JPS61269920A - Meandering control device for multi-passes rolling mill - Google Patents

Meandering control device for multi-passes rolling mill

Info

Publication number
JPS61269920A
JPS61269920A JP60110880A JP11088085A JPS61269920A JP S61269920 A JPS61269920 A JP S61269920A JP 60110880 A JP60110880 A JP 60110880A JP 11088085 A JP11088085 A JP 11088085A JP S61269920 A JPS61269920 A JP S61269920A
Authority
JP
Japan
Prior art keywords
meandering
rolling
rolled material
roll
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60110880A
Other languages
Japanese (ja)
Inventor
Hiroaki Kuwano
博明 桑野
Takao Kawanami
川並 高雄
Ken Okudaira
奥平 謙
Akihiro Tanaka
明弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
IHI Corp
Nippon Steel Corp
Original Assignee
Toshiba Corp
IHI Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, IHI Corp, Nippon Steel Corp filed Critical Toshiba Corp
Priority to JP60110880A priority Critical patent/JPS61269920A/en
Priority to EP86302314A priority patent/EP0206453B1/en
Priority to US06/844,894 priority patent/US4759205A/en
Priority to DE8686302314T priority patent/DE3672401D1/en
Priority to KR1019860002418A priority patent/KR910005831B1/en
Publication of JPS61269920A publication Critical patent/JPS61269920A/en
Priority to US07/179,638 priority patent/US4843855A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/222Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a rolling-drawing process; in a multi-pass mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B2013/028Sixto, six-high stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/02Roll bending; vertical bending of rolls
    • B21B2269/04Work roll bending

Abstract

PURPOSE:To prevent the meandering of a rolling material and to stabilize an operation by providing a detector for the transverse end position of a rolling material and a detector for the meandering rate of the rolling material to a multi-passes rolling mill having >=3 pieces of work rolls rotating at different peripheral speeds in one stand and changing independently the roll gaps of the rolling passes. CONSTITUTION:The rolling material S is rolled by work rolls 8 and 9, 9 and 10, 10 and 11 in the stage of rolling the material S with the multi-passes rolling stand having the work rolls 8-11 and backup rolls 7, 12. The transverse end position of the material S is detected by the optical detector 21 for the transverse end just before the material enters the space between the rolls 8 and 9. The resultant detection signal is fed to a meandering rate calculator 22 which inputs the calculated value to a relational calculator 23. Said calculator calculates relationally the meandering rate and a target signal 24 from a setter. The deviation signal for the meandering rate by such calculation is processed by a meandering controlling 25 and is applied to bending controllers 26a, 26b which drive liquid pressure cylinders 18a, 18b for the respective work rolls, thereby adjusting the work roll gaps and preventing the meandering of the rolling material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、1スタンドで多パス圧延を行い得るようにし
た圧延機の蛇行制御装置に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a meandering control device for a rolling mill that is capable of performing multi-pass rolling in one stand.

[従来の技術] 圧延作業においては、圧延中の条件によって圧延材がロ
ール中央に留まることができずに、第10図に1点鎖線
で示すごとく圧延の進行と共にロール端部の方へ移動し
てしまう現象が良く知られており、蛇行と呼ばれている
[Prior Art] In rolling operations, the rolled material cannot remain in the center of the roll due to the conditions during rolling, and moves toward the end of the roll as the rolling progresses, as shown by the dashed line in FIG. The phenomenon in which this happens is well known and is called meandering.

ここで通常の圧延機における圧延材の蛇行について簡単
に説明すると、圧延機で圧延材を圧延する場合、材料の
幅方向の硬度差、幅方向のテーパ等、圧延材自体に求め
られる要因、又、圧延材の中心がロール中心とずれて進
入する(オフセンター)等の操業上の要因により、圧延
機の作業側、駆動側にかかる圧延荷重に不釣合いが生じ
、その結果、作業側と駆動側のロー      )ルギ
ャップに差が生じる。このため、圧延機入側における材
料の引込み速度はギャップの拡大した側の方が速くなる
。その結果、圧延材は入側で第10図に示すごとく進行
方向(矢印C方向)に対してギャップの広い側へ矢印e
で示すように尻を振るような格好で傾くことになり、傾
いた圧延材aは圧延ロールbの軸に直角に進むため、圧
延材aは1点鎖線で示すようにロールギャップの拡大し
ている方向に横ずれを起こし、ますますギャップは拡大
して行く。このときのロールギャップの状態は第11図
に示すようになり、矢印fが蛇行方向である。このよう
に、圧延材が一度蛇行を起こすと、安定な状態に回復す
ることができなくなる。
Here, to briefly explain the meandering of rolled material in a normal rolling mill, when rolling a rolled material in a rolling mill, factors required for the rolled material itself, such as hardness difference in the width direction of the material, taper in the width direction, etc. , due to operational factors such as the center of the rolled material shifting from the center of the roll (off-center), an imbalance occurs in the rolling loads applied to the working side and drive side of the rolling mill, resulting in There will be a difference in the roll gap between the two sides. Therefore, the drawing speed of the material on the entry side of the rolling mill is faster on the side where the gap is enlarged. As a result, the rolled material moves toward the wide gap side with respect to the advancing direction (direction of arrow C) as shown in FIG.
As shown in the figure, the rolled material a tilts as if shaking its butt, and the inclined rolled material a advances perpendicularly to the axis of the rolling roll b, so the rolled material a expands the roll gap as shown by the dashed line. A lateral shift occurs in the direction of the current, and the gap widens further. The state of the roll gap at this time is as shown in FIG. 11, with the arrow f indicating the meandering direction. As described above, once the rolled material meanderes, it is no longer possible to restore it to a stable state.

以上のように圧延機の作業側と駆動側(以下、左右とい
う)とでロールギャップに差が生じると、圧延材は蛇行
しはじめるので、蛇行を防止するためには、圧延材の寄
った側のロールギャップを狭めるような制御を行なえば
良いことがわかる。
As mentioned above, if there is a difference in the roll gap between the work side and drive side (hereinafter referred to as left and right) of the rolling mill, the rolled material will start meandering, so in order to prevent meandering, it is necessary to It can be seen that it is sufficient to carry out control to narrow the roll gap.

一方最近、圧延材を周速の異なるワークロールに巻付け
て圧延を行うRD (Rol l ing Drawi
ng)圧延法が開発され、圧延機の小型化、ロール摩耗
の減少、高張力鋼のごとき硬い材料の圧延、エツジドロ
ップの減少等が図られている。又、このRD圧延法の改
良として、1スタンドに周速の異なるワークロールを3
個以上配設し、該ワークロールに圧延材を巻付けると共
にワークロール間の各パスにおいて圧延を行う1スタン
ド多パス圧延法、或いは上記ワークロールに圧延材を巻
付けず、各パス間で圧延を行う1スタンド多パス圧延法
が提案されており、斯かる1スタンド多パス圧延法にお
いては1スタンド1パス圧延法に比較し、低い圧延荷重
で高圧下圧延が可能であり、生産性に優れ、しかも圧延
ラインの小型化に適するという利点を有する。
On the other hand, recently, RD (Rolling Drawing
ng) rolling methods have been developed to reduce the size of rolling mills, reduce roll wear, roll hard materials such as high-strength steel, and reduce edge drop. In addition, as an improvement to this RD rolling method, three work rolls with different circumferential speeds are installed in one stand.
One-stand multi-pass rolling method in which the rolled material is wound around the work roll and rolled in each pass between the work rolls, or the rolled material is not wound around the work roll and rolled between each pass. A one-stand multi-pass rolling method has been proposed that performs rolling, and compared to the one-stand one-pass rolling method, this one-stand multi-pass rolling method enables high reduction rolling with a lower rolling load and is superior in productivity. Moreover, it has the advantage of being suitable for downsizing of rolling lines.

