JPS61270376A - Wear resistant al alloy member - Google Patents

Wear resistant al alloy member

Info

Publication number
JPS61270376A
JPS61270376A JP61008552A JP855286A JPS61270376A JP S61270376 A JPS61270376 A JP S61270376A JP 61008552 A JP61008552 A JP 61008552A JP 855286 A JP855286 A JP 855286A JP S61270376 A JPS61270376 A JP S61270376A
Authority
JP
Japan
Prior art keywords
alloy
phase
powder
base material
composite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61008552A
Other languages
Japanese (ja)
Other versions
JPH0480990B2 (en
Inventor
Takaaki Kanazawa
孝明 金沢
Joji Miyake
譲治 三宅
Haratsugu Koyama
原嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPS61270376A publication Critical patent/JPS61270376A/en
Publication of JPH0480990B2 publication Critical patent/JPH0480990B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain an Al alloy member having excellent wear resistance by forming the composite phase consisting of an Ni-Al intermetallic compd. phase and hard carbide phase on the surface of an Al alloy base material in a desired part and specifying the concns. of the Ni and hard carbide layer in the composite phase. CONSTITUTION:The mixture composed of 1 or >=2 kinds of the hard carbides selected from TiC, WC, VC, ZrC, NbC and TaC and Ni is thermally sprayed onto the surface of the Al alloy base material in the position where the wear resistance is required to coat said surface. High-density energy such as TIG arc is then irradiated to said surface to heat quickly the surface for a short period and to melt and alloy part of the Ni+hard carbide coating layer and the Al alloy base material on the underside thereof by which the composite phase consisting of the Ni-Al intermetallic compd. phase and the hard carbide phase is crystallized in the Al alloy matrix. The conditions for irradiating the high-density energy are adequately set so that the average concn. of Ni in the composite phase attains 10-20wt% and the average concn. of the hard carbide phase attains 0.5-30wt%.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば自動車用エンジンのバルブシートの
如く、耐摩耗性が要求される部位に好適に使用されるA
2合金部材に関し、特にレーザビームやTIGアーク等
の高密度エネルギー源を用いてAl合金基材表面に他の
材料を合金化(アロイング)して耐摩耗性が高い表面合
金化層を形成したAl合金部材に関するもので市る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is suitable for use in areas where wear resistance is required, such as valve seats in automobile engines.
2 alloy members, in particular, aluminum alloys that are alloyed with other materials on the surface of the Al alloy base material using a high-density energy source such as a laser beam or TIG arc to form a surface alloyed layer with high wear resistance. The market is related to alloy parts.

従来の技術 周知のようにAl合金は汎用されている鉄系材料等と比
較して格段に軽量であるに加え、熱伝導特性に優れ、ま
た耐支性も優れるところから、最近では自動車等の各種
機械部品として広く使用されるようになっている。しか
しながら一般にAl合金は鉄系材料と比較して耐摩耗性
が劣り、このことが自動車等における軽量化等を目的と
して鉄系部材をAl合金部材に代える際の大きな障害と
なっていた。
As is well known in the art, Al alloys are much lighter than commonly used iron-based materials, have excellent thermal conductivity, and have excellent support resistance, so they have recently been used in automobiles, etc. It has come to be widely used as various mechanical parts. However, Al alloys generally have inferior wear resistance compared to iron-based materials, and this has been a major obstacle when replacing iron-based members with Al alloy members for the purpose of reducing the weight of automobiles and the like.

そこで従来から、耐摩耗性が要求される部位に適用され
るA2合金部材の耐摩耗性向上策として、メッキや陽極
酸化処理、あるいは溶射等の表面処理を施して耐摩耗性
の高い表面処理層を形成する試みがなされているが、い
ずれの場合も表面処理層の基材に対する密着性が充分で
ないところから、高面圧下で使用した場合に充分な耐久
性を確保できないという欠点があった。
Therefore, as a measure to improve the wear resistance of A2 alloy parts used in areas where wear resistance is required, surface treatments such as plating, anodizing, or thermal spraying have been applied to create a highly wear-resistant surface treatment layer. However, in all cases, the adhesion of the surface treatment layer to the base material was insufficient, and the drawback was that sufficient durability could not be ensured when used under high surface pressure.

このような点から、本出願人は、既に特願昭59−78
996号において、Al合金基材表面をN1と硬質セラ
ミック粒子との混合粉末で被覆し、TIGアークやレー
ザビーム等の高密度エネルギを照射して、Al合金基材
と前記混合粉末を合金化(アロインク)させ、N !3
Ai’、N iAl、N 12Al3、N iAi’3
等のNi−Al系金属間化合物からなるマトリックス中
に硬質セラミック粒子を分散させた複合層をAl合金部
材表面に形成する方法を提案している。
From this point of view, the present applicant has already filed a patent application filed in 1986-78.
In No. 996, the surface of an Al alloy base material is coated with a mixed powder of N1 and hard ceramic particles, and high-density energy such as TIG arc or laser beam is irradiated to alloy the Al alloy base material and the mixed powder ( Aroink) Let me, N! 3
Ai', N iAl, N 12Al3, N iAi'3
proposed a method of forming a composite layer on the surface of an Al alloy member, in which hard ceramic particles are dispersed in a matrix made of a Ni-Al intermetallic compound.

