液がたまり始める。計量容器3,2に液がた
まり容器内の液面が上昇して下部液面検出器6
b,5bを通過すると制御器9に信号が発信され
る。引続き、該液面が上昇して上部液面検出器6
a,5aを通過すると該検出器を動作させて制御
器9に信号が発信される。上部液面検出器からの
信号を受けると同時に該制御器9から弁8,7を
開ける信号が発せられて弁8,7が開く。該弁
8,7が開くと同時に容器内の液が導出口に抜け
て容器の液面が下がり始める。計量容器3,2の
液面が下がり、その液面が下部液面検出器6b,
5bより下つたときに、制御器9より再び計量開
始信号が発せられて弁8,7が閉じ、上述と同様
の液をためる動作が繰り返し行われる。
The flow path shutoff valves 8 and 7 connected to the liquid outlets of the liquid and replacement liquid measuring containers 3 and 2 are valves for measuring the flow rate of each liquid. In consideration of waste, it is preferable to use a pinch-tock type in which the flow path is supported by pressure from the outside. When the valves 8 and 7 attached to the outlets of the measuring containers 3 and 2 for the liquid and replacement fluid are open, each liquid passes through the measuring containers 3 and 2 and flows into the liquid bottle 11 and the mixer 10, respectively. . When the metering start signal is issued by the controller 9, the valves 8 and 7 close simultaneously, and then the liquid and replacement fluid begin to accumulate in the respective metering containers 3 and 2. The liquid accumulates in the measuring containers 3 and 2, and the liquid level in the containers rises, causing the lower liquid level detector 6 to rise.
b, 5b, a signal is sent to the controller 9. Subsequently, the liquid level rises and the upper liquid level detector 6
When it passes through a and 5a, the detector is activated and a signal is sent to the controller 9. At the same time as receiving the signal from the upper liquid level detector, the controller 9 issues a signal to open the valves 8 and 7, and the valves 8 and 7 open. At the same time as the valves 8 and 7 open, the liquid in the container escapes to the outlet and the liquid level in the container begins to drop. The liquid level in the measuring containers 3, 2 decreases, and the liquid level is detected by the lower liquid level detector 6b,
5b, the controller 9 issues a metering start signal again, the valves 8 and 7 close, and the same liquid storage operation as described above is repeated.

流量比率制御は例えば各計量容器3,2の内面
積を一定とし、下部液面検出器6b,5bより上
部液面検出器6a,5aまでの容量比を希望流量
比率と同一にしておく。希望流量比率が達成され
ると、各計量容器の下部液面検出器が動作して、
上部液面検出器が動作するまでの時間は共に等し
くなり、補液が多いと補液計量容器の動作時間が
液計量容器のそれより短くなり、逆に補液が少
いと反対に動作時間が長くなる。動作時間差を制
御器9で計算し、この差が常に零になる様圧力制
御弁14に制御設定信号を送り、流量比率制御を
行う。流量比率の測定はサンプリングで行われ
る。このサンプリング周期は適宜決定し得ること
は言うまでもない。サンプリング周期を短かくす
れば系全体の制御性からみた場合充分に精度よく
流量比率の制御が可能である。
In the flow rate ratio control, for example, the inner area of each measuring container 3, 2 is kept constant, and the capacity ratio from the lower liquid level detectors 6b, 5b to the upper liquid level detectors 6a, 5a is made the same as the desired flow rate ratio. When the desired flow rate ratio is achieved, the lower liquid level detector in each metering vessel is activated and
The time it takes for the upper liquid level detector to operate is equal for both, and if there is a lot of replacement fluid, the operation time of the replacement fluid measuring container will be shorter than that of the fluid measuring container, and conversely, if there is less replacement fluid, the operating time will be longer. The operating time difference is calculated by the controller 9, and a control setting signal is sent to the pressure control valve 14 so that the difference is always zero, thereby controlling the flow rate ratio. Measurement of the flow rate ratio is performed by sampling. It goes without saying that this sampling period can be determined as appropriate. If the sampling period is shortened, it is possible to control the flow rate ratio with sufficient accuracy from the viewpoint of controllability of the entire system.

