JPS61270206A - Production of monosilane - Google Patents

Production of monosilane

Info

Publication number
JPS61270206A
JPS61270206A JP10989085A JP10989085A JPS61270206A JP S61270206 A JPS61270206 A JP S61270206A JP 10989085 A JP10989085 A JP 10989085A JP 10989085 A JP10989085 A JP 10989085A JP S61270206 A JPS61270206 A JP S61270206A
Authority
JP
Japan
Prior art keywords
monosilane
catalyst
anion exchange
alkoxysilane
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10989085A
Other languages
Japanese (ja)
Other versions
JPH0688770B2 (en
Inventor
Sunao Imaki
今木 直
Junzo Haji
順三 土師
Yoko Misu
三須 陽子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10989085A priority Critical patent/JPH0688770B2/en
Priority to US06/860,572 priority patent/US4667047A/en
Priority to EP86106556A priority patent/EP0201919B1/en
Priority to DE8686106556T priority patent/DE3686508T2/en
Publication of JPS61270206A publication Critical patent/JPS61270206A/en
Publication of JPH0688770B2 publication Critical patent/JPH0688770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:In producing a monosilane by disproportionating an alkoxysilane in the presence of a catalyst, to produce efficiently a monosilane and to make separation of a catalyst from a reaction product easy, by using an anion exchange resin as a catalyst. CONSTITUTION:An alkoxysilane (e.g., trimethoxysilane) shown by the formula (R is 1-6C alkyl; n is 1-3) is disproportionated in the presence of a catalyst consisting of an anion exchange resin, to give the aimed monosilane. A resin obtained by bonding a primary - tertiary amine or quaternary ammonium group as an exchange group to a high polymer base (e.g., styrene/divinylbenzene copolymer) polymerized in a three-dimension is used as the anion exchange resin, and the amount of it used is about 0.1-200wt% based on the raw material alkoxysilane. The prepared monosilane is preferably used as a raw material of high-purity silicon for producing optical fiber, etc.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 本発明はアルコキシシランを原料としてモノシランを製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Sedentary Use] The present invention relates to a method for producing monosilane using an alkoxysilane as a raw material.

〔従来の技術〕[Conventional technology]

モノシランは半導体用高純度シリコン原料として使用さ
れるほか、アモルファス−シリコン感光体、太陽電池、
ニューセラミックス材料等の原料として広範に使用され
ている。
Monosilane is used as a raw material for high-purity silicon for semiconductors, as well as for amorphous silicon photoreceptors, solar cells,
It is widely used as a raw material for new ceramic materials.

従来よりモノシランの製造性に関しては数多くの提案が
なされている。特公昭j / −20θダθには、モノ
シランを製造するための最も有力な方法の7つとして、
ナトリウムエトキシドを触媒として、トリエトキシシラ
ンを不均化する方法が記載されている。
Many proposals have been made regarding the manufacturability of monosilane. Tokuko Shoj / -20θ daθ, there are seven most effective methods for producing monosilane.
A method for disproportionating triethoxysilane using sodium ethoxide as a catalyst is described.

(ZtO)、Sin −−81H,+ 781(OEt
)。
(ZtO), Sin −-81H, + 781 (OEt
).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法は触媒効率が極めて高い等の優れた特徴をも、
つものであるが、触媒反応な液相謀体中で英施するため
、触媒が副生物質等(テトラエトキシシラン等)に溶解
し、触媒と鉤虫物質との分離が必ずしも容易でない等の
問題点かある。同、この反応は前記式から明らかなよう
に、副生物質が多量に生成するが、この副生物質は徨々
ケイ素化合物の原料、例えば高純度ケイ素の原料として
有用であシ、触媒を除去することが必要である。
This method also has excellent features such as extremely high catalytic efficiency.
However, since the reaction is carried out in a catalytic liquid phase, the catalyst dissolves in by-products (tetraethoxysilane, etc.), and it is not always easy to separate the catalyst from hookworm substances. There is. As is clear from the above equation, this reaction produces a large amount of by-products, but these by-products are useful as raw materials for silicon compounds, such as high-purity silicon, and the catalyst is removed. It is necessary to.