発明が解決すべき問題点 前記提案の方法によれば、高密度エネルギ源を用いたア
ロインクによってAl合金部材の表面に耐摩耗性に優れ
た複合層を形成することかでき、またこの複合層のマト
リックスであるN1−Affiff風間化合物は基材の
Al合金と一体に結合されているため、高面圧下でも耐
久性が高い。しかしながら前記提案により1弊られる複
合層はマトリックス(基地組成)の全体がNi−Al系
金属間化合物相となってあり、この金属間化合物相は高
硬度ではあるものの、極めて脆いため、合金化処理後の
加工が困難であるという問題が必る。すなわち一般に合
金化処理後の表面(後金層表面)は凹凸が不可避的に生
じているから、これをそのままバルブシート等の機械部
品に使用することはできず、そこで表面精度を出すため
に通常は合金化処理後に研磨する必要があり、また場合
によっては研削を必要とすることもあるが、金属間化合
物相のみをマトリックスとする複合層は前述のように脆
いため、研磨加工おるいは研削加工時にチッピングが生
じたりクラックが発生したりして、加工が困難となり、
したがって実用材料としで使用するには問題があった。
Problems to be Solved by the Invention According to the proposed method, it is possible to form a composite layer with excellent wear resistance on the surface of an Al alloy member using an alo ink using a high-density energy source, and also to form a composite layer with excellent wear resistance on the surface of an Al alloy member. Since the matrix N1-Affiff Kazama compound is integrally bonded to the base Al alloy, it has high durability even under high surface pressure. However, one problem with the above proposal is that the entire matrix (base composition) of the composite layer is a Ni-Al intermetallic compound phase, and although this intermetallic compound phase has high hardness, it is extremely brittle, so alloying treatment is This inevitably causes the problem that subsequent processing is difficult. In other words, generally speaking, the surface after alloying treatment (the surface of the post-metal layer) inevitably has irregularities, so it cannot be used as is for machine parts such as valve seats, so in order to achieve surface accuracy, it is usually It is necessary to polish after alloying treatment, and in some cases, it may also require grinding, but as mentioned above, the composite layer with only intermetallic phase as a matrix is brittle, so polishing or grinding is not necessary. Chipping and cracks may occur during processing, making processing difficult.
Therefore, there were problems in using it as a practical material.

この発明は以上の事情を背景としてなされたものでおり
、前記提案の問題点を解決して、合金化処理後の加工の
困難を招くことなく、高面圧下、高温条件下においても
著しく耐摩耗性の優れたAl合金部材を提供することを
目的とするものでおる。
This invention was made against the background of the above-mentioned circumstances, and solves the problems of the above-mentioned proposal, and achieves remarkable wear resistance even under high surface pressure and high temperature conditions without causing difficulties in processing after alloying treatment. The purpose of this invention is to provide an Al alloy member with excellent properties.

問題点を解決するための手段 この発明のAl合金部材は、AJ2合金基材の表面にN
1のみならず硬質な炭化物すなわちTiC(炭化チタン
:チタンカーバイド)、WC(炭化タングステン:タン
グステンカーバイド)、VC(炭化バナジウム>、zr
c(炭化ジルコニウム)、NbC(炭化ニオブ)、Ta
C(炭化タンタル)のうちから選ばれた1種または2種
以上をも同時に合金化することにより硬質炭化物相を表
面層に分散させて、耐摩耗性を一層向上させ、しかもそ
の合金化にあたり、最終的に得られる合金化層(複合層
)の基地組織の全体がNi−Al系金属間化合物相とな
ってしまわないように、すなわちNi−Al系金属間化
合物相とAl合金相とが混在した組織を有する複合層と
なるようにその層中の平均Ni1度を設定し、これによ
って前記提案の如きNi−All系合金化化合物相脆さ
の問題を解決し、加工性を確保するものでおる。
Means for Solving the Problems The Al alloy member of the present invention has N on the surface of the AJ2 alloy base material.
1 as well as hard carbides, such as TiC (titanium carbide), WC (tungsten carbide), VC (vanadium carbide), zr
c (zirconium carbide), NbC (niobium carbide), Ta
By simultaneously alloying one or more selected from C (tantalum carbide), a hard carbide phase is dispersed in the surface layer to further improve wear resistance, and in the alloying, In order to prevent the entire base structure of the finally obtained alloyed layer (composite layer) from becoming a Ni-Al intermetallic compound phase, in other words, the Ni-Al intermetallic compound phase and the Al alloy phase are mixed. The average Ni degree in the layer is set so as to form a composite layer with a similar structure, thereby solving the problem of Ni-All alloyed compound phase brittleness as proposed above and ensuring workability. is.

具体的には、この発明の耐摩耗性へ1合金部材は、耐摩
耗性が要求される部位のへ!合金基材表面に、T i 
C,WC,VC,ZrC,NbC。
Specifically, the wear-resistant 1 alloy member of this invention is suitable for use in areas where wear resistance is required! Ti on the surface of the alloy base material
C, WC, VC, ZrC, NbC.