液総量はサンプリング回数と、容器計量時間
と排出時間の比の補正を加えることにより、精度
よく求めることが出来る。
The total amount of liquid can be determined with high accuracy by correcting the number of sampling times and the ratio of container measuring time to draining time.

流量比率の設定及び設定変更は、液計量容器
の下部、上部液面検出器及び補液計量容器の下部
液面検出器を固定し、補計量容器の上部液面検出
器の位置を変えることにより行われる。
Setting and changing the flow rate ratio can be done by fixing the lower and upper liquid level detectors of the liquid measuring container and the lower liquid level detector of the replacement liquid measuring container and changing the position of the upper liquid level detector of the auxiliary measuring container. be exposed.

液計量容器3を出た液は、液ビン11に
ためられる。該液ビン11は密封性のよいガラ
スビンが好ましく用いられる。該液ビンは真空
ポンプ13で陰圧に保たれている。この陰圧によ
り過膜を介して圧力勾配による限外過作用に
よる血液の過を行うことができる。液ビンの
陰圧は圧力制御弁14で制御されるようになつて
いる。圧力制御弁は圧力の安定性の点で真空ポン
プ13のバイパスに設けるのが好ましい。一方補
液計量容器2から出た補液は混合器10に導かれ
て血液と混合された後患者の静脈に戻される。
The liquid discharged from the liquid measuring container 3 is stored in a liquid bottle 11. As the liquid bottle 11, a glass bottle with good sealability is preferably used. The liquid bottle is maintained at negative pressure by a vacuum pump 13. This negative pressure allows blood to be filtered through the membrane through the ultraviolet action of the pressure gradient. The negative pressure in the liquid bottle is controlled by a pressure control valve 14. The pressure control valve is preferably provided on the bypass of the vacuum pump 13 from the viewpoint of pressure stability. On the other hand, the replacement fluid discharged from the replacement fluid measuring container 2 is led to the mixer 10, mixed with blood, and then returned to the patient's vein.

第2図は本発明装置の他の実施例(陽圧型のシ
ステム)であり、この例では補液タンク15を高
い位置に置いて、第1図に示す定量ポンプ4の代
りに流量調整弁18を設けている。また過ライ
ンには第1図に示す液ビンの代りに過器1と
液計量容器3の間に陰圧ポンプ17を設けてい
る。該陰圧ポンプ17は制御器9で液流量が制
御できる様になつている。
FIG. 2 shows another embodiment (positive pressure type system) of the device of the present invention, in which the replacement fluid tank 15 is placed at a high position and a flow rate adjustment valve 18 is installed in place of the metering pump 4 shown in FIG. It is set up. Further, a negative pressure pump 17 is provided in the overflow line between the overflow vessel 1 and the liquid measuring container 3 instead of the liquid bottle shown in FIG. The liquid flow rate of the negative pressure pump 17 can be controlled by a controller 9.

以上の様に本発明の血液浄化システムは過さ
れた体液と等しい量の補液を得られた血液(過
残血液)に正確に加えることは勿論のこと、液
と補液供給量を任意の設定比率に自動的に制御す
ることも可能である。そのため臨床時の煩雑な比
率設定変更等の手間が不要で使いやすいシステム
である。
As described above, the blood purification system of the present invention can not only accurately add replacement fluid to the obtained blood (excess blood) in an amount equal to that of the body fluid that has passed, but also adjust the amount of fluid and replacement fluid supplied at any set ratio. It is also possible to automatically control the Therefore, it is an easy-to-use system that does not require the trouble of changing complicated ratio settings during clinical practice.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の一実施例であり、第1図は
陰圧型のシステムの例であり、第2図は陽圧型の
システムの例である。 1……過器、2,3……計量容器、5,6…
…液面検出器、7,8……弁、9……制御器。
The drawings show one embodiment of the device of the present invention; FIG. 1 is an example of a negative pressure system, and FIG. 2 is an example of a positive pressure system. 1... Container, 2, 3... Measuring container, 5, 6...
...Liquid level detector, 7, 8...Valve, 9...Controller.