[発明が解決しようとする問題点] しかしながら、上述の丁スタンド多パス圧延法において
も、1スタンドパス圧延の場合と同様、圧延機の作業側
と駆動側でロールギャップに差が生じると圧延材は蛇行
し始め、一度蛇行を起こすと、安定な状態に回復するこ
とが困難でおる。又、1スタンド多パス圧延機で蛇行を
防止するために、圧延機入側で圧延材に張力を掛けるこ
とが考えられるが、冷間圧延の前工程では板厚が厚いの
で張力を掛けるとすると非常に大きなパワーを必要とし
、試算によると例えば第1圧延パスで圧延材とロールの
不平行度が30amおると3 k(1/mm2程度の後
方張力を必要とし、板厚4mm、板幅1000mm、板
速度500mm/min。
[Problems to be Solved by the Invention] However, even in the above-mentioned single-stand multi-pass rolling method, as in the case of single-stand rolling, if there is a difference in the roll gap between the work side and the drive side of the rolling mill, the rolled material begins to meander, and once meandering occurs, it is difficult to restore it to a stable state. In addition, in order to prevent meandering in a single-stand multi-pass rolling mill, it is possible to apply tension to the rolled material at the entrance of the rolling mill, but since the plate is thick in the pre-process of cold rolling, if tension is applied. It requires a very large amount of power, and according to a trial calculation, for example, if the degree of unparallelism between the rolled material and the roll is 30 am in the first rolling pass, a rear tension of about 3 k (1/mm2) is required, and the plate thickness is 4 mm and the plate width is 1000 mm. , plate speed 500 mm/min.

でおれば、1000KWもの動力が必要である。If so, 1000KW of power would be required.

本発明は斯かる実情に鑑み、圧延材の蛇行を大きな動力
を用いることなく容易且つ確実に防止して圧延停止、圧
延材エツジ部の損傷、更には板破断等の不具合を除去し
、圧延の安定化を実現し、生産の高能率化、製品歩留り
の向上を図ることをも目的としてなしたものである。
In view of these circumstances, the present invention has been developed to easily and reliably prevent the meandering of rolled material without using large amounts of power, thereby eliminating problems such as rolling stoppage, damage to the edges of the rolled material, and even plate breakage. This was done to achieve stability, increase production efficiency, and improve product yield.

[問題点を解決するための手段] 本発明では1スタンドに3本以上のワークロールを備え
該ワークロールのうち少くとも1本により圧延材を同時
に2点以上で圧延する圧延芸において、各圧延パスのう
ち少くとも1つのパスの入側或いは出側の何れか一方の
圧延材の通過面下方若しくは上方に配設された板幅端位
置検出器と、該板幅端位置検出器からの信号をもとに圧
延材の蛇行量を求める装置と、蛇行量に応じて該圧延パ
スのロールギャップを独立に変えることのできる制御装
置を設けている。
[Means for Solving the Problems] In the present invention, in a rolling technique in which three or more work rolls are provided in one stand and a rolled material is simultaneously rolled at two or more points using at least one of the work rolls, each rolling A plate width edge position detector disposed below or above the passing surface of the rolled material on either the entry side or the exit side of at least one of the passes, and a signal from the plate width edge position detector. There is provided a device that determines the meandering amount of the rolled material based on the meandering amount, and a control device that can independently change the roll gap of the rolling pass according to the meandering amount.

[作  用] 従って、本発明では、板幅端位置検出器で検出された信
号もとに所定の圧延パスにおける蛇行量が求められ、蛇
行量をもとに当該圧延パスの作業側、駆動側のロールギ
ャップが夫々別個に調整され、これによって圧延材の蛇
行が防止される。
[Function] Therefore, in the present invention, the amount of meandering in a predetermined rolling pass is determined based on the signal detected by the plate width end position detector, and the working side and drive side of the rolling pass are determined based on the amount of meandering. The roll gaps of each roll are adjusted separately, thereby preventing meandering of the rolled material.

[実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図〜第3図は本発明の第1実施例で、ハウジングポ
ストのウィンド部には、ロールチョツク1a、 1b、
 2a、 2b、 3a、 3b、 4a、 4b、 
5a、 5b、 6a、 6bが鉛直方向に下からこの
順序でしかもウィンドの鉛直方向に延在する縁壁に沿っ
て摺動自在に取付けられ、ロールチョック2a、2b 
、3a、3b 、 4a。
1 to 3 show a first embodiment of the present invention, in which roll chocks 1a, 1b,
2a, 2b, 3a, 3b, 4a, 4b,
5a, 5b, 6a, and 6b are slidably attached in this order from below in the vertical direction and along the edge wall extending in the vertical direction of the window, and the roll chocks 2a, 2b
, 3a, 3b, 4a.

4b、5a、 5bには、ワークロール8,9,10.
11が、又ロールチョックla、1b 、 6a、6b
にはバックアップロール7.12が回転自在に枢支され
ている。
4b, 5a, 5b have work rolls 8, 9, 10 .
11 is also roll chock la, 1b, 6a, 6b
A backup roll 7.12 is rotatably supported on.

又ハウジングポスト下部横材にはロールチョックIa、
 1bに圧下刃を作用させるようにしだ液圧シリンダ1
3a、 13bが配設され、ハウジングポスト上部横材
には、ロールチョック6a、6bに圧下刃を作用させる
ようにした電動モータ(図示せず)で駆動される圧下ス
クリュー14a、 14bが配設されている。
Also, roll chock Ia is installed on the lower cross member of the housing post.
Hydraulic cylinder 1 so that the reduction blade acts on 1b
3a and 13b are disposed, and lowering screws 14a and 14b driven by an electric motor (not shown) which act on rolling chocks 6a and 6b with lowering blades are disposed on the upper cross member of the housing post. There is.

圧延材Sはワークロール8と9との間に形成された第1
0−ルギヤツプ15に挿通され、ワークロール9に巻付
けられた後ワークロール9と10との間に形成された第
20−ルギヤツプ16に挿通され、更にワークロール1
0に巻付けられてワークロール10と11との間に形成
された第30−ルギャップ17に挿通されるようになっ
ている。
The rolled material S is formed between the work rolls 8 and 9.
It is inserted through the 0-th gear gap 15 and wound around the work roll 9, and then passed through the 20-th gear gap 16 formed between the work rolls 9 and 10, and further wrapped around the work roll 1.
0 and is inserted into the 30th loop gap 17 formed between the work rolls 10 and 11.

又ロールチョック2a、3a 、 2b、3b間、ロー
ルチョック3a、4a 、 3t)、4t)間、ロール
チョック4a。
Also, between the roll chocks 2a, 3a, 2b, 3b, between the roll chocks 3a, 4a, 3t), 4t), and the roll chock 4a.

5a、 4b、5b間には夫々液圧シリンダ18a、1
8b 。
Hydraulic cylinders 18a, 1 are provided between 5a, 4b, and 5b, respectively.
8b.

19a、19b 、 20a、20bが配設され、各ワ
ークロール8,9,10.11には所要のロールベンデ
ィングを掛は得るようになっている。
19a, 19b, 20a and 20b are arranged so that each work roll 8, 9, 10.11 can be subjected to the required roll bending.