TaCのうちから選ばれた1種または2種以上の炭化物
とN1とを合金化することによって、Al合金マトリッ
クスにxl−Al系金属間化合物および炭化物硬質相が
晶出した、平均Nl濃度が10〜40%量%、炭化物硬
質相の平均濃度がQ、5〜30重邑%の複合層をAl合
金基材表面に形成したことを特徴とするものである。
By alloying N1 with one or more carbides selected from TaC, xl-Al intermetallic compounds and carbide hard phases are crystallized in the Al alloy matrix, and the average Nl concentration is 10. It is characterized by forming a composite layer on the surface of an Al alloy base material with an average concentration of carbide hard phase of Q and 5 to 30% by weight.

作   用 この発明の合金部材は、前)ボのようにA2合金基材の
表面に高密度エネルギ源を用いてNiおよびTiC等の
硬質炭化物を合金化(アロインク)して、Al合金基地
中にNr−p、i基金属間化合物および炭化物硬質相を
晶出させた複合層、すなわちAl合金相とNi−Al系
金属間化合物相および炭化物硬質相とが混ざり合った複
合層を形成したものでおる。
Function: The alloy member of the present invention is produced by alloying hard carbides such as Ni and TiC on the surface of the A2 alloy base material using a high-density energy source (alloy ink) as shown in the previous example. A composite layer in which Nr-p, i-based intermetallic compound and carbide hard phase are crystallized, that is, a composite layer in which Al alloy phase, Ni-Al intermetallic compound phase and carbide hard phase are mixed is formed. is.

ここで、Ni−Al系金属間化合物としては、主として
N1Aff3およびN ! 2 Al3の2種類の化合
物が晶出する。すなわち通常は複合層における平均Ni
濃度がNiおよびAlの合計口に対し28重口%以下の
場合にはN1Af3が晶出し、28重量%以上の場合に
はN1AN3およびN12Aj’3が晶出する。これら
のN1−AJ2系金属間化合物は、いずれも高硬度であ
って、耐摩耗性および耐熱性を高める作用を果たす。ま
たTi C,WC,VC,ZrC,NbC,TaCのよ
うな炭化物も勿論極めて硬質でおり、したがってこれら
のうちから選ばれた1種または2種以上の炭化物硬質相
が微細に分散晶出することによって耐摩耗性をより一層
向上させる役割を果たす。
Here, the Ni-Al intermetallic compounds are mainly N1Aff3 and N! 2 Two types of compounds of Al3 crystallize. That is, usually the average Ni in the composite layer
When the concentration is 28% by weight or less based on the total weight of Ni and Al, N1Af3 is crystallized, and when it is 28% by weight or more, N1AN3 and N12Aj'3 are crystallized. All of these N1-AJ2-based intermetallic compounds have high hardness and function to enhance wear resistance and heat resistance. In addition, carbides such as TiC, WC, VC, ZrC, NbC, and TaC are of course extremely hard, and therefore one or more carbide hard phases selected from these are finely dispersed and crystallized. plays the role of further improving wear resistance.

一方複合層中のAl合金マトリックス相は後述するよう
に各種固溶元素が固)容したα−Al相を主体とするも
のでおり、このα−Al相は軟質でめるため複合層全体
の加工性を向上させる作用を果たす。すなわち、Ni−
Al’系金属間化合物相および炭化物硬質相とAf1f
金マトリックス相とが共存することによって、優れた耐
摩耗性および耐熱性を得ると同時に基地組織がN1−A
flf金属間化合物相のみの場合と比較して格段に優れ
た加工性を得ることができる。
On the other hand, the Al alloy matrix phase in the composite layer is mainly composed of α-Al phase containing various solid solution elements as described later, and since this α-Al phase is soft, it is the main component of the entire composite layer. Acts to improve workability. That is, Ni-
Al'-based intermetallic compound phase and carbide hard phase and Af1f
By coexisting with the gold matrix phase, excellent wear resistance and heat resistance are obtained, and at the same time, the base structure is N1-A.
Much better workability can be obtained compared to the case of only the flf intermetallic compound phase.

なお本発明者等は既に別の特許出願において、炭化物を
加えず、N1のみをAf1f金基材表面に合金化して、
Al合金マトリックス中にNi−Al系金属間化合物を
晶出させかつ平均Ni1度を10〜40重量%とじた複
合層を形成したAl合金部材を提案しているが、このよ
うにN1単独の場合と比較してこの発明では硬質炭化物
を併せて合金化して炭化物硬質相をも晶出させることに
より一層耐摩耗性が向上する。
In addition, the present inventors have already in another patent application alloyed only N1 on the Af1f gold base material surface without adding carbide,
We have proposed an Al alloy member in which a composite layer is formed in which a Ni-Al intermetallic compound is crystallized in an Al alloy matrix and the average Ni 1 degree is 10 to 40% by weight. In contrast, in the present invention, the hard carbide is also alloyed to crystallize the carbide hard phase, thereby further improving the wear resistance.

