JPS6127061B2 - - Google Patents

Info

Publication number
JPS6127061B2
JPS6127061B2 JP741081A JP741081A JPS6127061B2 JP S6127061 B2 JPS6127061 B2 JP S6127061B2 JP 741081 A JP741081 A JP 741081A JP 741081 A JP741081 A JP 741081A JP S6127061 B2 JPS6127061 B2 JP S6127061B2
Authority
JP
Japan
Prior art keywords
blood
section
membrane
hemodialysis
oxygenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP741081A
Other languages
Japanese (ja)
Other versions
JPS57119757A (en
Inventor
Takashi Teramatsu
Fumitake Yoshida
Yoshihiko Shimizu
Masaichi Matsunobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP741081A priority Critical patent/JPS57119757A/en
Publication of JPS57119757A publication Critical patent/JPS57119757A/en
Publication of JPS6127061B2 publication Critical patent/JPS6127061B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 本発明は、酸素(O2)の吸収並びに二酸化炭素
(CO2)の除去、特に後者の性能の優れた膜型人工
肺に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a membrane oxygenator that has excellent absorption of oxygen (O 2 ) and removal of carbon dioxide (CO 2 ), especially the latter.

人工肺は、血液にO2を吸収させると同時に血
液中からCO2を除く装置であつて、従来「開心
術」即ち心臓を開いて行う手術に際して、心臓と
肺の機能を一時的に代行させる人工心肺装置の一
部として用いられることが多かつた。この目的に
対しては、膜型人工肺や気泡型人工肺等が用いら
れているが、膜型人工肺は気泡型人工肺に比べる
と溶血(赤血球の崩壊)などの血液に対する損傷
が少ないので、最近では膜型人工肺が次第に広く
用いられるようになつて来た。
An artificial lung is a device that simultaneously absorbs O 2 into the blood and simultaneously removes CO 2 from the blood, and is used to temporarily take over the functions of the heart and lungs during open heart surgery, that is, surgery that involves opening the heart. It was often used as part of a heart-lung machine. Membrane oxygenators and bubble oxygenators are used for this purpose, but membrane oxygenators cause less damage to the blood, such as hemolysis (disintegration of red blood cells), than bubble oxygenators. Recently, membrane oxygenators have become increasingly widely used.

これに対して、急性または慢性の呼吸不全患者
の肺の機能を補助する目的に用いる人工肺は比較
的長時間、時には数日間も、連続して用いられる
ので、必ず膜型人工肺でなければならない。この
ような目的に用いられる膜型人工肺は、いわゆる
ECMO(Extra−Corporeal Membrane
Oxygenetionの略称で、体外で膜型人工肺を用い
て血液の酸素加を行うことを意味する。)の一種
である。
In contrast, oxygenators, which are used to support lung function in patients with acute or chronic respiratory failure, are used continuously for relatively long periods of time, sometimes even for several days, so they must be membrane oxygenators. It won't happen. The membrane oxygenator used for this purpose is the so-called
ECMO (Extra-Corporeal Membrane
Abbreviation for oxygenation, which refers to adding oxygen to the blood using a membrane oxygenator outside the body. ) is a type of

ECMO用の膜型人工肺は、時には数日間も連
続して用いられるため、特に血液損傷の少ないも
のが要求されるが、従来はECMOを目的として
作られた専用の膜型人工肺は存在しなかつた。
Membrane oxygenators for ECMO are required to cause minimal blood damage because they are sometimes used continuously for several days, but until now, there were no membrane oxygenators specifically designed for ECMO. Nakatsuta.