圧延機入側若しくは出倶1の所要位置には光学式の板幅
端位置検出器21が配設されている。咳板幅端位置検出
器21は圧延機のできるだけ近(に設置するのが良く、
又入側に設置する方が良い。これは、入側に設置する場
合と出側に設置する場合とでは、検出する圧延材のずれ
量に特性の差が出て来るからである。第3図に示すよう
に、ロールギャップにおける蛇行は圧延機出側ではキャ
ンバとなり、このキャンバは双曲線関数で表わされる曲
線となるから急激に変化する。従って、出側ではロール
ギャップに十分近い位置に板幅端位置検出器を置かない
と、応答良く圧延材Sのずれ量を検出することができな
い。又ロールギャップから検出器までの検出遅れは無駄
時間となる。
An optical strip width end position detector 21 is disposed at a required position on the inlet side or outlet 1 of the rolling mill. It is preferable to install the cough plate width end position detector 21 as close as possible to the rolling mill.
It is also better to install it on the entrance side. This is because there will be a difference in characteristics in the amount of deviation of the rolled material to be detected between when it is installed on the entry side and when it is installed on the exit side. As shown in FIG. 3, the meandering in the roll gap results in camber on the exit side of the rolling mill, and this camber changes rapidly because it becomes a curved line expressed by a hyperbolic function. Therefore, unless the plate width end position detector is placed sufficiently close to the roll gap on the exit side, the amount of deviation of the rolled material S cannot be detected with good response. Furthermore, the detection delay from the roll gap to the detector results in wasted time.

これに対して入側では、若し圧延材Sを強く拘束するも
のく例えば強力なガイドや強い漬方張力)がなければ、
圧延材Sは蛇行の原因となる左右の延びの差で容易にど
ちから一方に尻振りをする。その状態でロールに引込ま
れ出側に波及するために前述のように蛇行が生じるので
あるが、入側に検出器を設置した場合には、蛇行による
圧延材Sのずれ量以外に、圧延材Sの傾きによるずれ口
も検出できる。
On the other hand, on the entry side, if there is nothing that strongly restrains the rolled material S, such as a strong guide or strong dipping tension,
The rolled material S easily oscillates from one direction to the other due to the difference in elongation between the left and right sides, which causes meandering. Meandering occurs as mentioned above because it is drawn into the roll and spreads to the exit side in this state, but if a detector is installed on the entry side, in addition to the amount of deviation of the rolled material S due to meandering, the rolled material It is also possible to detect deviations due to the inclination of S.

第3図において更に説明すると尻振りにより圧延材進行
方向りに対し、圧延材Sがθだけ傾いたとすると入側で
はその傾きによるずれ分δは直ちに現われる。出側では
その傾きが時間と共に積分され、横ずれして波及して行
く。従って、時間遅れがあると共にずれ量は大幅に小さ
くなって出現する。すなわち、尻振りによるずれ量は検
出できず、入側で圧延材Sが尻振りをしその結果生じた
蛇行しか検出することができない。
To further explain with reference to FIG. 3, if the rolled material S is tilted by .theta. with respect to the rolling material traveling direction due to swinging, a deviation .delta. due to the inclination immediately appears on the entry side. On the exit side, the slope is integrated over time and spreads laterally. Therefore, as there is a time delay, the amount of deviation appears to be significantly smaller. In other words, the amount of deviation due to wobbling cannot be detected, and only the meandering caused by the wobbling of the rolled material S on the entry side can be detected.

一方、入側での尻振りによるずれ量はロールギャップか
ら離れるに従い増加する傾向を有するので、入側に板幅
端位置検出器を設ければ、蛇行の前段階である尻振り状
態をも容易且つ直ちに検出することができ、応答良い蛇
行制御を行うことができる。δ′は圧延材Sの初期蛇行
量である。
On the other hand, the amount of deviation due to oscillation on the entry side tends to increase as the distance from the roll gap increases, so if a board width end position detector is installed on the entry side, it will be easier to detect the oscillation state that is the pre-meandering stage. In addition, it can be detected immediately and meandering control can be performed with good response. δ' is the initial meandering amount of the rolled material S.

板幅端位置検出器21で検出した板の幅端位置信号を蛇
行量演算器22に送り得るようにし、蛇行量演算器22
で演算した蛇行量信号を比較演算器23に送って該比較
演算器23で蛇行量と設定器からの目標値信号24とを
比較演算し得るようにし、該比較演算器23で演算した
蛇行量偏差信号ΔXを蛇行調節器25で処理してベンデ
ィング制御器26a、 261)へベンディン圧力修正
信号lJpとして加え得るようにし、該ベンディング圧
力修正信@Apに応じて、ベンディング制御器26a。
The width end position signal of the board detected by the board width end position detector 21 can be sent to the meandering amount calculator 22, and the meandering amount calculator 22
The meandering amount signal calculated by the comparator 23 is sent to the comparator 23 so that the meandering amount signal can be compared with the target value signal 24 from the setting device. The deviation signal ΔX is processed by the meander regulator 25 so that it can be applied as a bending pressure correction signal lJp to the bending controller 26a, 261), and in response to the bending pressure correction signal @Ap, the bending controller 26a.

26bからサーボ弁27a、27bへ指令を与えて該サ
ーボ弁27a、 27bにより左右の液圧シリンダ18
a。
A command is given from 26b to the servo valves 27a and 27b, and the left and right hydraulic cylinders 18 are activated by the servo valves 27a and 27b.
a.

18bへ流入、流出する圧液の量を制御し得るようにし
、前記サーボ弁27a、27bから液圧シリンダiaa
、iabへ圧液を送る管路に圧力検出器28a。
The amount of pressure fluid flowing into and out of the servo valves 27a and 27b can be controlled, and the hydraulic cylinder iaa
, a pressure detector 28a in a pipe line that sends pressure liquid to IAB.

28bを設けてサーボ弁28a、 28bから液圧シリ
ンダ18a、18bへ送られる圧液の圧力を検出し得る
ようにし、該圧力検出器18a、 18bで検出された
圧力信号をベンディング制御器26a、 26bヘフイ
ードバツクし得るようにする。
28b is provided so that the pressure of the hydraulic fluid sent from the servo valves 28a, 28b to the hydraulic cylinders 18a, 18b can be detected, and the pressure signals detected by the pressure detectors 18a, 18b are transmitted to the bending controllers 26a, 26b. Make it possible to back up your feedback.

図中29は第20−ルギヤツプバランス制御系、30は
第30−ルギヤツプバランス制御系であり、運転開始時
には、第20−ルギヤツプバランス制御系29では圧力
制御弁31を介して液圧シリンダ19a、19bに所定
の圧力の圧液を供給してワークロール10を所定位置に
保持し得るようになっており、第30−ルギヤツプバラ
ンス制御系30では圧力制御弁32を介して液圧シリン
ダ20a。
In the figure, 29 is a 20th gap balance control system, and 30 is a 30th gap balance control system. The work roll 10 can be held at a predetermined position by supplying pressure fluid at a predetermined pressure to the hydraulic cylinders 19a and 19b. and the hydraulic cylinder 20a.

20bに所定の圧力の圧液を供給してワークロール11
をバックアップロール12に押付は得るようになってい
る。又32は圧延機の作業側、33は同駆動側、Aは圧
下制御系である。
Work roll 11 is supplied with pressure liquid at a predetermined pressure to 20b.
is pressed against the backup roll 12. Further, 32 is a working side of the rolling mill, 33 is a driving side thereof, and A is a rolling control system.

圧延開始の初期、圧延材位置の目標値としては、例えば
図示してないリレーを切って板幅端位置検出器21が検
出した圧延材Sの通板初期位置の値が記憶回路へ与えら
れ、その出力が蛇行制御の目標値信@24として比較演
算器23へ送られる。
At the beginning of rolling, as the target value for the position of the rolled material, for example, the value of the initial passing position of the rolled material S detected by the plate width end position detector 21 after turning off a relay (not shown) is given to the memory circuit. The output is sent to the comparator 23 as a target value signal @24 for meandering control.