但し、前記複合層中の平均Ni1度が40重量%を越え
れば、複合層全体がN1−Affif金属間化合物相の
みとなってしまい、複合層が脆くなって加工が困難とな
る。一方複合層中の平均N1濃度が10重量%未満の場
合には、N1−Af系金金属間化合物晶出量が極めて少
なくなって相対的にAl合金相の割合が大ぎくなり、そ
の結果一部の材料(例えばバルブ材として用いられてい
るC0−Qr金合金ど)を相手材とした場合に摩擦によ
って凝着を生じ、摩擦部分に使用される耐摩耗部材とし
て不適当となる。したがって複合層中の平均Nis度は
10〜40重量%の範囲内とする必要がおる。また複合
層中の炭化物硬質相の平均濃度が0.5重量%未満では
硬質炭化物を加えることによる耐摩耗性向上効果が充分
に発揮されず、一方決化物硬質相の平均濃度が30重量
%を越えれば相手攻撃性が高くなって相手部材の摩耗が
大きくなる。
However, if the average Ni1 degree in the composite layer exceeds 40% by weight, the entire composite layer will consist only of the N1-Affif intermetallic compound phase, making the composite layer brittle and difficult to process. On the other hand, when the average N1 concentration in the composite layer is less than 10% by weight, the amount of N1-Af gold intermetallic compounds crystallized becomes extremely small, and the proportion of the Al alloy phase becomes relatively large, resulting in When the material of the part (for example, CO-Qr gold alloy used as a valve material) is used as a mating material, adhesion occurs due to friction, making it unsuitable as a wear-resistant member for use in the friction part. Therefore, the average degree of Nis in the composite layer needs to be within the range of 10 to 40% by weight. Furthermore, if the average concentration of the carbide hard phase in the composite layer is less than 0.5% by weight, the effect of improving wear resistance by adding hard carbide will not be sufficiently exhibited; If it is exceeded, the aggressiveness of the opponent becomes high and the wear of the opponent member increases.

したがって接合層中の炭化物硬質相の平均濃度は0.5
〜30重邑%の範囲内とした。
Therefore, the average concentration of carbide hard phase in the bonding layer is 0.5
It was set within the range of ~30%.

なおAl合金基材としては機械部品等に使用されている
任意のA2合金を用いることができる。
Note that as the Al alloy base material, any A2 alloy used for mechanical parts etc. can be used.

また前述の説明ではN1−A!系金属間化合物相以外の
部分を一括してAl合金マトリックス相と称したが、基
材として用いるAl合金の成分によっては実際には各種
合金元素が固溶したα−八へ相のみならず、そのα−A
l相中にMca−1’系化合物あるいはCu−Al系化
合物相等が晶出する場合もめることは勿論でおる。
Also, in the above explanation, N1-A! The parts other than the intermetallic compound phase were collectively referred to as the Al alloy matrix phase, but depending on the composition of the Al alloy used as the base material, it may actually include not only the α-8 phase in which various alloying elements are dissolved, That α-A
Of course, there will be problems if Mca-1'-based compounds or Cu-Al-based compound phases are crystallized in the I phase.

なおまた、上述のような複合層はへ!基材表面層とNi
との合金化によって形成されたものであるから、へ!基
材の母材部分との密着性は充分にめり、したがって高面
圧下においても高い耐久性を示す。
Furthermore, the composite layer as mentioned above is! Base material surface layer and Ni
Because it is formed by alloying with, to! Adhesion to the base material portion of the base material is sufficient, and therefore exhibits high durability even under high surface pressure.

以上のようなAl合金部材を製造するにあたっては、先
ずAl合金部材のうち耐摩耗性が要求される部位のAl
合金基材表面をNiおよびTiC等の硬質炭化物の混合
物で被覆する。その被覆手段としては、例えば溶射法、
メッキ法、あるいはスラリー塗布法などを用いることが
できる。このようにしてNi十硬N炭化物の被覆層を形
成した後、その表面にTIGアーク、レーザビームある
いは電子ビームなどの高密度エネルギを照射して急速短
時間加熱し、N1+硬質炭化物被覆層とその下側のAl
合金基材の一部(所要深ざまでの部分)を溶融させ、合
金化させる。この合金化にあたっては、合金化層(複合
層)中の平均Ni濃度を10〜40重量%の範囲内に収
めるべく、N1+硬質炭化物被覆層の厚みに対するAl
合金基材の溶融深さが適切な深さとなるように高密度エ
ネルギ照射条件(出力や基材とエネルギ源との相対移動
速度など)を適切に設定することが肝要で必る。
In manufacturing the above-mentioned Al alloy members, first, the Al alloy parts of the parts where wear resistance is required are removed.
The alloy substrate surface is coated with a mixture of hard carbides such as Ni and TiC. Examples of coating methods include thermal spraying,
A plating method, a slurry coating method, or the like can be used. After forming the Ni-1+ hard N carbide coating layer in this way, the surface is irradiated with high-density energy such as TIG arc, laser beam, or electron beam to rapidly heat it for a short time to form an N1+ hard carbide coating layer and its surface. Lower Al
A part of the alloy base material (to a required depth) is melted and alloyed. In this alloying, in order to keep the average Ni concentration in the alloyed layer (composite layer) within the range of 10 to 40% by weight, the Al
It is important and necessary to appropriately set high-density energy irradiation conditions (output, relative movement speed between the base material and the energy source, etc.) so that the melting depth of the alloy base material is an appropriate depth.