最近、臨床医学者により次第に認識されて来た
ことは、ECMO用の膜型人工肺においては、O2
吸収性能よりもむしろCO2除去性能の方が重要で
あるということである。しかるに前記開心術用の
膜型人工肺においても、O2吸収能力は十分であ
つても、CO2除去能力が十分でないことはO2
CO2に対する膜の透過係数やガス移動の推進力
(分圧)の差を考えれば理論的にも推論できるこ
とである。膜型人工肺を呼吸不全患者のECMO
用の補助肺として用いる場合には特にCO2除去能
力が十分でないという傾向が著しい。一般に呼吸
不全患者は血液中の酸素分圧(PO2)の低下には
比較的堪えることができ、PO2は75〜50mmHg以
上であればよいが、血中の二酸化炭素分圧
(PCO2)の上昇(血液PHの低下)には堪え難く、
PCO2は47〜50mmHg以下に保たねばならないとい
われる。血液のPO2を上げることは、O2を混ぜた
空気を患者に呼吸させることによつても可能であ
るが、血中のCO2を除くにはこのような手段は取
り得ない。尚前述のようい単にO2を混ぜた空気
を患者に呼吸させる場合、血液のO2吸収量は若
干増加するが、血液のO2吸収効率が悪く、酸素
中毒の危険もある。しかも、この場合には血液中
のCO2の除去にはほとんど影響を与えることがな
いので、本発明の所期の目的を達成することはで
きない。
Recently, it has been increasingly recognized by clinicians that membrane oxygenators for ECMO require O 2
This means that CO 2 removal performance is more important than absorption performance. However, even in the membrane oxygenator for open heart surgery, even if the O 2 absorption capacity is sufficient, the CO 2 removal capacity is insufficient.
This can be inferred theoretically by considering the permeability coefficient of the membrane for CO 2 and the difference in the driving force (partial pressure) for gas movement. Membrane oxygenator for ECMO of patients with respiratory failure
When used as auxiliary lungs, there is a marked tendency for the CO 2 removal capacity to be insufficient. In general, patients with respiratory failure can relatively tolerate a drop in blood oxygen partial pressure (PO 2 ), and PO 2 should be 75 to 50 mmHg or higher, but blood carbon dioxide partial pressure (PCO 2 ) (lower blood PH) is difficult to bear,
It is said that PCO 2 must be kept below 47-50 mmHg. It is also possible to raise blood PO 2 by having the patient breathe air mixed with O 2 , but this method cannot remove CO 2 from the blood. If the patient simply breathes air mixed with O 2 as described above, the amount of O 2 absorbed into the blood increases slightly, but the efficiency of O 2 absorption into the blood is poor and there is a risk of oxygen poisoning. Furthermore, in this case, the removal of CO 2 from the blood is hardly affected, so the intended purpose of the present invention cannot be achieved.

ところで、人工腎用の血液透析器と後述のCO2
除去に適した透析液を用いて血液の透析を行うと
血中のPCO2が低下するという事実は、少数の医
学文献にも報告されているが、本発明者らは臨床
実験によつてこの事実を確認した。例えばある血
液透析器(中空糸型、膜面積1・5m2)使用患者
において、血液流量180〜200ml/分のとき、
PCO2を測つたところ透析液入口で30.5mmHgであ
つたが、透析液出口では8.5mmHgに低下した。こ
の事実は次のように説明できる。血中ではCO2
大部分は水と反応して重炭酸イオン(HCO3 -)を
生ずるが、この反応は赤血球中に存在する炭酸脱
水酵素の作用により促進され、ほとんど瞬間的に
起る。従つて、液中で物理的に溶けたCO2の濃度
勾配があれば、それに伴つてHCO3 -濃度勾配も
生じ、HCO3 -は濃度の高い処から低い処へ拡散
により移動する筈である。
By the way, the hemodialyzer for artificial kidneys and the CO 2
The fact that blood PCO 2 decreases when blood dialysis is performed using a dialysate suitable for removal has been reported in a small number of medical literature, but the present inventors confirmed this through clinical experiments. I confirmed the facts. For example, in a patient using a hemodialyzer (hollow fiber type, membrane area 1.5 m 2 ), when the blood flow rate is 180 to 200 ml/min,
When PCO 2 was measured, it was 30.5 mmHg at the dialysate inlet, but it decreased to 8.5 mmHg at the dialysate outlet. This fact can be explained as follows. In the blood, most of the CO 2 reacts with water to produce bicarbonate ions (HCO 3 ), but this reaction is accelerated by the action of carbonic anhydrase present in red blood cells and occurs almost instantaneously. Therefore, if there is a concentration gradient of CO 2 physically dissolved in the liquid, a concentration gradient of HCO 3 - will also occur, and HCO 3 - will move from an area of high concentration to an area of low concentration by diffusion. .