板幅端位置検出器21で連続的に検出された圧延材Sの
幅端位置信号は蛇行演算器22に送られて圧延材Sの蛇
行量が演算され、蛇行量信号と目標値信号24とが比較
演算器23で比較演算され、得られた蛇行量偏差信号A
xは蛇行調節器25に加えられ、蛇行調節器25ではロ
ールベンディング圧力修正信号Apが例えば Tdは微分ゲイン、TIは積分ゲインである。
The width end position signal of the rolled material S continuously detected by the plate width end position detector 21 is sent to the meandering calculator 22, where the meandering amount of the rolled material S is calculated, and the meandering amount signal and the target value signal 24 are output. are compared and calculated by the comparison calculator 23, and the obtained meandering amount deviation signal A
x is applied to the meander adjuster 25, where the roll bending pressure correction signal Ap is, for example, Td is the differential gain and TI is the integral gain.

蛇行調節器25で求められたロールベンディング圧力修
正信号Apは、ベンディング制御器26a、 26bへ
送られ、例えば圧延材Sが作業側32へ蛇行した場合に
は、ベンディング制御器26aでは作業側ベンディング
圧力初期設定値1) wから711ipが差し引かれ、
ベンディング制御器26bでは駆動側ベンディング圧力
初期設定値pWにApが加算され、而してベンディング
制御器26a、 26bからは岬N−Ap、I)w+l
Upに対応した指令信号1.tbがサーボ弁27a、 
27bへ与えられる。このためサーボ弁27a、27b
により液圧シリンダー8a、18bへ送給される圧液量
及び液圧シリンダー8a、18bから排出される圧液量
が制御され、液圧シリンダー8a側では圧力がApだけ
下降し、液圧シリンダー&b側では圧力がApだけ上昇
する。ワークロール8,9は、作業側のロールベンディ
ング圧力が下降し駆動側のロールベンディング圧力が上
昇する結果、作業側のロールギャップが挟まり、駆動側
のロールギャップが開く。圧延材Sの蛇行は、寄った側
のロールギャップを狭めることにより防止されるため、
上述のように制御することにより圧延材Sは作業側32
への蛇行が阻止され、目標値まで戻される。
The roll bending pressure correction signal Ap obtained by the meandering controller 25 is sent to the bending controllers 26a and 26b. For example, when the rolled material S meanders toward the working side 32, the bending controller 26a adjusts the bending pressure on the working side. Initial setting value 1) 711ip is subtracted from w,
In the bending controller 26b, Ap is added to the drive-side bending pressure initial setting value pW, and from the bending controllers 26a and 26b, the cape N-Ap, I)w+l is added.
Command signal corresponding to Up 1. tb is the servo valve 27a,
27b. For this reason, the servo valves 27a, 27b
The amount of pressure fluid supplied to the hydraulic cylinders 8a, 18b and the amount of pressure fluid discharged from the hydraulic cylinders 8a, 18b are controlled, and the pressure on the hydraulic cylinder 8a side decreases by Ap, and the pressure of the hydraulic cylinders &b On the side, the pressure increases by Ap. In the work rolls 8 and 9, the roll bending pressure on the work side decreases and the roll bending pressure on the drive side increases, so that the roll gap on the work side is pinched and the roll gap on the drive side opens. Meandering of the rolled material S can be prevented by narrowing the roll gap on the closer side.
By controlling as described above, the rolled material S is moved to the working side 32.
This meandering is prevented and the value is returned to the target value.

圧力検出器28a、 28bではロールベンディング圧
力が連続的に検出され、ロールベンディング圧力が作業
側でI)w−lUp、駆動側でpv+4pになればベン
ディング制御器26a、 26bからは指令信号は出力
されず、サーボ弁27a、 27bは停止する。
The pressure detectors 28a and 28b continuously detect the roll bending pressure, and when the roll bending pressure reaches I)w-lUp on the work side and pv+4p on the drive side, a command signal is output from the bending controllers 26a and 26b. First, the servo valves 27a and 27b stop.

第10−ルギヤツプ15、第20−ルギヤツプ16、第
30−ルギヤツプ17夫々の入側張力応力をtl、t2
.t3とすると、張力応力tl。
The inlet tension stress of the 10th gap 15, the 20th gap 16, and the 30th gap 17 is tl and t2, respectively.
.. If t3 is the tensile stress tl.

t2.t3は圧延条件により変動するが特に第10−ル
ギャパIプ15の入側張力応力が低くなり、このギャッ
プで蛇行が起こり易くなるので、上述のように第10−
ルギヤツプ15を制御して第10−ルギヤツプ15の蛇
行のみを防止しても圧延作業は十分に安定化される。
t2. t3 varies depending on the rolling conditions, but in particular, the tensile stress on the entry side of the 10th gap I-pipe 15 becomes low, and meandering is likely to occur in this gap, so as mentioned above, the 10th
Even if only the meandering of the 10th wheel gap 15 is prevented by controlling the 10th wheel gap 15, the rolling operation can be sufficiently stabilized.

第4図は本発明の第2実施例で第10−ルギヤツプ15
では第1図の場合と同様に蛇行制御し、第30−ルギヤ
ツプ17では作業ロールの平行度制御を行うようにした
例である。
FIG. 4 shows a second embodiment of the present invention with a 10th gear gap 15.
This is an example in which meandering control is performed in the same manner as in the case of FIG. 1, and the parallelism of the work rolls is controlled at the 30th roll gap 17.

ロールチョック4a、 4bには変位計34a、 34
bが    。
The roll chocks 4a and 4b have displacement gauges 34a and 34.
b is .

取付けられ、該変位計34a、 34bの検出信号を比
較演算器35へ送り得るようにし、該比較演算器35か
らの信号をリレー36及び記憶回路37で構成される目
標値設定回路38の出力と比較演算器39で比較し得る
ようにし、比較により得られた平行度偏差信号を平行度
制御調節器40で処理して左右の平行度修正信号として
取付し、該平行度修正信号をベンディング制御器41a
、 41bへ加え得るようにし、ベンディング制御器4
1a、 41bからは、液圧シリンダ20a、 20b
へ流入、流出する圧液量を制御するサーボ弁42a、 
42bへ指令信号を送り得るようにし、圧力検出器43
a、 43bで検出しだ液圧シリンダ20a、20b内
の液圧をベンディング制御器41a、41bへフィード
バックし得るようにする。
It is installed so that the detection signals of the displacement meters 34a and 34b can be sent to the comparator 35, and the signal from the comparator 35 is connected to the output of the target value setting circuit 38 composed of a relay 36 and a memory circuit 37. The parallelism deviation signal obtained by the comparison is processed by the parallelism control adjuster 40 and installed as a left and right parallelism correction signal, and the parallelism correction signal is applied to the bending controller. 41a
, 41b, and the bending controller 4
From 1a and 41b, hydraulic cylinders 20a and 20b
a servo valve 42a that controls the amount of pressure fluid flowing into and out of the
42b so that a command signal can be sent to the pressure detector 43
The hydraulic pressure in the hydraulic pressure cylinders 20a, 20b detected by a, 43b can be fed back to the bending controllers 41a, 41b.

今、圧延開始の初期設定時に、圧延材Sを通さない状態
で圧下スクリュー14a、 14bを図示してない電動
モータで駆動させることにより下降させて荷重を印加し
、各ロールを接触させて左右の荷重差が発生しないよう
に作業側、駆動側の油圧圧下系Aを調整する(一般にこ
の操作をレベリングという)。
Now, at the time of initial setting to start rolling, the rolling screws 14a and 14b are lowered by driving an electric motor (not shown) without passing the rolling material S, and a load is applied, and each roll is brought into contact with the left and right rolls. Adjust the hydraulic pressure reduction system A on the working side and the driving side so that a load difference does not occur (this operation is generally called leveling).

