JPS6127016A - Method of producing copper-coated niobium-titanium compositewire - Google Patents

Method of producing copper-coated niobium-titanium compositewire

Info

Publication number
JPS6127016A
JPS6127016A JP59147995A JP14799584A JPS6127016A JP S6127016 A JPS6127016 A JP S6127016A JP 59147995 A JP59147995 A JP 59147995A JP 14799584 A JP14799584 A JP 14799584A JP S6127016 A JPS6127016 A JP S6127016A
Authority
JP
Japan
Prior art keywords
titanium
copper
wire
niobium
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59147995A
Other languages
Japanese (ja)
Inventor
斎藤 成雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59147995A priority Critical patent/JPS6127016A/en
Publication of JPS6127016A publication Critical patent/JPS6127016A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Extrusion Of Metal (AREA)
  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [技術分野] 本発明は銅被覆ニオブ−チタン複合線の製造方l去に係
わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a copper-coated niobium-titanium composite wire.

[従来技術の問題点コ 従来、銅被覆ニオブ−チタン多芯超電導線製造に使用さ
れる単芯の銅被覆ニオブ−チタン複合線の製造において
は第2図の工程図に従って複合線が製造され、その後熱
間押出用の銅被覆ニオブ−チタンビレットの組立か行わ
れる。
[Problems with the Prior Art] Conventionally, in the production of single-core copper-coated niobium-titanium composite wires used in the production of copper-coated niobium-titanium multicore superconducting wires, the composite wires have been manufactured according to the process diagram shown in FIG. This is followed by assembly of a copper-coated niobium-titanium billet for hot extrusion.

間に示すようにCuパイプ1にこれより細径のN b 
−T i棒2を挿入し、減面加工し、例えば六角形状に
加工し、減面加工したCu被覆Nb−Ti複合線3を製
造し、その後、銅パイプ4内に多数本集合させてビレッ
トの組立てを行い、その後、加熱して熱間押出を行う。
As shown in between, the Cu pipe 1 has a smaller diameter N b
- Insert the Ti rod 2 and process it to reduce the area, for example, process it into a hexagonal shape to produce the area-reduced Cu coated Nb-Ti composite wire 3, and then collect a large number of them in the copper pipe 4 to form a billet. assembly, then heating and hot extrusion.

ところで、単芯Cu被覆N b −T を複合線で熱間
押出用ビレットを組立て、熱間押出の500〜[i50
’Cの加熱時に、CuとN b −T tとの界面にT
i2Cu。
By the way, a billet for hot extrusion is assembled with a composite wire of single-core Cu coating N b -T, and the billet for hot extrusion is 500 to [i50
'When heating C, T at the interface between Cu and N b -T t
i2Cu.

(TiNb)2cu等の合金、金属間化合物が生成され
る。
Alloys and intermetallic compounds such as (TiNb)2cu are produced.

これらはNb−Tiに比較して硬く、伸線加工時におい
て、この硬い合金及び金属間化合物がNb−T1フィラ
メントに食い込み、フィラメントの断線が生じやす(す
る。
These are harder than Nb-Ti, and during wire drawing, these hard alloys and intermetallic compounds bite into the Nb-T1 filament, easily causing the filament to break.

[発明の目的、構成] 本発明は上述のようにビレット組立後、熱間押出、伸線
加工時に、Nb−Tiフィラメントに断線を生すること
を防止することを目的とするものであり、熱間押出用C
u被覆N b −T +複合線の製造において、その最
終寸法まで減面加工の後、該複合線に線径の300倍以
下の曲げ径で2回以上のくり返し曲げを与え、これによ
って、CLI被覆とNb−Tiフィラメント間の界面の
密着性を低下させ、もってその後のビレット加熱時に発
生する前記合金、金属間化合物の形成を抑止しようとす
るものである。
[Object and structure of the invention] As described above, the present invention aims to prevent disconnection of Nb-Ti filaments during hot extrusion and wire drawing after billet assembly. C for inter-extrusion
In manufacturing the u-coated N b -T + composite wire, after surface reduction processing to its final size, the composite wire is repeatedly bent twice or more with a bending diameter of 300 times or less than the wire diameter, thereby achieving CLI The purpose is to reduce the adhesion of the interface between the coating and the Nb-Ti filament, thereby suppressing the formation of the alloy and intermetallic compounds that occur during subsequent heating of the billet.

以下第1図の工程図により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the process diagram of FIG.

図示のように、Cuパイプ1の中にNb−Ti棒2が挿
入され、減面加工を施し、例えば六角形状化した複合線
3を製造し、複合線として最終寸法で、六角形状の断面
の平均線径、または六角形状としないときは線径の30
0倍以下の曲げ径で、2回以上曲げ加工を行い、最終的
に伸直化加工を行う。
As shown in the figure, a Nb-Ti rod 2 is inserted into a Cu pipe 1 and subjected to surface reduction processing to produce, for example, a hexagonal composite wire 3, and the composite wire has a hexagonal cross section in its final dimensions. Average wire diameter, or 30 of the wire diameter when not in a hexagonal shape
Bending is performed two or more times with a bending diameter of 0 times or less, and finally straightening is performed.

この場合、減面加工の途中で前記曲げ加工を行ってもよ
い。
In this case, the bending process may be performed during the area reduction process.

その後前記伸直化加工を行った多数本の単芯銅被覆N 
b −T L複合線3を銅パイプ4中に集合してビレッ
トの組立を行う。しかし、前記曲げ径を極端に小さくす
ることは不適当である。
After that, a large number of single-core copper coated N were subjected to the above-mentioned straightening process.
b - T L composite wires 3 are assembled into a copper pipe 4 to assemble a billet. However, it is inappropriate to make the bending diameter extremely small.