新しい透析液中にはHCO3 -は存在しないから
血液中のHCO3 -は透析膜を透過して、透析液中
へと移動する。すなわち血液透析を行うことによ
り血中のCO2を除去することがきるのである。
Since HCO 3 - does not exist in the new dialysate, HCO 3 - in the blood passes through the dialysis membrane and moves into the dialysate. In other words, CO 2 in the blood can be removed by performing hemodialysis.

本発明者らはこのような知見に基づき、人工腎
における血液透析器を膜型人工肺と組み合せて用
いれば、本発明の所期の目的を達成できるのでは
ないかとの着想の下に、種々研究をした結果本発
明を完成したのである。
Based on these findings, the inventors of the present invention made various efforts based on the idea that the intended purpose of the present invention could be achieved by using a hemodialyzer in an artificial kidney in combination with a membrane oxygenator. As a result of their research, they completed the present invention.

すなわち、本発明はケース内に納められたガス
透過膜を透過してCO2を血液に吸収させると同時
にCO2の一部を血液から除去する酸素加部と、ケ
ース内に納められた透析膜を透過して血液中の
HCO3 -を血液中から透析液中へ移動させてCO2
除去する血液透析液部とからなり、前記酸素加部
と血液透析液部とを連結したことを特徴とする二
酸化炭素の除去性能を優れた膜型人工肺である。
That is, the present invention includes an oxygen adding unit that absorbs CO 2 into blood through a gas permeable membrane housed in a case, and at the same time removes a portion of CO 2 from blood, and a dialysis membrane housed in a case. into the blood through
and a hemodialysate part that removes CO2 by moving HCO 3 - from the blood into the dialysate, and the carbon dioxide removal performance is characterized in that the oxygen addition part and the hemodialysate part are connected. This is an excellent membrane oxygenator.

本発明においては、体外循環する血液をまず血
液透析部へ、ついで酸素加部へ流すようにしても
よく、或いはまず酸素加部へついで血液透析部へ
流すようにしてもよい。
In the present invention, extracorporeally circulating blood may first flow to the hemodialysis section and then to the oxygenation section, or may first flow to the oxygenation section and then to the hemodialysis section.

前者の場合には次のような作用効果が得られ
る。即ち、従来の人工肺では不充分であつたCO2
の除去を、血液透析部のCO2除去作用によつて充
分に補うことができる。また、それのみならず、
PCO2の低い血液ほど多くのO2を吸収する−ボー
ア(Bohr)効果−ので、血液透析部を出た血液
に酸素加部においてO2を吸収させることによ
り、血液のO2吸収が容易となり、膜型人工肺の
O2吸収性能がよくなる。
In the former case, the following effects can be obtained. In other words, CO2 , which was insufficient in conventional oxygenators,
The removal of CO 2 can be sufficiently compensated for by the CO 2 removal action of the hemodialysis unit. In addition, not only that,
Blood with a lower PCO 2 absorbs more O 2 - the Bohr effect - so by allowing the blood leaving the hemodialysis unit to absorb O 2 in the oxygenation unit, blood O 2 absorption becomes easier. , membrane oxygenator
Improves O 2 absorption performance.

また、後者の場合には次のような作用効果が得
られる。即ち、酸素加部を出た血液はO2を吸収
しPO2が高くなつているが、このようなPO2の高
い血液はCO2を放散し易い−ハルデン
(Haldane)効果−ので、これを血液透析部に流
し透析すれば、CO2の除去が容易となり、膜型人
工肺のCO2除去性能は著しく向上する。
Furthermore, in the latter case, the following effects can be obtained. In other words, blood leaving the oxygenated area absorbs O 2 and has a high PO 2 concentration, but blood with such a high PO 2 concentration tends to dissipate CO 2 - the Haldane effect. If the membrane oxygenator is passed through the hemodialysis unit for dialysis, CO 2 removal becomes easy, and the CO 2 removal performance of the membrane oxygenator is significantly improved.