本発明の目的は原料のアルコキシシランからモノシラン
を効率よく製造し得、かつ反応生成物から触媒を容易に
分離できるモノシランの製造方法を提供するにある。
An object of the present invention is to provide a method for producing monosilane that can efficiently produce monosilane from alkoxysilane as a raw material and easily separate the catalyst from the reaction product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前記欠点に鑑み、触媒効率が高く、かつ
反応生成物との分離操作の容易な触媒について研究した
結釆、ある種の固体触媒が、この目的に合致するもので
ある事を見出し本発明に到達した。
In view of the above-mentioned drawbacks, the present inventors have conducted research on catalysts that have high catalytic efficiency and are easy to separate from reaction products, and have found that a certain type of solid catalyst is suitable for this purpose. This discovery led to the present invention.

すなわち、本発明は陰イオン交換樹脂よυなる触媒の存
在下に一般式(I)で示されるアルコキシシランを不均
化して R,81(OR)、 n−、−・・・・・・・・−(I
)(式中、Rは炭素数/〜乙のアルキル基、nは/1.
2あるいは3を表わす) モノシランを製造する方法に存する。
That is, the present invention disproportionates the alkoxysilane represented by the general formula (I) in the presence of a catalyst υ such as an anion exchange resin to produce R, 81 (OR), n-, ---.・-(I
) (wherein, R is an alkyl group having a carbon number of /~B, and n is /1.
(represents 2 or 3) consists in a method for producing monosilane.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用される原料であるところのアルコキ
シシランは、例えば特開昭j4t−/63!コタ、特開
昭!j−7≦rりに記載の方法等によシ容易に調製され
る。
The alkoxysilane, which is a raw material used in the present invention, is disclosed in, for example, Japanese Patent Application Publication No. 2003-120003. Kota, Tokukai Akira! It is easily prepared by the method described in j-7≦r.

本発明方法における不均化反応は、陰イオン交換樹脂を
触媒として使用し実施される。
The disproportionation reaction in the method of the invention is carried out using an anion exchange resin as a catalyst.

ここで云う隘イオン交換樹脂とは、三次元に重合した高
分子基体に、交換基として7〜jlj&のアミンまたは
、ダ級アンモニウム基を結合させた樹脂であシ、高分子
基体の代表的なものとシテハ、スチレンとジビニルベン
ゼンとの共重合体がある。
The ion exchange resin referred to here is a resin in which a 7-jlj& amine or a double ammonium group is bonded to a three-dimensionally polymerized polymer base as an exchange group, and is a typical example of a polymer base. There are copolymers of mono and styrene, and copolymers of styrene and divinylbenzene.

イオン交換樹脂に於ては、共重合体の架橋度によって架
橋度r%以下の低架橋度樹脂とそれ以上の高架橋度樹脂
に分類されるが、本発明ではそのいずれもが使用できる
。また構造的に多孔度によってゲル状、ポーラス状、ノ
1イボーラス状の形状に分類されるが、本発明ではその
bずれもが使用できる。また一般的に入手出来る陰イオ
ン交換樹脂は、化学的に安定なOJ−塩(R−N・OL
)形であシ、通常使用に際してNaOH溶液を用いてO
1i塩(R−N、OH)形に再生するが、本発明方法で
は、02塩形でも、OH塩形でも何等さしつかえない。
Ion exchange resins are classified into low crosslinking degree resins with a crosslinking degree of r% or less and high crosslinking degree resins with a higher crosslinking degree depending on the degree of crosslinking of the copolymer, both of which can be used in the present invention. In addition, they are structurally classified into gel-like, porous, and bolus-like shapes depending on their porosity, and any of these shapes can be used in the present invention. Generally available anion exchange resins include chemically stable OJ-salt (R-N・OL).
) form, in normal use using NaOH solution.
Although it is regenerated into the 1i salt (RN, OH) form, in the method of the present invention, either the 02 salt form or the OH salt form can be used.