レベリングが終了したら、目標値設定回路38のリレー
36をオンして記憶回路37にそのときの比較演算器3
5の出力を記憶させる。これが第30−ルギヤツプ17
の平行度制御の目標値となる。
When the leveling is completed, the relay 36 of the target value setting circuit 38 is turned on and the memory circuit 37 stores the current value in the comparator 3.
Store the output of step 5. This is the 30th leg gap 17
This is the target value for parallelism control.

その後、圧延材Sを第1図に示すように通して圧下スク
リュー14a、 14b及呑圧下用の液圧シリンダ13
a、13bで荷重を掛け、第1、第2、第30−ルギャ
ップ15.16.17を設定して圧延を開始する。
Thereafter, the rolled material S is passed through the rolling screws 14a, 14b and the hydraulic cylinder 13 for rolling down as shown in FIG.
A load is applied at points a and 13b, and the first, second, and 30th wheel gaps 15, 16, and 17 are set, and rolling is started.

圧延中は、第1実施例で説明した蛇行制御が行われると
共に変位計34a、 34bでワークロール10の上下
への変位団が連続的に検出され、その信号が比較演算器
35で比較されて変位計34aからの信号と34bから
の信号の差が求められ、これによってワークロール10
の傾きすなわち第30−ルギヤツプ17の平行度が得ら
れる。この平行度の信号は、比較演算器39で記憶回路
37からの目標値と比較、演算され、その差が平行度制
御調節器40へ入力され、平行度制御調節器40ではワ
ークロール10.11間のベンディング圧力制御系の圧
力修正量が演算される。例えば第30−ルギャップ17
の作業側32が広く駆動側33が狭い状態にワークロー
ル10が傾いていたとすると、駆動側のロールベンディ
ング圧力が高められ、同量だけ作業側のロールペンディ
ング力が下げられる。ワークロール10がワークロール
11に対し平行になると、すなわち第30−ルギヤツプ
17の左右差がなくなると、ワークロール10の平行度
偏差は零となる。
During rolling, the meandering control described in the first embodiment is performed, and the displacement meters 34a and 34b continuously detect the vertical displacement of the work roll 10, and the signals are compared by the comparator 35. The difference between the signal from the displacement meter 34a and the signal from the displacement meter 34b is determined.
In other words, the parallelism of the 30th loop gap 17 is obtained. This parallelism signal is compared and calculated with the target value from the storage circuit 37 in the comparator 39, and the difference is input to the parallelism control adjuster 40. The amount of pressure correction of the bending pressure control system between the two is calculated. For example, the 30th-le gap 17
If the work roll 10 is tilted such that the working side 32 is wide and the driving side 33 is narrow, the roll bending pressure on the driving side will be increased and the roll pending force on the working side will be reduced by the same amount. When the work roll 10 becomes parallel to the work roll 11, that is, when the difference between the left and right sides of the 30th wheel gap 17 disappears, the parallelism deviation of the work roll 10 becomes zero.

1スタンド多パス圧延では、特に板厚の薄い材料を圧延
する場合、第30−ルギヤツプ17の平行度の微妙な狂
いが材料の形状不良を引き起こし、板破断等が発生して
圧延に支障を来たすおそれがあった。しかし、平行度制
御を行うことによりこれらの問題が解消される。なお、
第ロールギャップ17の部分では平行度制御ではなく、
第10−ルギヤツプ15におけると同様な蛇行制御を行
っても良い。
In single-stand multi-pass rolling, especially when rolling thin materials, slight deviations in the parallelism of the 30th wheel gap 17 can cause defects in the shape of the material, causing plate breakage, etc., and hindering rolling. There was a risk. However, these problems can be solved by performing parallelism control. In addition,
In the part of the roll gap 17, parallelism control is not performed,
Meandering control similar to that in the tenth loop gap 15 may be performed.

第5図は本発明の第3実施例で、本実施例では第10−
ルギヤツプ15においては蛇行制御を行い、第2、第3
0−ルギャップ16.17で平行度制御を行うようにし
た例である。
FIG. 5 shows the third embodiment of the present invention, and in this embodiment, the 10th-
Meandering control is performed in the double gap 15, and the second and third
This is an example in which parallelism control is performed with an 0-rail gap of 16.17.

ロールチョック3a、3bには変位計44a、 44b
が取付けられ、該変位計44a、 44bの検出信号を
比較演算器45a、 45bへ送り得るようにし、第4
図で述べた変位計34bの検出信号を比較演算器35及
び45aへ、34bの検出信号を比較演算器35及び4
5bへ、夫々送り得るようにし、比較演算器45a、 
45bで得られた信号を比較演算器46で比較演算し得
るようにし、比較演算器46からの信号をリレー47及
び記憶回路48で構成される目標値設定回路49の出力
と比較演算器50で比較演算し得るようにし、比較によ
り得られた偏差信号を平行度制御調節器51で処理して
左右の平行度修正信号として取出し、該平行度修正信号
を圧下制御器52a、 52bへ加え得るようにし該圧
下制御器52a、 52bからは、液圧シリンダ13a
、13b ヘ流人、流出する圧液量を制御するサーボ弁
52 a 、        ”52bへ指令信号を送
り得るようにし、液圧シリンダ13a、13bのラム位
置を検出する変位計54a。
Roll chocks 3a and 3b have displacement gauges 44a and 44b.
A fourth
The detection signal of the displacement meter 34b described in the figure is sent to the comparison calculators 35 and 45a, and the detection signal of 34b is sent to the comparison calculators 35 and 45a.
5b, respectively, and the comparison calculators 45a,
The signal obtained in step 45b is made to be able to be subjected to a comparison calculation in a comparison calculation unit 46, and the signal from the comparison calculation unit 46 is connected to the output of a target value setting circuit 49 constituted by a relay 47 and a memory circuit 48 and a comparison calculation unit 50. The deviation signal obtained by the comparison is processed by the parallelism control adjuster 51 to be taken out as a left and right parallelism correction signal, and the parallelism correction signal is applied to the lowering controllers 52a and 52b. From the pressure reduction controllers 52a and 52b, the hydraulic cylinder 13a
, 13b A displacement meter 54a that can send command signals to the servo valves 52a and 52b that control the amount of pressure fluid flowing out, and detects the ram positions of the hydraulic cylinders 13a and 13b.

54bの検出信号を圧下制御器52a、 52bヘフイ
ードバツクし得るようにする。
The detection signal of 54b can be fed back to the pressure reduction controllers 52a and 52b.

圧延開始前の初期設定時には前述の場合と同様にして荷
重を印加し、各ロールを接触させて左右の荷重差が発生
しないように作業側、駆動側の油圧圧下系への調整を行
うことによりレベリングを行い、レベリング後第30−
ルギャップ17の平行制御の目標値を前述の操作手順に
より記憶回路37に記憶させる。これが第20−ルギヤ
ツプ16及び第30−ルギヤツプ17の平行度制御の目
標値となる。その後圧延材Sを第1図に示すように通し
各ロールに荷重を掛け、第1〜第30−ルギヤツプを設
定して圧延を開始する。
At the initial setting before rolling starts, load is applied in the same way as in the case described above, and adjustments are made to the hydraulic reduction systems on the work side and drive side so that each roll is in contact and there is no load difference between the left and right sides. Perform leveling and 30th - after leveling
The target value for parallel control of the loop gap 17 is stored in the storage circuit 37 by the above-described operating procedure. This becomes the target value for the parallelism control of the 20th leg gap 16 and the 30th leg gap 17. Thereafter, the rolled material S is passed through as shown in FIG. 1, a load is applied to each roll, the 1st to 30th roll gaps are set, and rolling is started.