実施例 実施例 1 鋳物用アルミニウム合金として知られるJISAC2B
のAl合金(Cu 3.10%、3i、32%、Mg0
.34%、Zn0.01%、Fe0.43%、MnO,
30%、残部Al>からなる6ommx 25mmX8
mmの試片の表面に、第1表の記号Aで示すようにIi
l!Ni粉末75重粉末7下 粉末を溶射した後、TIGアークによって溶射層と母材
のAl合金とを平均N1溌度が10〜40重量%の範囲
内となるような条件で合金化させた。合金化によって形
成された複合層の表面を研磨した後、人感式迅速摩耗試
験が行なえる寸法、形状に試片を仕上げた。その後人感
式迅速摩耗試験を行なうとともに、複合層の組成分・析
を行なった。
Examples Example 1 JISAC2B known as aluminum alloy for castings
Al alloy (Cu 3.10%, 3i, 32%, Mg0
.. 34%, Zn0.01%, Fe0.43%, MnO,
6omm x 25mm x 8 consisting of 30% and balance Al
Ii as shown by symbol A in Table 1 on the surface of the mm specimen.
l! After thermal spraying Ni powder 75 heavy powder 7 lower powder, the thermal sprayed layer and the base material Al alloy were alloyed by TIG arc under conditions such that the average N1 permeability was in the range of 10 to 40% by weight. After polishing the surface of the composite layer formed by alloying, the specimen was finished in a size and shape suitable for human rapid wear testing. Afterwards, we conducted a rapid human wear test and analyzed the composition of the composite layer.

また、合金化すべき混合粉末として第1表の記号Bで示
すようにN1粉末およびWC粉末の混合粉末を用いた場
合と、記号Cで示すようにN1粉末およびVC粉末の混
合粉末を用いた場合と、記号りで示すようにNi粉末お
よびZrC粉末の混合粉末を用いた場合と、記号Eで示
すようにN1粉末およびNbC粉末の混合粉末を用いた
場合と、記号Fで示すようにNi粉末および丁aC粉末
の混合粉末を用いた場合と、記@Gで示すようにNi粉
末、TiC粉末、WC扮末の混合粉末を用いた場合と、
記@Hで示すようにNi粉末、VC粉末、ZrC粉末の
混合粉末を用いた場合と、記号Iに示すようにN1粉末
、VC粉末、NbC粉末の混合粉末を用いた場合、以上
の各ケースについて前記と同様な条件で合金化を行ない
、その後複数層の摩耗試験と組成分析に供した。
In addition, when a mixed powder of N1 powder and WC powder is used as the mixed powder to be alloyed, as shown by symbol B in Table 1, and when a mixed powder of N1 powder and VC powder is used, as shown by symbol C. , when a mixed powder of Ni powder and ZrC powder is used, as shown by the symbol E, when a mixed powder of N1 powder and NbC powder is used, as shown by the symbol F, and when a mixed powder of Ni powder and ZrC powder is used, as shown by the symbol F. and a case where a mixed powder of Ni powder, TiC powder, and WC powder is used as shown in @G,
In each of the above cases, as shown in @H, a mixed powder of Ni powder, VC powder, and ZrC powder is used, and as shown in symbol I, a mixed powder of N1 powder, VC powder, and NbC powder is used. Alloying was performed under the same conditions as above, and then subjected to multi-layer wear tests and compositional analysis.

以上の実施例A〜■のAl合金部材における複合層の成
分組成分析結果は、第1表中に示す通りであった。
The results of component composition analysis of the composite layers in the Al alloy members of Examples A to (1) above were as shown in Table 1.

第  1  表 一方、比較材1として従来から自動車エンジンのバルブ
シート材として用いられている鉄系焼結材料(C0.7
0〜1.20%、Mo4.、O〜6.5%、C07〜1
0%、Pb10〜22%、Fe残部)を用意し、さらに
比較材2として、JIS  AC2BのAl合金基材表
面にTIGアークによりN1のみを合金化して、重量%
でAl−34%N1−5%3i−2%Cuの成分組成の
複合層を形成したAl合金部材を用意した。
Table 1 On the other hand, comparative material 1 is an iron-based sintered material (C0.7
0-1.20%, Mo4. , O~6.5%, C07~1
0%, Pb10-22%, balance Fe), and as a comparison material 2, only N1 was alloyed by TIG arc on the surface of the JIS AC2B Al alloy base material, and the weight%
An Al alloy member was prepared in which a composite layer having a composition of Al-34%N1-5%3i-2%Cu was formed.

これらの本発明実施例材A〜■および比較材1、2につ
いての人感式迅速摩耗試験結果を第1図に示す。なお人
感式迅速摩耗試験の試験条件は、相手材を5UH1 1
とし、最終荷重6. 3kg、すべり速度0.31 m
/Sec,すべり距離100 mとした。
The human rapid abrasion test results for these invention example materials A to ① and comparative materials 1 and 2 are shown in FIG. The test conditions for the human-sensitive rapid abrasion test are as follows: 5UH1 1
and the final load6. 3kg, sliding speed 0.31m
/Sec, and the sliding distance was 100 m.