市販の陰イオン交換樹脂の具体的例としては、三菱化成
社の製造販売品DiAiONの8A−IOA。
A specific example of a commercially available anion exchange resin is DiAiON 8A-IOA manufactured and sold by Mitsubishi Chemical Corporation.

HPA−26、FA−30乙、WA−コθ、WA−jθ
等を挙げることができる。
HPA-26, FA-30 Otsu, WA-ko θ, WA-jθ
etc. can be mentioned.

触媒としての陰イオン交換樹脂使用量は、原料アルコキ
シシランに対して、0.0/”M量チ以上でその本来の
目的を達成する事が出来るが、通常0.7〜200重量
%の範凹の条件が採用される。
The amount of anion exchange resin used as a catalyst can achieve its original purpose with an amount of 0.0/''M or more based on the raw material alkoxysilane, but it is usually in the range of 0.7 to 200% by weight. A concave condition is adopted.

反応の型式としては、懸濁回分式でも、固定床流通式で
も実施出来る。特に装置の材質に何等の制約4な〈実施
出来るので好適な反応型式を自由に選択する拳が出来る
The reaction can be carried out either by a suspension batch type or a fixed bed flow type. In particular, since it can be carried out without any restrictions on the material of the device, it is possible to freely select a suitable reaction type.

反応は常圧、常温下で実施しても充分目的を達成するこ
とが可能であるが一般的には、常圧、加温下で行う方が
よ)好ましい。本発明による方法は、あまシ温度に左右
されないが特に好まし一温度は、100〜20℃である
Although the reaction can be carried out under normal pressure and temperature, it is possible to sufficiently achieve the purpose; however, it is generally preferable to carry out the reaction under normal pressure and elevated temperature. Although the method according to the invention is not dependent on the temperature, a particularly preferred temperature is 100 to 20°C.

反応圧力も減圧下から加圧下まで任意の圧力で実施しう
るが、生成物モノシランが空気と接触すると瞬時に着火
する挙よシ、常圧条件が操作性に優れている。
The reaction can be carried out at any pressure from reduced pressure to increased pressure, but normal pressure conditions are superior in operability since the monosilane product ignites instantly when it comes into contact with air.

本発明における原料のアルコキシシランは、単一組成で
も混合物でも何等さしつかえない。
The raw material alkoxysilane in the present invention may be of a single composition or a mixture.

一方不均化反応生成物の1つであるテトラメトキシシラ
ンや、他の物質、例えばヘキサン、ヘプタン等の脂肪族
飽和炭化水素や、シクロヘキサン等の脂環式飽和炭化水
素を溶媒として共に用いる事も出来る。
On the other hand, tetramethoxysilane, which is one of the disproportionation reaction products, and other substances, such as aliphatic saturated hydrocarbons such as hexane and heptane, and alicyclic saturated hydrocarbons such as cyclohexane, may also be used together as a solvent. I can do it.

反応は通常、盆索や、アルゴンの不活性ガス雰囲気下で
実施される。特に窒素の使用はモノシランを凝f1i捕
集する場合に好適である。
The reaction is usually carried out in a basin or under an inert gas atmosphere of argon. In particular, the use of nitrogen is suitable for collecting monosilane flocculation.