第10−ルギヤツプ15における蛇行制御及び第30−
ルギヤツプ17における平行度制御は前述したように行
われる。又変位計44a、 44bの検出信号は比較演
算器45a、 45bへ送られ、変位計34a、 34
bの検出信号は比較演算器35の外に比較演算器45a
、 45bへも送られ、比較演算器45a。
Meandering control in the 10th gear gap 15 and the 30th gear
Parallelism control in the double gap 17 is performed as described above. Further, the detection signals of the displacement meters 44a, 44b are sent to the comparators 45a, 45b, and the detection signals of the displacement meters 34a, 34
The detection signal b is sent to a comparison calculator 45a outside the comparison calculator 35.
, 45b, and is also sent to the comparator 45a.

45t)ではワークロール9,10が夫々自由に上下へ
移動し得るためその上下への変動量差が作業側32、駆
動側33で各々求められ、この変動量差が比較演算器4
6で比較演算されて第20−ルギヤツプ16の左右の平
行度が求められる。この平行度の信号は比較演算器50
で記憶回路48からの目標値と比較、演算され、その差
が平行度制御調節器51へ入力され、平行度制御調節器
51では第20−ルギヤツプ16の平行度調整のために
圧下制御系への位置修正量が求められる。例えば第20
−ルギヤツプ16の作業側32が狭く駆動側33が広い
状態にワークロール9が傾いている場合には、液圧シリ
ンダ13aのラムを下降させ液圧シリンダ13bのラム
を同量上昇させる。記憶回路48へ記憶させる目標値は
、第4図で述べた第30−ルギヤツプ17の平行度制御
場合と同様に、レベリング後の比較演算器46の出力を
リレー47をオンして与える。
45t), since the work rolls 9 and 10 can each freely move up and down, the difference in the amount of vertical movement is determined on the work side 32 and the drive side 33, and this difference in amount of movement is calculated by the comparator 4.
6, the left and right parallelism of the 20th loop gap 16 is determined. This parallelism signal is sent to the comparator 50
It is compared with the target value from the memory circuit 48 and calculated, and the difference is inputted to the parallelism control regulator 51.The parallelism control regulator 51 sends it to the reduction control system to adjust the parallelism of the 20th gear gap 16. The amount of position correction is calculated. For example, the 20th
- When the work roll 9 is inclined such that the working side 32 of the wheel gap 16 is narrow and the driving side 33 is wide, the ram of the hydraulic cylinder 13a is lowered and the ram of the hydraulic cylinder 13b is raised by the same amount. The target value to be stored in the storage circuit 48 is provided by turning on the relay 47 to output the output of the comparator 46 after leveling, as in the case of parallelism control of the 30th-level gap 17 described in FIG.

なお第20−ルキヤツプ16の制御中に第10−ルギャ
ップ15及び第30−ルギヤツプ17もその影響を受は
左右のロールギャップが狂うおそれがあるが、それは各
々のロールギャップに設けられている蛇行制御系、平行
度制御系によって独立に調節され、最終的には第1〜第
30−ルギヤツプ全てが安定化される。又第20−ルギ
ヤツプ16も平行度制御のかわりに第10−ルギヤツプ
15の場合と同様蛇行制御を行っても良い。
Note that while the 20th roll cap 16 is being controlled, the 10th roll gap 15 and the 30th roll gap 17 may also be affected by it, causing the left and right roll gaps to go out of order. system and parallelism control system, and ultimately all of the 1st to 30th loop gaps are stabilized. Further, the 20th wheel gap 16 may also perform meandering control in the same manner as the 10th wheel gap 15 instead of the parallelism control.

第6図及び第7図は本発明の第4実施例で圧延材Sをワ
ークロールに巻付けず、ワークロール9,10の前後に
引出しロール55.56を設けて圧延材Sを引出しロー
ル55.56で案内し、又全日−ルギャップで蛇行制御
を行うようにした例である。本実施例では、第10−ル
ギヤツプ15での蛇行制御は下部の圧下制御系へを介し
て圧下用の液圧シリンダ13a、13bで行い、第20
−ルギヤツプ16での蛇行制御はベンディング制御系B
を介してロールベンディング用のシリンダ19a、19
bにより行い、第30−ルギヤツプ17での蛇行制御は
圧下スクリュー14のかわりに設けだ液圧シリンダ57
a、57bにより上部圧下制御系Cを介して行うように
なっている。圧下制御系A、Cの構成は第3実施例で示
したものと略同じで必る。図中58.66、74は板幅
端位置検出器、59゜67、75は蛇行量演算器、60
.68.76は比較演算器、61.69.77は圧延材
位置の目標値、62,70.78は蛇行調節器、63a
、 63b、 79a、 79bは圧下制御器、71a
、71bはベンディング制御器、64a、 64b、 
72a。
FIGS. 6 and 7 show a fourth embodiment of the present invention, in which the rolled material S is not wound around the work rolls, but pull-out rolls 55 and 56 are provided before and after the work rolls 9 and 10, and the rolled material S is pulled out from the pull-out rolls 55 and 56. This is an example in which guidance is provided at .56 and meandering control is performed at the full-time loop gap. In this embodiment, the meandering control in the 10th gear gap 15 is performed by the hydraulic pressure cylinders 13a and 13b for pressure reduction via the lower pressure reduction control system, and the 20th
- Meandering control at the double gap 16 is performed by bending control system B.
cylinders 19a, 19 for roll bending via
The meandering control at the 30th gear gap 17 is performed by a hydraulic cylinder 57 provided in place of the reduction screw 14.
a and 57b, the upper pressure reduction control system C is used. The configurations of the reduction control systems A and C are essentially the same as those shown in the third embodiment. In the figure, 58, 66 and 74 are board width end position detectors, 59°67 and 75 are meandering amount calculators, and 60
.. 68.76 is a comparison calculator, 61.69.77 is a target value for the position of the rolled material, 62, 70.78 is a meandering adjuster, 63a
, 63b, 79a, 79b are pressure reduction controllers, 71a
, 71b is a bending controller, 64a, 64b,
72a.

72b、 80a、 80bはサーボ弁、65a、 6
5b、 73a、 73b。
72b, 80a, 80b are servo valves, 65a, 6
5b, 73a, 73b.

81a、81bは液圧ピストンラムの変位量を検出する
変位計、83は第10−ルギヤツプバランス制御系であ
る。
81a and 81b are displacement gauges for detecting the amount of displacement of the hydraulic piston ram, and 83 is a tenth gear gap balance control system.

斯かる構成によって第20−ルギヤツプ16での蛇行は
ベンディング制御系已によって独立に制御され、第10
−ルギヤツプ15及び第20−ルギヤツプ17での蛇行
制御は圧下制御系A、Cによって夫々独立に制御される
。具体的な制御の方法は第1及び第3実施例の場合と略
同様であるが第20−ルギヤツプのベンディング制御系
Bは圧力制御ではなく位置制御を行っている。
With such a configuration, the meandering in the 20th loop gap 16 is independently controlled by the bending control system, and the bending control system
The meandering control at the first and second wheel gaps 15 and 20th wheel gap 17 is independently controlled by the reduction control systems A and C, respectively. The specific control method is substantially the same as in the first and third embodiments, but the bending control system B of the 20th loop performs position control rather than pressure control.

本実施例では第20−ルギヤツプ16が独立に位置制御
されているため、各ロールギャップ制御の相互干渉が弱
く、又第10−ルギヤツプ15及び第30−ルギヤツプ
17も夫々独立に制御されているため制御が有効に作用
する範囲が大きい。なお、本実施例のアクチュエータの
構成はそのままで第2、第3実施例で述べたようにロー
ルギャップの左右差を求めて任意のロールギャップの平
行度制御を行うようにしても良い。
In this embodiment, since the position of the 20th wheel gap 16 is controlled independently, the mutual interference between the roll gap controls is weak, and the 10th wheel gap 15 and the 30th wheel gap 17 are also controlled independently. The range over which control is effective is wide. Note that the configuration of the actuator of this embodiment may be maintained as is, and the parallelism control of an arbitrary roll gap may be performed by determining the difference between the left and right roll gaps as described in the second and third embodiments.