第1図から、この発明による実施例A〜丁の場合には、
従来のバルブシート材である比較材1と比較して人感式
迅速摩耗試験における摩耗痕面積が小さく、従来の比較
材1より優れた耐摩耗性を有し、しかもN1のみを合金
化した比較材2と比べても耐摩耗性が優れていることが
明らかである。
From FIG. 1, in the case of embodiments A to D according to the present invention,
Compared to Comparative Material 1, which is a conventional valve seat material, the wear scar area in the human rapid wear test is smaller, and it has better wear resistance than the conventional Comparative Material 1, and is alloyed only with N1. It is clear that the wear resistance is superior to Material 2.

ここで、この発明の実施例材のNi濃度と比較材2のN
1濃度はほぼ同等であり、したがってNiと同時にTi
Cその他の硬質炭化物を合金化することによって一層耐
摩耗性が向上したことが明らかて酌る。
Here, the Ni concentration of the example material of this invention and the N of comparative material 2
1 concentration is approximately equivalent, therefore Ni and Ti simultaneously
It is clear that the wear resistance was further improved by alloying C and other hard carbides.

なお以上の実施例において、合金化処理後の研磨加工に
おいては特にクラックやチッピングが生じることなく、
円滑に研磨加工を行なうことができた。
In the above examples, no cracks or chipping occurred during the polishing process after the alloying process.
We were able to perform the polishing process smoothly.

なおまた、別に本発明実施例材の複合層の組織について
、光学顕微鏡およびEPMAによる観察を行なったとこ
ろ、Al合金マトリックス相としてのα−八へ相中にN
 i −Al系金属間化合物でおるN1Affi3およ
び/またはN i 2 Al3が均一に品出するととも
に微細な炭化物硬質相が均一に分散晶出していることが
確認された。
Furthermore, when the structure of the composite layer of the example material of the present invention was observed using an optical microscope and EPMA, it was found that N was present in the α-8 phase as the Al alloy matrix phase.
It was confirmed that N1Affi3 and/or N i 2 Al3, which are i-Al based intermetallic compounds, were uniformly distributed and a fine carbide hard phase was uniformly dispersed and crystallized.

実施例 2 合金化するべき混合粉末として、純Ni粉末とTiC粉
末との混合粉末を用いた場合と、純N1粉末とWC粉末
との混合粉末を用いた場合と、純N1粉末とVC粉末を
用いた場合と、純Ni粉末とZrC粉末との混合粉末を
用いた場合と、純N1粉末とNbC粉末を用いた場合と
、純N1粉末とTaC粉末との混合粉末を用いた場合と
について、それぞれ炭化物粉末の配合量を変えて、種々
の量の炭化物硬質相を有するN1合金化複合層をAl%
1表面に形成した。その他の合金化の条件は実施例1と
同様である。なおいずれの炭化物を含む混合粉末を合金
化した場合もその複合層中のN1濃度は30±5重量%
でおる。
Example 2 As the mixed powder to be alloyed, a mixed powder of pure Ni powder and TiC powder was used, a mixed powder of pure N1 powder and WC powder was used, and a mixed powder of pure N1 powder and VC powder was used. When using a mixed powder of pure Ni powder and ZrC powder, when using pure N1 powder and NbC powder, and when using a mixed powder of pure N1 powder and TaC powder, N1 alloyed composite layers with various amounts of carbide hard phase were prepared by changing the amount of carbide powder in each case.
1 surface. Other alloying conditions are the same as in Example 1. In addition, when mixed powder containing any carbide is alloyed, the N1 concentration in the composite layer is 30 ± 5% by weight.
I'll go.

以上のようにして得られた種々の炭化物量のAl合金部
材複合層について人感式迅速摩耗試験を行なった結果を
炭化物量に応じて第2図に示す。
FIG. 2 shows the results of a human rapid wear test conducted on the composite layers of Al alloy members having various amounts of carbide obtained as described above, depending on the amount of carbide.

なおこの場合の試験条件は実施例1の場合と同じである
Note that the test conditions in this case are the same as in Example 1.

一方、各Al合金部材複合層の摩擦時における相手材へ
の攻撃性を次のようにして調べた。すなわち人感式迅速
摩耗試験のローターに上述のように複合層が生成された
Al合金部材を用い、プレートにJIS規格5UHI 
l材を用い、そのプレ=1〜の摩耗痕面積で複合層の相
手攻撃性を評価した。その結果を第3図に示す。
On the other hand, the aggressiveness of each Al alloy member composite layer to a mating material during friction was investigated as follows. In other words, the rotor of the human-sensitive rapid wear test is made of an Al alloy member with a composite layer formed as described above, and the plate is made of JIS standard 5UHI.
The aggressiveness of the composite layer was evaluated using the wear scar area of Pre=1 using L material. The results are shown in FIG.

第2図から明らかなように複合層中の炭化物置が0.5
重量%未満では複合層の摩耗痕面積が大きく、充分な耐
摩耗性が得られないことがわかる。
As is clear from Figure 2, the carbide storage in the composite layer is 0.5
It can be seen that if the amount is less than % by weight, the wear scar area of the composite layer is large and sufficient wear resistance cannot be obtained.