次に本発明方法を実施例により更に具体的に説明するが
、本発明はその要旨をこえない限り以下の実施例に限定
されるものでない。
Next, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

〔実施例〕〔Example〕

実施例/ 撹拌翼、窒素ガス導入管、冷却管付ガス排出管及び液仕
込み管を備えた、100yd内容積の耐圧ガラスオート
クレーブに、触媒として予め、加温下窒素気流で乾燥し
た三菱化成社製DiA−1ON−WA−30の陰イオン
交換樹脂J、j1を仕込み、充分窒素でオートクレーブ
系内を置、換した。しかる後トリメトキシシランO0,
2m01eを室温下、液仕込み管よシ添加し撹拌を開始
した。
Example: In a pressure-resistant glass autoclave with an internal volume of 100 yd, equipped with a stirring blade, a nitrogen gas inlet pipe, a gas discharge pipe with a cooling pipe, and a liquid charge pipe, a catalyst made by Mitsubishi Kasei, which had been dried under heating with a nitrogen stream, was placed in advance. Anion exchange resins J and j1 of DiA-1ON-WA-30 were charged, and the inside of the autoclave system was sufficiently replaced with nitrogen. After that trimethoxysilane O0,
2m01e was added through the liquid charging tube at room temperature, and stirring was started.

反応は室温下、触媒とトリメトキシシランが接触した時
点よIOモノシランが生成し、その後2Q″cK加温し
、モノシランが生成しなくなるまで7時間実力した。生
成モノシラノは経時的にガスクロマトグラフィーで定量
した。その結果、トリメトキシシランの転換’4971
mo1θチ、モノシラン生成0.04tr7 mole
であった。
The reaction was carried out at room temperature, and IO monosilane was produced when the catalyst and trimethoxysilane came into contact with each other. Afterwards, the reaction was heated to 2Q"cK and continued for 7 hours until no monosilane was produced. The produced monosilane was analyzed by gas chromatography over time. As a result, the conversion of trimethoxysilane '4971
mo1θchi, monosilane generation 0.04tr7 mole
Met.

同、反応後、反応生成物をp遇し、触媒を分離した。触
媒は原料及び反応生成物に不溶であシ、分離は容易であ
る。
After the same reaction, the reaction product was separated and the catalyst was separated. The catalyst is insoluble in the raw materials and reaction products and is easy to separate.

実施例λ〜3 実施例/において実施した方法で、陰イオン交換樹脂の
種類(いずれも三菱化成社製)、量ニし 及び反応時間をかえて実施した結果を表−ノに同、用い
たそれぞれの陰イオン交換樹脂は原料及び反応生成物に
イζ溶であり、反応生成物を戸遇することにより触媒は
容易に分臘することができ虎。
Examples λ to 3 The results obtained by carrying out the method carried out in Example 1 by changing the type of anion exchange resin (all manufactured by Mitsubishi Chemical Corporation), the amount, and the reaction time are shown in Table 1. Each anion exchange resin is soluble in raw materials and reaction products, and the catalyst can be easily separated by introducing the reaction products.

TM811  : トリメトキシシラン131H,ニモ
ノシラン 〔効 釆〕 本発明方法によれば、上記したようにフルコキシシラン
からモノシランを容易に得ることができる。しかも本発
明で使用する触媒は反応生成物に実質的に不溶であ)、
反応生成物からの分離は極めて容易である。反応生成t
m(剛生物質)は植々のケイ素製品の原料、例えば光フ
ァイバー、工0封止剤、IC用器具、フォトマスク等の
用途に用いられる高純度ケイ素の原料として有用であり
、触媒の分離が容易なことは工業的に意義が大き込。
TM811: Trimethoxysilane 131H, Nimonosilane [Efficacy] According to the method of the present invention, monosilane can be easily obtained from flukoxysilane as described above. Moreover, the catalyst used in the present invention is substantially insoluble in the reaction product),
Separation from reaction products is extremely easy. reaction product t
M (rigid material) is useful as a raw material for Ueplant's silicon products, such as high-purity silicon used for applications such as optical fibers, encapsulants, IC devices, and photomasks, and the catalyst can be easily separated. This is of great industrial significance.