Claims (1)

【特許請求の範囲】[Claims] 1 血液ポンプ12を介して生体より取り出され
た血液を過器1に供給して、過し、得られた
血液を混合器10に供給して補液と混合した後、
生体に返還する過型血液浄化システムにおい
て、過器1の過ラインと補液の供給ラインの
それぞれに計量容器3,2を取り付け、該計量容
器の液体取出口に弁8,7を接続し、しかも該計
量容器の上下2ケ所に取り付けた上部および下部
の液面検出器6a,6b,5a,5bをそれぞれ
の弁8,7を閉止したときに、上部および下部液
面検出器間の液面動作時間が同一となるように設
定するとともに、該2つの計量容器の液面動作時
間に差が生じた場合には、液取り出し圧力を調
整して所定の流量比率に近づける操作を自動的に
行うよう構成したことを特徴とする過型血液浄
化システム。
1. Blood taken out from the living body via the blood pump 12 is supplied to the strainer 1 and filtered, and the obtained blood is supplied to the mixer 10 and mixed with replacement fluid,
In the hypertype blood purification system for returning to the living body, measuring containers 3 and 2 are attached to the overline and replacement fluid supply line of the diaphragm 1, respectively, valves 8 and 7 are connected to the liquid outlet of the measuring container, and When the valves 8 and 7 of the upper and lower liquid level detectors 6a, 6b, 5a, and 5b attached to the upper and lower parts of the measuring container are closed, the liquid level movement between the upper and lower liquid level detectors is detected. The time is set to be the same, and if there is a difference in the liquid level operation time of the two measuring containers, the liquid take-out pressure is automatically adjusted to bring it closer to the predetermined flow rate ratio. A hypertype blood purification system characterized by the following configurations.
JP15792778A 1978-12-18 1978-12-18 Filtration type blood purifying system Granted JPS5584169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15792778A JPS5584169A (en) 1978-12-18 1978-12-18 Filtration type blood purifying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15792778A JPS5584169A (en) 1978-12-18 1978-12-18 Filtration type blood purifying system

Publications (2)

Publication Number Publication Date
JPS5584169A JPS5584169A (en) 1980-06-25
JPS6127062B2 true JPS6127062B2 (en) 1986-06-24

Family

ID=15660504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15792778A Granted JPS5584169A (en) 1978-12-18 1978-12-18 Filtration type blood purifying system

Country Status (1)

Country Link
JP (1) JPS5584169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327761A (en) * 1991-04-30 1992-11-17 Daikin Ind Ltd Air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132961A (en) * 1980-03-22 1981-10-17 Daicel Ltd Artificial kidney device
JPS583705B2 (en) * 1980-07-18 1983-01-22 川澄化学工業株式会社 Double filtration plasma exchange device
JPS6036059A (en) * 1983-08-09 1985-02-25 東レ株式会社 Serum sampling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327761A (en) * 1991-04-30 1992-11-17 Daikin Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JPS5584169A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
US20200326324A1 (en) Modular Reservoir Assembly for a Hemodialysis and Hemofiltration System
EP0087171A1 (en) Safety system for control of a filter
JPH0152026B2 (en)
US4303068A (en) Method and apparatus for single pass hemodialysis with high flux membranes and controlled ultrafiltration
US4708802A (en) Apparatus for hemodiafiltration
EP0165519B1 (en) A blood filtering system
US3506126A (en) Closed recirculating hemodialysis system
US4137168A (en) Device for dialysation of blood
EP0096973B1 (en) Apparatus for plasma separation
EP0722744A1 (en) Apparatus for continous blood purification
JPS6085757A (en) Serum extracting method and apparatus especially useful in said method
KR870009730A (en) Extracorporeal circulation
NO802827L (en) FILTER
JPH02504348A (en) Hemodialysis method and device with controlled ultrafiltration
US4334988A (en) Control of dialysis and ultrafiltration
US4416772A (en) Apparatus for concentrating and filtering body cavity fluids
JPS6234568A (en) Apparatus for measuring ultrafiltration amount discharged during dialysis
SU1316681A1 (en) Apparatus for treating blood outside the organism and method of controlling same
CA1103589A (en) Hemodialysis ultrafiltration system with controlled liquid extraction from blood
JPS6127062B2 (en)
US7722561B2 (en) Peritoneal dialyzer and method of peritoneal dialysis
SU1055517A1 (en) "artificial kidney" apparatus
JP3186518B2 (en) Continuous blood purification device
JPH0470909B2 (en)
JPS6226804B2 (en)