炭化物量が多くなるほど複合層の摩耗痕面積が少なくな
って耐摩耗性が向上しているが、第3図に示すように複
合相中の炭化物口が30重量%を越えれば相手材攻撃性
が増すことがわかる。したがってこの発明では既に述べ
たように複合層中の炭化物量を0.5〜30重量%の範
囲としたのである。
As the amount of carbide increases, the wear scar area of the composite layer decreases and the wear resistance improves, but as shown in Figure 3, if the carbide content in the composite phase exceeds 30% by weight, the aggressiveness of the opposing material decreases. You can see that it increases. Therefore, in this invention, as already mentioned, the amount of carbide in the composite layer is set in the range of 0.5 to 30% by weight.

実施例 3 合金化させるべき混合粉末として、純Ni粉末のみを用
いた場合、純Ni粉末とTiC粉末との混合粉末を用い
た場合、純Ni粉末とWC粉末との混合粉末を用いた場
合、および1lTl!Ni″l/fJ末とVC粉末との
混合粉末を用いた場合について、それぞれ合金化後の複
合層のNilが変化するようにして、合金化を行なった
。その他の条件は実施例1の場合と同様で必る。なおN
i粉末+TiC粉末の場合の複合層中のTiC濃度は4
±2重量%、Ni粉末+WC粉末の場合の複合層中のW
C濃度は10±2重量%、Ni粉末+VC粉末の場合の
複合相中のVC濃度は5±2重量%である。
Example 3 When only pure Ni powder is used as the mixed powder to be alloyed, when a mixed powder of pure Ni powder and TiC powder is used, when a mixed powder of pure Ni powder and WC powder is used, and 1lTl! In the case of using a mixed powder of Ni″l/fJ powder and VC powder, alloying was performed so that the Ni of the composite layer after alloying was changed.Other conditions were as in Example 1. Same as , it is necessary. Note that N
In the case of i powder + TiC powder, the TiC concentration in the composite layer is 4
±2% by weight, W in composite layer in case of Ni powder + WC powder
The C concentration is 10±2% by weight, and the VC concentration in the composite phase in the case of Ni powder + VC powder is 5±2% by weight.

実施例1と同様にしてAl合金部材複合層の耐摩耗性を
人感式迅速摩耗試験により調べた結果を、複合層のNl
yA度に対応して第4図に示す。第4図から、N1濃度
が10重量%では光分な耐摩耗性が得られないことが判
る。
The wear resistance of the Al alloy member composite layer was investigated using a human rapid wear test in the same manner as in Example 1.
It is shown in FIG. 4 corresponding to yA degree. From FIG. 4, it can be seen that when the N1 concentration is 10% by weight, optical wear resistance cannot be obtained.

発明の効果 以上の説明で明らかなようにこの発明のAl合金部材は
、Al合金基材表面にNiおよびTiC等の硬質炭化物
を合金化させて、へ合金金マトリックス中にNi−、l
’系金金属間化合物よび炭化物硬質相を晶出させて、平
均Ni濃度を10〜40重量%、炭化物硬質相の平均濃
度を0.5〜30重量%の範囲内とした複合層を形成し
たものでおるから、耐摩耗性および耐熱性が高いと同時
に加工性も良好でおり、したがって高面圧下、高温条件
下で耐摩耗性が要求される部位に使用して著しく優れた
耐摩耗性、耐久性を発揮できると共に、実際部品に適用
するための研磨加工あるいは研削加工等をも容易になし
得る利点を有する。
Effects of the Invention As is clear from the above explanation, the Al alloy member of the present invention has hard carbides such as Ni and TiC alloyed on the surface of the Al alloy base material, and Ni-, L in the alloy gold matrix.
' series gold intermetallic compound and carbide hard phase were crystallized to form a composite layer with an average Ni concentration of 10 to 40% by weight and an average concentration of the carbide hard phase in the range of 0.5 to 30% by weight. Since it is monodore, it has high wear resistance and heat resistance as well as good workability, so it can be used in areas where wear resistance is required under high surface pressure and high temperature conditions. It has the advantage that it can exhibit durability and can easily be subjected to polishing or grinding for application to actual parts.

したがってこの発明のへ!合金部材は、例えばAl合金
製シリンダヘッドのバルブシート、Al合金製シフトフ
ォークの爪部、Al合金製シリンダライナ、Al合金製
ロッカアームのパッド等に適用して好適なものでおる。
Hence this invention! The alloy member is suitable for application to, for example, a valve seat of an Al alloy cylinder head, a claw portion of an Al alloy shift fork, an Al alloy cylinder liner, an Al alloy rocker arm pad, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例材1における実施例材A−I
および比較材1.2の摩耗試験結果を示すグラフ、第2
図は実施例2において複合層中の炭化物濃度が耐摩耗性
に及ぼす影響を示すグラフ、第3図は同じ〈実施例2に
おいて複合層中の炭化物濃度が相手攻撃性に及ぼす影響
を示すグラフ、第4図は実施例3において複合層中のN
i濃度が耐摩耗性に及ぼす影響を示すグラフである。 出願人  トヨタ自動車株式会社 代理人  弁理士 豊 1)武 久 (ほか1名) 第3図 第4図 N1量 (wt%) のψすへ0 0 〉  ○   (0× 9  の  ψ  寸  (′J  Oごゝ
FIG. 1 shows Example material A-I in Example material 1 of this invention.
Graph showing the wear test results of Comparative Material 1.2 and Comparative Material 1.2, 2nd
The figure is a graph showing the effect of carbide concentration in the composite layer on wear resistance in Example 2, and Figure 3 is the same. Figure 4 shows the N in the composite layer in Example 3.
3 is a graph showing the influence of i concentration on wear resistance. Applicant Toyota Motor Corporation Representative Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) Figure 3 Figure 4 N1 amount (wt%) ψ 0 〉 ○ (0 × 9 ψ dimension ('J Oh please