なお前記酸素加部においても、血液へのO2
吸収と同時に若干のCO2が血液から除去されるの
は当然であるが、血液透析部において除去される
CO2の量は酸素加部において除かれるCO2の量よ
りも遥かに多く、血液透析部と酸素加部とを併用
することによつて酸素加部だけの場合に比べて血
液からのCO2の除去を遥かに効率良く行うことが
できる。また、血液透析部だけでは血液へのO2
の吸収は行われないので、固有肺からの酸素吸収
を行わない限り、酸素加部を設ける必要がある。
このように血液透析部と酸素加部とを併用するこ
とが、CO2除去を効率良く行うための必須条件で
ある。
In addition, it is natural that some CO 2 is removed from the blood at the same time as O 2 is absorbed into the blood in the oxygen addition section, but it is removed in the hemodialysis section.
The amount of CO 2 is much higher than the amount of CO 2 removed in the oxygenation section, and by using the hemodialysis section and the oxygenation section together, CO 2 is removed from the blood compared to when only the oxygenation section is used. can be removed much more efficiently. In addition, the hemodialysis department alone does not provide enough O 2 to the blood.
Since the absorption of oxygen does not take place, it is necessary to provide an oxygen adding section unless oxygen absorption from the lungs is performed.
The combined use of the hemodialysis section and the oxygen addition section in this way is an essential condition for efficient CO 2 removal.

つまり、順序は何れであつても、体外循環する
血液を酸素加部及び血液透析部の両者を通つて流
すようにすることにより、血液へのO2の吸収CO2
の除去、特に後者を効率よく行うことができるの
である。尚、酸素加部と血液透析部とを直結した
方がより効率化を図ることができる。尚、本発明
に係る二酸化炭素の除去性能の優れた膜型人工肺
に用いる透析液は、CO2除去に適したものであ
り、血液中の尿素その他の老廃物質を除くことを
目的とする人工腎臓用の血液透析器に用いる透析
液とは違つて、CO2やHCO3 -イオンを生ずるよう
な成分を含まないものである。
In other words, regardless of the order, by making blood circulating extracorporeally flow through both the oxygenation section and the hemodialysis section, absorption of O 2 into the blood and CO 2 can be reduced.
can be removed, especially the latter, efficiently. It should be noted that more efficiency can be achieved by directly connecting the oxygenation section and the hemodialysis section. The dialysis fluid used in the membrane oxygenator with excellent carbon dioxide removal performance according to the present invention is suitable for removing CO2 , and is used in artificial lungs for the purpose of removing urea and other waste substances from the blood. Unlike the dialysate used in kidney hemodialyzers, it does not contain components that generate CO 2 or HCO 3 - ions.

次に、図面に基づき本発明の実施例につき説明
する。
Next, embodiments of the present invention will be described based on the drawings.

第1図は、酸素加部と血液透析部とを直線
的に直結した中空糸型の膜型人工肺の構造を示
す。血液は酸素加部及び血液透析部の両部と
も中空糸膜内を流す。透析液は血液透析部にお
ける中空糸状の透析膜とケースの間隙を、酸
素ガスは酸素加部における中空糸状のガス透過
膜とケースとの間隙を流す。図中は血液入
口(出口)、は血液出口(入口)、は透析液入
口(出口)、は透析液出口(入口)、は酸素ガ
ス入口(出口)、は酸素ガス出口(入口)を示
す。
FIG. 1 shows the structure of a hollow fiber membrane oxygenator in which an oxygenation section and a hemodialysis section are directly connected in a straight line. Blood flows through hollow fiber membranes in both the oxygenated section and the hemodialysis section. The dialysate flows through the gap between the hollow fiber dialysis membrane and the case in the hemodialysis section, and the oxygen gas flows through the gap between the hollow fiber gas permeable membrane and the case in the oxygen addition section. In the figure, shows blood inlet (outlet), shows blood outlet (inlet), shows dialysate inlet (outlet), shows dialysate outlet (inlet), shows oxygen gas inlet (outlet), and shows oxygen gas outlet (inlet).