出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長谷用  − (ほか7名)Sender: Mitsubishi Chemical Industries, Ltd. Representative Patent Attorney Hase - (7 others)

Claims (1)

【特許請求の範囲】[Claims] (1)一般式( I )で示されるアルコキシシランを触
媒の存在下に H_nSi(OR)_4_−_n・・・( I )(式中
、Rは炭素数1〜6のアルキル基、nは1、2あるいは
3を表わす。) 不均化してモノシランを製造する方法において、触媒と
して陰イオン交換樹脂を使用する事を特徴とするモノシ
ランの製法。
(1) H_nSi(OR)_4_-_n...(I) (wherein, R is an alkyl group having 1 to 6 carbon atoms, and n is 1 , 2 or 3) A method for producing monosilane by disproportionation, characterized in that an anion exchange resin is used as a catalyst.
JP10989085A 1985-05-16 1985-05-22 Monosilane manufacturing method Expired - Lifetime JPH0688770B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10989085A JPH0688770B2 (en) 1985-05-22 1985-05-22 Monosilane manufacturing method
US06/860,572 US4667047A (en) 1985-05-16 1986-05-07 Method for producing monosilane and a tetraalkoxysilane
EP86106556A EP0201919B1 (en) 1985-05-16 1986-05-14 Method for producing monosilane and a tetraalkoxysilane
DE8686106556T DE3686508T2 (en) 1985-05-16 1986-05-14 METHOD FOR THE PRODUCTION OF MONOSILANE AND A TETRAAL COXYSILANE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10989085A JPH0688770B2 (en) 1985-05-22 1985-05-22 Monosilane manufacturing method

Publications (2)

Publication Number Publication Date
JPS61270206A true JPS61270206A (en) 1986-11-29
JPH0688770B2 JPH0688770B2 (en) 1994-11-09

Family

ID=14521749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10989085A Expired - Lifetime JPH0688770B2 (en) 1985-05-16 1985-05-22 Monosilane manufacturing method

Country Status (1)

Country Link
JP (1) JPH0688770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337322A2 (en) * 1988-04-13 1989-10-18 Mitsubishi Kasei Corporation Process for producing monosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0337322A2 (en) * 1988-04-13 1989-10-18 Mitsubishi Kasei Corporation Process for producing monosilane

Also Published As

Publication number Publication date
JPH0688770B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
AU6866600A (en) Transition metal compounds, catalysts for the production of alpha-olefins and process therefor
KR880002302B1 (en) Process for the preparation of catalyst irregular for chorosilane
CN103554173A (en) Phenoxy ester coordinated transition metal organic complex, olefin polymerization catalytic system comprising same and application of catalytic system to olefin polymerization
JPS61270206A (en) Production of monosilane
CN209522583U (en) Disilane preparation facilities
CN109399644A (en) The preparation method of disilane
EP0201919B1 (en) Method for producing monosilane and a tetraalkoxysilane
CA1301185C (en) 1-1-dichloro-1,2,2-trimethyl-2-phenyldisilane and method for producing the same
CN102898457A (en) Ethylphenyldiethoxysilane and preparation method thereof
JPS61261209A (en) Production of monosilane
KR100234448B1 (en) Sodium borohydride catalyzed disproportion of cycloorganosilanes
CN114014885B (en) Preparation method of tetraalkoxy silyl ether compound
JPH0725534B2 (en) Manufacturing method of monosilane
CN108440592B (en) Preparation method of 1, 5-divinyl-1, 1,3,3,5, 5-hexamethyl trisiloxane
JPH0725535B2 (en) Method for producing monosilane
JPH06116278A (en) Cycloalkenylalkylsilane
CN109437208A (en) The preparation facilities of disilane
CN117510531A (en) Electronic grade dimethyl aluminum chloride and preparation method and application thereof
JP3845878B2 (en) Method for producing organic silicon-containing compound
JPS6144711A (en) Production of fine particulate silica
JPS62148314A (en) Preparation of silane
JPH0757683B2 (en) Method for producing halogenated silanes
JPH04224584A (en) New production of alkylzinc
JPS6270219A (en) Production of dibromosilane
SU1029579A1 (en) Titanium triphenyl siloxitrichloride as component of ethylene polymerization catalyst and method of producing same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term