Claims (1)

【特許請求の範囲】[Claims] 耐摩耗性が要求される部位のAl合金基材の表面に、T
iC、WC、VC、ZrC、NbC、TaCのうちから
選ばれた1種または2種以上の炭化物とNiとを合金化
することにより、Ni−Al系金属間化合物相および炭
化物硬質相をAl合金マトリックス中に晶出させて平均
Ni濃度を10〜40重量%、炭化物硬質相の平均濃度
を0.5〜30重量%とした複合層をAl合金基材表面
に形成したことを特徴とする耐摩耗性Al合金部材。
T is applied to the surface of the Al alloy base material in areas where wear resistance is required.
By alloying Ni with one or more carbides selected from iC, WC, VC, ZrC, NbC, and TaC, the Ni-Al intermetallic compound phase and the carbide hard phase can be converted into an Al alloy. A composite layer having an average Ni concentration of 10 to 40% by weight and an average concentration of a carbide hard phase of 0.5 to 30% by weight by crystallization in a matrix is formed on the surface of an Al alloy base material. Abrasive Al alloy member.
JP61008552A 1985-01-22 1986-01-18 Wear resistant al alloy member Granted JPS61270376A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP60-10351 1985-01-22
JP1035185 1985-01-22
JP60-10352 1985-01-22

Publications (2)

Publication Number Publication Date
JPS61270376A true JPS61270376A (en) 1986-11-29
JPH0480990B2 JPH0480990B2 (en) 1992-12-21

Family

ID=11747765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008552A Granted JPS61270376A (en) 1985-01-22 1986-01-18 Wear resistant al alloy member

Country Status (1)

Country Link
JP (1) JPS61270376A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176227A1 (en) * 2000-07-26 2002-01-30 DaimlerChrysler AG Process for forming a superficial layer
US7329384B2 (en) 2000-09-29 2008-02-12 Ngk Insulators, Ltd. Porous metal based composite material
DE102007012635A1 (en) * 2007-03-16 2008-09-18 Alfred Flamang Flame spraying material for flame-sprayed high-speed coatings comprises zirconium carbide as hardening material, and binding agent, which has nickel or copper
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate
US9138806B2 (en) 2012-12-19 2015-09-22 King Saud University In-situ combustion synthesis of titanium carbide (TiC) reinforced aluminum matrix composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537843B2 (en) * 2004-12-22 2010-09-08 株式会社東芝 Electronics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176227A1 (en) * 2000-07-26 2002-01-30 DaimlerChrysler AG Process for forming a superficial layer
US7329384B2 (en) 2000-09-29 2008-02-12 Ngk Insulators, Ltd. Porous metal based composite material
DE102007012635A1 (en) * 2007-03-16 2008-09-18 Alfred Flamang Flame spraying material for flame-sprayed high-speed coatings comprises zirconium carbide as hardening material, and binding agent, which has nickel or copper
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate
US9138806B2 (en) 2012-12-19 2015-09-22 King Saud University In-situ combustion synthesis of titanium carbide (TiC) reinforced aluminum matrix composite

Also Published As

Publication number Publication date
JPH0480990B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
EP0529208B1 (en) Hard facing chromium-base alloys
EP0939139B1 (en) Abrasion resistant copper alloy for build-up cladding on engine cylinder head
EP1726667B1 (en) Wear-resistant copper base alloy for overlaying
EP1361288B1 (en) Wear-resistant copper-base alloy
US5911949A (en) Abrasion resistant copper alloy
US4806394A (en) Method for producing a wear-resistant, titanium-carbide containing layer on a metal base
JPS61270376A (en) Wear resistant al alloy member
US5226977A (en) Method of hardfacing an engine valve of a titanium material
US7431881B2 (en) Wear-resistant alloys particularly suited to aluminum-engine head-valve seats
JPH04105787A (en) Filler metal for surface reforming of aluminum material
RU2124417C1 (en) Fuel intake valve nozzle and method of its manufacture
JPH0480991B2 (en)
JPH0762196B2 (en) High wear resistance titanium alloy material
JPS62167890A (en) Wear resistant al alloy member
JPH0480993B2 (en)
JPH0480992B2 (en)
JP3389818B2 (en) Manufacturing method of sliding member
JP2769337B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JPS6169946A (en) Valve system sliding member and its manufacture
JP3059333B2 (en) Manufacturing method of aluminum material with excellent wear resistance
JPS61201785A (en) Heat and wear resistant al alloy member
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JPS61201784A (en) Heat and wear resistant al alloy member
JPH04100693A (en) Filler metal for surface reforming of aluminum material
JPH0372057A (en) Structural member made of titanium or titanium alloy