第8図は上述の蛇行制御装置に使用する板幅端位置検出
器の例で、圧延材Sの下方に光源87を設置し、光源8
7からの光を第9図に示すような板幅端位置検出器88
で受光するようにしたものである。このように圧延材S
の両側に板幅端位置検出器88を設置した場合には比較
演算器89で左右の信号の差を比較演算し、そのB差信
号を蛇行量として取出す。
FIG. 8 shows an example of a plate width end position detector used in the meandering control device described above, in which a light source 87 is installed below the rolled material S, and a light source 87 is installed below the rolled material S.
The light from 7 is transferred to a board width end position detector 88 as shown in FIG.
It is designed to receive light. In this way, the rolled material S
When board width end position detectors 88 are installed on both sides of the board, a comparator 89 compares and calculates the difference between left and right signals, and the B difference signal is taken out as the meandering amount.

第9図は上述の板幅端位置検出器の詳細で、圧延材S下
方の光源870発する光を取入部84に設けたレンズ8
5を介して導入し、その光を多数の素子を等間隔で有し
た素子群86上に結像させることにより圧延材Sの幅端
位置を検出するものである。
FIG. 9 shows the details of the above-mentioned sheet width edge position detector, in which the light emitted by the light source 870 below the rolled material S is emitted by the lens 8 provided in the intake part 84.
5, and the width end position of the rolled material S is detected by focusing the light onto an element group 86 having a large number of elements at equal intervals.

今、総素子数をN、視野長さし、圧延材端部Xの長さの
部分が光源87を隠し受光されない素る、このXは圧延
材Sの幅方向の動きによって変化するので、これを測る
ことによって板幅端位置を求めることができる。
Now, let us assume that the total number of elements is N and the field of view length is such that the length of the end of the rolled material X hides the light source 87 and does not receive light. By measuring , the board width end position can be determined.

上記各実施例中周−のものには同一の符号が付しである
The same reference numerals are given to the middle parts of each of the above embodiments.

なお、本発明に使用する制御回路はハードウェアではな
くコンピュータを使用したソフトウェアでも構成できる
こと、光源及び検出器は圧延機入側及び出側の何れに設
置することもできること、光源及び検出器は上下逆であ
っても良いこと、蛇行調節器は例えば単なる増幅回路す
なわち比例ゲインを使う回路或いは比例及び微分回路、
又は比例、微分及び積分回路等圧延外乱等の種類に応じ
て適宜使い分けるようにすることもできること、その他
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ること、等は勿論でおる。
It should be noted that the control circuit used in the present invention can be configured not with hardware but with software using a computer, that the light source and detector can be installed on either the entry side or the exit side of the rolling mill, and that the light source and detector can be installed on the upper or lower side. The opposite may also be true, for example the meander regulator may be a simple amplifier circuit, i.e. a circuit using proportional gain, or a proportional and differential circuit;
It goes without saying that proportional, differential, and integral circuits can be used appropriately depending on the type of rolling disturbance, and that various other changes can be made without departing from the gist of the present invention.

[発明の効果] 本発明の多パス圧延機の蛇行制御装置によれば、圧延材
の蛇行を防止して圧延の安定化を実現でき、又その結果
圧延材の蛇行による事故が防止できて稼働率が向上し、
更に高張力を掛けて蛇行を防止する場合のように大動力
を必要としないので、省エネルギー化に貢献できる、等
種々の優れた効果を奏し得る。
[Effects of the Invention] According to the meandering control device for a multi-pass rolling mill of the present invention, rolling can be stabilized by preventing meandering of the rolled material, and as a result, accidents due to meandering of the rolled material can be prevented and operation can be improved. rate has improved,
Furthermore, unlike the case where high tension is applied to prevent meandering, a large amount of power is not required, so various excellent effects such as contributing to energy saving can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の第1実施例の説明図で、第1
図は側面図、第2図は正面図、第3図は板幅端位置検出
器の設置位置の説明図、第4図は本発明の第2実施例の
正面図、第5図は本発明の第3実施例の正面図、第6図
及び第7図は本発明の第4実施例の説明図で第6図は側
面図、第7図は正面図、第8図は本発明に使用する板幅
端位置検出器の説明図、第9図は同検出部の詳細説明図
、第10図及び第11図は圧延材に蛇行が生じる場合の
原理の説明図である。 図中8.9,10.11はワークロール、13a、 1
3b。 18a、 18b、 19a、 19b、 20a、 
20bは液圧シリンダ、15は第10−ルギヤツプ、1
6は第20−ルギヤツプ、17は第30−ルギヤツプ、
21.5B、 66、74は板幅端位置検出器、22.
59.67、75は蛇行量演算器、23.35.39.
45a、 45b、 46a、 46b、 50.60
.68.76は比較演算器、25,62,70.78は
蛇行調節器、26a。 26b、 41a、 41b、 71a、 71bはベ
ンディング制御器、27a、27b、42a、42b、
 53a、53b、64a、64b、 72a、 72
bはサーボ弁、38.49は目標位置設定回路、40.
51は平行度制御調節器、A、Cは圧下制御系、8はベ
ンディング制御系を示す。 第1図 第3図 第6図
1 to 3 are explanatory diagrams of the first embodiment of the present invention, and
The figure is a side view, Figure 2 is a front view, Figure 3 is an explanatory diagram of the installation position of the board width end position detector, Figure 4 is a front view of the second embodiment of the present invention, and Figure 5 is the present invention. Figures 6 and 7 are explanatory diagrams of the fourth embodiment of the present invention. Figure 6 is a side view, Figure 7 is a front view, and Figure 8 is a diagram used in the present invention. FIG. 9 is a detailed explanatory diagram of the detecting section, and FIGS. 10 and 11 are explanatory diagrams of the principle when meandering occurs in a rolled material. In the figure, 8.9 and 10.11 are work rolls, 13a, 1
3b. 18a, 18b, 19a, 19b, 20a,
20b is a hydraulic cylinder, 15 is a 10th lever gap, 1
6 is the 20th leg gap, 17 is the 30th leg gap,
21.5B, 66, 74 are board width end position detectors; 22.
59.67, 75 are meandering amount calculators, 23.35.39.
45a, 45b, 46a, 46b, 50.60
.. 68.76 is a comparison calculator, 25, 62, 70.78 is a meandering adjuster, and 26a. 26b, 41a, 41b, 71a, 71b are bending controllers, 27a, 27b, 42a, 42b,
53a, 53b, 64a, 64b, 72a, 72
b is a servo valve, 38.49 is a target position setting circuit, 40.
51 is a parallelism control adjuster, A and C are a lowering control system, and 8 is a bending control system. Figure 1 Figure 3 Figure 6

Claims (1)