第2図は、酸素加部と血液透析部とを平行
的に直結した中空糸型の膜型人工肺の構造を示
す。ケース内に隔壁を設け、血液透析部の
中空糸膜内を流れた血液が、ケースの一端で
180度方向を変えて酸素加部の中空糸膜内を血
液透析部と反対の方向に流れるようにしたもの
である。
FIG. 2 shows the structure of a hollow fiber membrane oxygenator in which an oxygenation section and a hemodialysis section are directly connected in parallel. A partition wall is installed inside the case, and the blood flowing through the hollow fiber membrane of the hemodialysis section is separated at one end of the case.
The direction is changed by 180 degrees so that the flow inside the hollow fiber membrane of the oxygenation section is in the opposite direction to the hemodialysis section.

第3図は、酸素加部と血液透析部とを直線
的に直結した積層型の膜型人工肺の構造を示す。
酸素加部ではガス透過膜とメツシユ(網状
体)とを交互に、血液透析部では透析膜と
メツシユとを交互に積層し、血液と酸素ガス、
血液と透析液とがほぼ直角に流れるようにそれぞ
れの流れに平行な膜の両端を閉じて流路を形成さ
せる。メツシユは膜と膜との間隔を一定に保持
するとともに、血液流路および透析液流路におい
ては流れの乱れを増すことにより物質移動に対す
る境膜抵坑を減らす効果もある。尚、第3図にお
いて、血液は紙面に平行に流し、酸素ガスおよび
透析液は紙面にほぼ直角に流す。第4図は第3図
のA−A′断面図、第5図はB−B′断面図であ
る。第4図と第5図においては血液は紙面に直角
に流す。
FIG. 3 shows the structure of a laminated membrane oxygenator in which an oxygenation section and a hemodialysis section are directly connected in a straight line.
In the oxygenation section, gas permeable membranes and meshes (reticular bodies) are alternately stacked, and in the hemodialysis section, dialysis membranes and meshes are stacked alternately.
A flow path is formed by closing both ends of the membrane parallel to each flow so that the blood and dialysate flow approximately at right angles. The mesh maintains a constant distance between membranes, and also has the effect of reducing membrane resistance to mass transfer by increasing flow turbulence in the blood flow path and dialysate flow path. In FIG. 3, blood flows parallel to the plane of the paper, and oxygen gas and dialysate flow approximately perpendicular to the plane of the paper. 4 is a sectional view taken along the line AA' in FIG. 3, and FIG. 5 is a sectional view taken along the line BB' in FIG. In FIGS. 4 and 5, blood flows perpendicular to the plane of the paper.

第6図は、酸素加部と血液透析部とを平行
的に直結した積層型の膜型人工肺の構造を示す。
ケース内に隔壁を設け、血液透析部を流れ
た血液が、ケースの一端で180度方向を変えて
酸素加部を血液透析部と反対方向に流れるよ
うにしたものである。第7図は、第6図のC−
C′断面図である。
FIG. 6 shows the structure of a laminated membrane oxygenator in which an oxygenation section and a hemodialysis section are directly connected in parallel.
A partition is provided inside the case, and the blood flowing through the hemodialysis section is turned 180 degrees at one end of the case so that the blood flows through the oxygenated section in the opposite direction to the hemodialysis section. Figure 7 shows C- in Figure 6.
It is a C′ cross-sectional view.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実験例 1 第1図に示す構造の膜型人工肺(中空糸型、酸
素加部の膜面積0.5m2、血液透析部の膜面積1.3
m2)を用いて行つたイン ヴイトロ(生体を用い
ない)実験のデータを次に示す。
Experimental example 1 Membrane oxygenator with the structure shown in Figure 1 (hollow fiber type, membrane area of oxygenation part 0.5 m 2 , membrane area of hemodialysis part 1.3
The following are data from in vitro (non-living body) experiments conducted using M 2 ).