[試験例] 外径20mmφ、内径18mmφのCuパイプ内表面を
脱脂し、外径IGmmφのN b −T i棒を脱脂、
研磨し、Cuパイプ中に挿入し、3+IIIφまで20
%リダクションで伸線による減面加工を行った。この3
開φの複合線について、曲げ半径を種々の大きさにかえ
、2回のくり返し曲げを施した後、これを伸直化し、熱
間押出し温度を650℃として3時間熱処理を行った。
[Test Example] The inner surface of a Cu pipe with an outer diameter of 20 mmφ and an inner diameter of 18 mmφ was degreased, and a N b -T i rod with an outer diameter of IG mmφ was degreased.
Polish and insert into Cu pipe, 20 to 3+IIIφ
% reduction was used to reduce the area by wire drawing. This 3
After bending the open φ composite wire twice by changing the bending radius to various sizes, it was straightened and heat treated at a hot extrusion temperature of 650° C. for 3 hours.

これら曲げ半径の異なる複合線について、銅とN b 
−T +の界面ての合金層、金属間化合物層の生成状況
を調査したところ、曲げ径が自己径の300倍以下で合
金層、金属間化合物層の生成が認められなかった。
Regarding these composite wires with different bending radii, copper and N b
When the formation of an alloy layer and an intermetallic compound layer at the -T + interface was investigated, no formation of an alloy layer or an intermetallic compound layer was observed when the bending diameter was 300 times or less than the self diameter.

[効果コ 以上説明のように本発明ではその曲げ加工により、Cu
とN b −T iの界面の密着性が低く、その後の加
熱によって、界面に合金層、金属間化合物層を生成する
ことなく、従ってその後の伸線加工中にN b −T 
iフィラメント北断線を生じるのを防止することができ
る。
[Effects] As explained above, in the present invention, by the bending process, Cu
The adhesion of the interface between N b -T i and
It is possible to prevent the i-filament north from breaking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の銅被覆ニオブ−チタン複合線の製造工
程図である。 第2図は従来の銅被覆ニオブ−チタン複合線の製造工程
図である。 ■・・・銅パイプ、2・・・ニオブ−チタン棒、3・・
・銅被覆ニオブ−チタン複合線、4・・・銅パイプ。 噴1図 (コF=二=二二二二=)才中人 壷 Mff3
FIG. 1 is a manufacturing process diagram of a copper-coated niobium-titanium composite wire of the present invention. FIG. 2 is a manufacturing process diagram of a conventional copper-coated niobium-titanium composite wire. ■...Copper pipe, 2...Niobium-titanium rod, 3...
・Copper coated niobium-titanium composite wire, 4...Copper pipe. Fountain 1 figure (koF=2=2222=) Saichujin pot Mff3

Claims (1)

【特許請求の範囲】[Claims] (1)熱間押出用銅被覆ニオブ−チタン複合線の製造に
おいて、その最終寸法まで減面加工後、該複合線の線径
の300倍以下の曲げ径で2回以上のくり返し、曲げ加
工を行うことを特徴とする銅被覆ニオブ−チタン複合線
の製造方法。
(1) In the production of copper-coated niobium-titanium composite wire for hot extrusion, after reducing the area to the final size, the composite wire is repeatedly bent twice or more at a bending diameter of 300 times or less than the wire diameter. 1. A method for producing a copper-clad niobium-titanium composite wire.
JP59147995A 1984-07-16 1984-07-16 Method of producing copper-coated niobium-titanium compositewire Pending JPS6127016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59147995A JPS6127016A (en) 1984-07-16 1984-07-16 Method of producing copper-coated niobium-titanium compositewire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59147995A JPS6127016A (en) 1984-07-16 1984-07-16 Method of producing copper-coated niobium-titanium compositewire

Publications (1)

Publication Number Publication Date
JPS6127016A true JPS6127016A (en) 1986-02-06

Family

ID=15442765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59147995A Pending JPS6127016A (en) 1984-07-16 1984-07-16 Method of producing copper-coated niobium-titanium compositewire

Country Status (1)

Country Link
JP (1) JPS6127016A (en)

Similar Documents

Publication Publication Date Title
JP2001025813A (en) Manufacture of titanium fiber or titanium alloy fiber
JPS6127016A (en) Method of producing copper-coated niobium-titanium compositewire
JPS60170111A (en) Copper coated nbti superconductive lead
JP2000246546A (en) Electrode wire for electric discharge machining
JPS60170110A (en) Copper coated nbti superconductive lead
JPS60170109A (en) Copper coated nbti superconductive lead and method of producing same
JP2993986B2 (en) Manufacturing method of aluminum stabilized superconducting wire
JPH063693B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPS62164897A (en) Composite bus bar for electric conduction
JPS6311655A (en) Production of cu-coated nbti composite wire
JPS60170112A (en) Copper coated nbti superconductive lead and method of producing same
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS61230209A (en) Nb-ti alloy based super conducting line
JPS5994307A (en) Method of producing compound superconductive wire
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS61227310A (en) Manufacture of nb3 sn by internal diffusion
JPS5871508A (en) Method of producing nb3sn series extrefine multicore superconductive wire
JPH03252010A (en) Manufacture of aluminum stabilizing superconductive wire
JPS6127015A (en) Method of producing copper-coated niobium-titanium compositewire
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPH04138630A (en) Manufacture of nb3sn superconducting wire
JPS6050012B2 (en) Manufacturing method of composite superconducting wire
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPS6139415A (en) Method of producing nb3sn superconductive wire