【特許請求の範囲】 1)1スタンドに3本以上のワークロールを備え該ワー
クロールのうち少くとも1本により圧延材を同時に2点
以上で圧延する圧延機において、各圧延パスのうち少く
とも1つのパスの入側或いは出側の何れか一方の圧延材
の通過面下方若しくは上方に配設された板幅端位置検出
器と、該板幅端位置検出器からの信号をもとに圧延材の
蛇行量を求める装置と、蛇行量に応じて当該圧延パスの
作業側、駆動側のロールギャップを独立に変えることの
できる制御装置を設け、圧延材の蛇行を防止し得るよう
構成したことを特徴とする多パス圧延機の蛇行制御装置
。 2)1スタンドに3本以上のワークロールを備え該ワー
クロールのうち少くとも1本により圧延材を同時に2点
以上で圧延する圧延機において、各圧延パスのうち少く
とも1つのパスの入側或いは出側の何れか一方の圧延材
の通過面下方若しくは上方に配設された板幅端位置検出
器と、該板幅端位置検出器からの信号をもとに圧延材の
蛇行量を求める装置と、蛇行量に応じて当該圧延パスの
作業側、駆動側のロールギャップを独立に変えることの
できる制御装置と、蛇行制御を行わない圧延パスにおけ
るロールギャップを直接的或いは間接的に検出するため
ワークロールの左右に設けられた検出器と、該左右の検
出器の差を演算して作業側と駆動側のロールギャップの
差を求める装置と、ロールギャップ差に応じて作業側、
駆動側のロールギャップを独立に変えることのできるベ
ンディング制御装置を設け、圧延材の蛇行を防止し得る
よう構成したことを特徴とする多パス圧延機の蛇行制御
装置。 3)1スタンドに3本以上のワークロールを備え該ワー
クロールのうち少くとも1本により圧延材を同時に2点
以上で圧延する圧延機において、各圧延パスのうち少く
とも1つのパスの入側或いは出側の何れか一方の圧延材
の通過面下方若しくは上方に配設された板幅端位置検出
器と、該板幅端位置検出器からの信号をもとに圧延材の
蛇行量を求める装置と、蛇行量に応じて当該圧延パスの
作業側、駆動側のロールギャップを独立に変えることの
できる制御装置と、蛇行制御を行わない圧延パスにおけ
るロールギャップを直接的或いは間接的に検出するため
ワークロールの左右に設けられた検出器と、該左右の検
出器の差を演算して作業側と駆動側のロールギャップの
差を求める装置と、ロールギャップ差に応じて作業側、
駆動側のロールギャップを独立に変えることのできる圧
下制御装置を設け、圧延材の蛇行を防止し得るよう構成
したことを特徴とする多パス圧延機の蛇行制御装置。
[Claims] 1) In a rolling mill that has three or more work rolls in one stand and simultaneously rolls a rolled material at two or more points using at least one of the work rolls, at least one of each rolling pass is A plate width edge position detector is installed below or above the passing surface of the rolled material on either the entry side or the exit side of one pass, and rolling is performed based on the signal from the plate width edge position detector. A device for determining the amount of meandering of the material and a control device that can independently change the roll gap on the working side and drive side of the rolling pass according to the amount of meandering are provided to prevent meandering of the rolled material. A meandering control device for a multi-pass rolling mill featuring: 2) In a rolling mill that has three or more work rolls in one stand and simultaneously rolls a rolled material at two or more points using at least one of the work rolls, the entry side of at least one of each rolling pass. Alternatively, the meandering amount of the rolled material is determined based on a strip width end position detector disposed below or above the passing surface of the rolled material on either the exit side and the signal from the strip width end position detector. a control device that can independently change the roll gap on the working side and drive side of the rolling pass according to the amount of meandering; and a control device that directly or indirectly detects the roll gap in the rolling pass where meandering control is not performed. Detectors provided on the left and right sides of the work roll, a device that calculates the difference between the left and right detectors to determine the difference between the roll gaps on the working side and the driving side, and a device that calculates the difference between the roll gaps on the working side and the driving side according to the roll gap difference.
1. A meandering control device for a multi-pass rolling mill, comprising a bending control device that can independently change the roll gap on the driving side to prevent meandering of a rolled material. 3) In a rolling mill that has three or more work rolls in one stand and simultaneously rolls a rolled material at two or more points using at least one of the work rolls, the entry side of at least one of each rolling pass. Alternatively, the meandering amount of the rolled material is determined based on a strip width end position detector disposed below or above the passing surface of the rolled material on either the exit side and the signal from the strip width end position detector. a control device that can independently change the roll gap on the working side and drive side of the rolling pass according to the amount of meandering; and a control device that directly or indirectly detects the roll gap in the rolling pass where meandering control is not performed. Detectors provided on the left and right sides of the work roll, a device that calculates the difference between the left and right detectors to determine the difference between the roll gaps on the working side and the driving side, and a device that calculates the difference between the roll gaps on the working side and the driving side according to the roll gap difference.
1. A meandering control device for a multi-pass rolling mill, comprising a rolling reduction control device that can independently change the roll gap on the drive side, and configured to prevent meandering of a rolled material.
JP60110880A 1985-05-23 1985-05-23 Meandering control device for multi-passes rolling mill Pending JPS61269920A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60110880A JPS61269920A (en) 1985-05-23 1985-05-23 Meandering control device for multi-passes rolling mill
EP86302314A EP0206453B1 (en) 1985-05-23 1986-03-27 Method of multi-pass rolling and rolling mill stand for carrying out the method
US06/844,894 US4759205A (en) 1985-05-23 1986-03-27 Multi-pass rolling method and multi-path rolling-mill stand for carrying out said method
DE8686302314T DE3672401D1 (en) 1985-05-23 1986-03-27 METHOD AND ROLLING DEVICE FOR STRETCH ROLLING BAND.
KR1019860002418A KR910005831B1 (en) 1985-05-23 1986-03-31 Multi-pass rolling method and multi-path rolling-mill stand for carrying out said method
US07/179,638 US4843855A (en) 1985-05-23 1988-04-08 Multi-pass rolling method and multi-path rolling-mill stand for carrying out said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110880A JPS61269920A (en) 1985-05-23 1985-05-23 Meandering control device for multi-passes rolling mill

Publications (1)

Publication Number Publication Date
JPS61269920A true JPS61269920A (en) 1986-11-29

Family

ID=14547034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110880A Pending JPS61269920A (en) 1985-05-23 1985-05-23 Meandering control device for multi-passes rolling mill

Country Status (1)

Country Link
JP (1) JPS61269920A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118217A (en) * 1982-12-23 1984-07-07 Ishikawajima Harima Heavy Ind Co Ltd Detecting method of meandering
JPS59118218A (en) * 1982-12-23 1984-07-07 Ishikawajima Harima Heavy Ind Co Ltd Detecting method of meandering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118217A (en) * 1982-12-23 1984-07-07 Ishikawajima Harima Heavy Ind Co Ltd Detecting method of meandering
JPS59118218A (en) * 1982-12-23 1984-07-07 Ishikawajima Harima Heavy Ind Co Ltd Detecting method of meandering

Similar Documents

Publication Publication Date Title
EP0621087B1 (en) Rolling mill and method
JPS59189011A (en) Method and device for controlling meandering and lateral deviation of rolling material
KR910005831B1 (en) Multi-pass rolling method and multi-path rolling-mill stand for carrying out said method
JPS59191510A (en) Method and device for controlling meander of rolling material
JPS6320111A (en) Meandering controller
JPS61269920A (en) Meandering control device for multi-passes rolling mill
JPH1147814A (en) Method for controlling meandering of steel sheet
JPH07214131A (en) Rolling controller
JPS6363515A (en) Meandering control method
JP2653128B2 (en) Control method of cold tandem rolling mill
JPS63183713A (en) Controlling method for meandering
JPH09295020A (en) Flying thickness changing method of metal plate in continuous type tandem rolling mill
JPH105807A (en) Cold rolling method of metal sheet at shifting work roll during rolling
JPS6320114A (en) Meandering control method and device therefor
JPH0586294B2 (en)
JP7347688B2 (en) Meandering control device for continuous rolling mill
JPS60127016A (en) Cambering controlling device
JPS6320115A (en) Meandering control method and device therefor
JPS6320116A (en) Meandering control method and device therefor
JPH0565245B2 (en)
JPS6117318A (en) Method and device for controllng meandering of rolling material
JPH07204722A (en) Method for controlling strip position by automatic level adjusting device
JPH0246284B2 (en)
JPS6363518A (en) Meandering control method
JPS62244506A (en) Setting up method for edge drop control of sheet rolling