人血(ヘマトクリツト40%)を循環し、その回
路の途中でCO2を血液に吹込んで、血液にCO2
吸収させると同時にO2を血液から放散させた。
血液は200ml/分の流量で、まず血液透析部に、つ
いで酸素加部に流した。定常状態に達した後、血
中のPCO2は血液透析部入口で50mmHg、血液透析
部出口(酸素加部入口)で22mmHg、酸素加部出
口で19mmHgであつた。すなわち、CO2除去に関
しては血液透析部が酸素加部よりも遥かに有効で
あることが判る。一方血中のPO2は酸素加部入口
で31mmHg、酸素加部出口306mmHgであつた。
Human blood (hematocrit 40%) was circulated, and CO 2 was injected into the blood midway through the circuit, causing the blood to absorb CO 2 and at the same time dissipate O 2 from the blood.
Blood was passed first to the hemodialysis section and then to the oxygenation section at a flow rate of 200 ml/min. After reaching a steady state, blood PCO 2 was 50 mmHg at the hemodialysis section inlet, 22 mmHg at the hemodialysis section outlet (oxygenation section inlet), and 19 mmHg at the oxygenation section outlet. In other words, it can be seen that the hemodialysis section is far more effective than the oxygenation section in terms of CO 2 removal. On the other hand, the PO 2 in the blood was 31 mmHg at the oxygenator inlet and 306mmHg at the oxygenator outlet.

実験例 2 実験例1と同じ装置を用いて、血液流量等は同
じくし、まず酸素加部に、ついで血液透析部に血
液を流した。定常状態に達した後血中のPCO2
測つたところ、酸素加部入口で50mmHg、酸素加
部出口(血液透析部入口)で44mmHg、血液透析
部出口で21mmHgであつた。この場合にもCO2
去に関しては血液透析部の方が酸素加部より有効
であつた。一方、血中のPO2は酸素加部入口で31
mmHg、酸素加部出口で270mmHgであつた。
Experimental Example 2 Using the same apparatus as in Experimental Example 1 and keeping the blood flow rate the same, blood was first flowed into the oxygenation section and then into the hemodialysis section. After reaching a steady state, blood PCO 2 was measured and found to be 50 mmHg at the oxygenation section inlet, 44mmHg at the oxygenation section outlet (hemodialysis section entrance), and 21mmHg at the hemodialysis section outlet. In this case as well, the hemodialysis section was more effective than the oxygenation section in terms of CO 2 removal. On the other hand, PO 2 in the blood is 31
mmHg, 270 mmHg at the oxygen supply outlet.

以上説明したように、本発明に係る膜型人工肺
はO2の吸収並びにCO2の除去、特に後者の性能が
優れたものであり、またその構造も簡単なもので
あるから安価に製造できると共に操作も容易であ
る。
As explained above, the membrane oxygenator according to the present invention has excellent performance in absorbing O 2 and removing CO 2 , especially the latter, and has a simple structure, so it can be manufactured at low cost. It is also easy to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の一実施例を示し、第1
図及び第2図は中空糸型の膜型人工肺の縦断面
図、第3図及び第6図は積層型の膜型人工肺の縦
断面図、第4図は第3図のA−A′断面図、第5
図は第3図のB−B′断面図、第7図は第6図のC
−C′断面図を示す。 図中、……酸素加部、……血液透析部、
……ガス透過膜、……透析膜。
Each of the drawings shows one embodiment of the present invention.
Figures 3 and 2 are longitudinal cross-sectional views of a hollow fiber membrane oxygenator, Figures 3 and 6 are longitudinal cross-sectional views of a laminated membrane oxygenator, and Figure 4 is A-A in Figure 3. 'Cross section, 5th
The figure is a sectional view taken along line B-B' in Figure 3, and Figure 7 is a cross-sectional view of C in Figure 6.
-C′ cross-sectional view is shown. In the figure, ...oxygenation section, ...hemodialysis section,
...gas permeable membrane, ...dialysis membrane.

Claims (1)

【特許請求の範囲】 1 ケース内に納められたガス透過膜を透過して
酸素を血液に吸収させると同時に二酸化炭素の一
部を血液から除去する酸素加部と、ケース内に納
められた透析膜を透過して血液中の重炭酸イオン
を血液中から透析液中へ移動させて二酸化炭素を
除去する血液透析液部とからなり、前記酸素加部
と血液透析液部とを連結したことを特徴とする二
酸化炭素の除去性能を優れた膜型人工肺。 2 酸素加部と血液透析液部とを直結したことを
特徴とする特許請求の範囲第1項に記載の二酸化
炭素の除去性能の優れた膜型人工肺。
[Claims] 1. An oxygen adding section that absorbs oxygen into the blood through a gas permeable membrane housed in the case and at the same time removes a portion of carbon dioxide from the blood, and a dialysis unit housed in the case. A hemodialysate part that passes through a membrane to transfer bicarbonate ions in the blood from the blood to the dialysate and removes carbon dioxide, and the oxygenation part and the hemodialysate part are connected. A membrane oxygenator with excellent carbon dioxide removal performance. 2. A membrane oxygenator with excellent carbon dioxide removal performance as set forth in claim 1, characterized in that an oxygen adding section and a hemodialysate section are directly connected.
JP741081A 1981-01-20 1981-01-20 Membrane type artificial lung having excellent removing performance of carbon dioxide Granted JPS57119757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP741081A JPS57119757A (en) 1981-01-20 1981-01-20 Membrane type artificial lung having excellent removing performance of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP741081A JPS57119757A (en) 1981-01-20 1981-01-20 Membrane type artificial lung having excellent removing performance of carbon dioxide

Publications (2)

Publication Number Publication Date
JPS57119757A JPS57119757A (en) 1982-07-26
JPS6127061B2 true JPS6127061B2 (en) 1986-06-24

Family

ID=11665090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP741081A Granted JPS57119757A (en) 1981-01-20 1981-01-20 Membrane type artificial lung having excellent removing performance of carbon dioxide

Country Status (1)

Country Link
JP (1) JPS57119757A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068129A (en) * 2007-11-30 2008-03-27 Yasuhiro Yamamoto Intracorporeal indwelling type purifying device

Also Published As

Publication number Publication date
JPS57119757A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
US20210162109A1 (en) Membrane catheter
US7927544B2 (en) Paracorporeal respiratory assist lung
JP6104886B2 (en) Combined oxygenator and arterial filter device with continuous wound hollow fiber fiber bundles for processing blood in an extracorporeal blood circuit
US6217826B1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US6723284B1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
JPS60193469A (en) Hollow yarn membrane type artificial lung
JP2004528140A (en) Hemodialysis header
US9950103B2 (en) Combination kidney and liver dialysis system and method
EP0041692A1 (en) Blood oxygenator
JP3284568B2 (en) Inlet header for oxygenator and oxygenator using it
JPS6127061B2 (en)
JPS6246192B2 (en)
JP2800123B2 (en) Bypass tube
US11298447B2 (en) Gasless extra-corporeal carbon dioxide removal
CN213099892U (en) Extracorporeal circulation system for blood gas exchange
EP1522323A1 (en) Device for eliminating carbon dioxide from the blood and a crrt apparatus provided with said device
JP3360995B2 (en) Artificial heart lung device and oxygenator with blood reservoir
Wong Carbon dioxide transfer in membrane oxygenators and associated membranes
US20190224398A1 (en) Portable Dialysis System
JPS5875558A (en) Mountable artificial kidney
JPS6247369A (en) Blood treatment apparatus
JPS6121424B2 (en)
Golding et al. A New Hollow‐Fiber Oxygenator for Clinical Cardiopulmonary Bypass
Makarewicz Jr Static and dynamic artificial lungs
JPS6129360A (en) Artificial lung having dialytic function