JPS6126911B2 - - Google Patents

Info

Publication number
JPS6126911B2
JPS6126911B2 JP8291578A JP8291578A JPS6126911B2 JP S6126911 B2 JPS6126911 B2 JP S6126911B2 JP 8291578 A JP8291578 A JP 8291578A JP 8291578 A JP8291578 A JP 8291578A JP S6126911 B2 JPS6126911 B2 JP S6126911B2
Authority
JP
Japan
Prior art keywords
zirconium
colloidal
solution
colloidal solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8291578A
Other languages
Japanese (ja)
Other versions
JPS5511514A (en
Inventor
Ryohei Kataoka
Yoshiaki Watanabe
Yukihiro Yamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8291578A priority Critical patent/JPS5511514A/en
Publication of JPS5511514A publication Critical patent/JPS5511514A/en
Publication of JPS6126911B2 publication Critical patent/JPS6126911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は含有機リンジルコニウム化合物を含む
コロイド溶液の製造法に関する。詳しくは一般式
(RO)2POOH(但しRは炭素原子数1〜3のアル
キル基)で表わされる水溶性有機リン化合物と水
溶性ジルコニウム化合物を水媒体中で反応させ、
含有機リンジルコニウム塩コロイド溶液を製造す
る方法を提供するものである。 一般式(RO)3POOH(但しRは炭素原子数1
〜3のアルキル基)で示される有機リン化合物
は、希土類元素などを水相から水溶性有機溶媒へ
選択的に分離抽出する、いわゆる溶媒抽出の技術
分野において、ジブチルリン酸エステルあるいは
ジ―2―エチルヘキシルリン酸エステルなどが実
用に供せられている程度である。従つて、炭素原
子数1〜3の低級アルキル基で構成されるリン酸
ジアルキルエステルの用途はほとんど知られてい
ない。他方、含有機リンジルコニウム塩はほとん
どの場合に不溶性物は可溶性物となり、コロイド
溶液で存在することも知られていない。 本発明者らは含有機リン化合物とジルコニウム
化合物の反応につき鋭意研究を重ねた結果、一般
式(RO)2POOH(但しRは炭素原子数1〜3の
アルキル基)を有する特定の有機リン化合物が、
水媒体中でジルコニウム化合物と反応して安定な
コロイド溶液を作ることを見い出して本発明を完
成するに至つた。 本発明で用いられる有機リン化合物は、一般式
(RO)2POOH(但しRは炭素原子数1〜3のアル
キル基)で表わされる化合物のうちアルキル基の
炭素数が3以下のもので、且つ水溶性であれば特
に限定されず公知のものを用いうる。一般にはジ
メチルリン酸エステル、ジエチルリン酸エステ
ル、ジイソプロピルリン酸エステルなどが好適に
使用される。また本発明で用いられるジルコニウ
ム化合物としては、水溶性あれば特に限定されず
用いることが出来、例えば硝酸ジルコニウム、オ
キシハロゲン化ジルコニウムが好適に用いられ、
なかんずくオキシ塩化ジルコニウムが最適であ
る。 本発明における水溶性有機リン化合物と水溶性
ジルコニウム化合物との反応は、特に限定的では
なく如何なる態様を利用してもよい。例えば水媒
体中に原料を添加反応させても、予め各原料を水
溶液に調整しておき水溶液を混合反応させること
も出来る。勿論、これらの原料の添加順序も限定
されず、同時又はいずれの原料に他の原料を添加
させてもよい。 本発明において含有機リンジルコニウム塩コロ
イド溶液をより安定な状態で製造するには、原料
濃度及び原料の仕込みモル比を適当に選ぶのが好
ましい。これらの条件は原料の種類、反応条件等
によつて一概に規定出来ないが、一般には次ぎの
ような範囲から選べばよい。即ち、水溶性ジルコ
ニウム化合物の濃度は0.02モル/l以下、また水
溶性有機リン化合物の濃度は0.1モル/l以下が
好適である。勿論、上記濃度より濃い原料を反応
させることも可能であるが、一般にコロイド溶液
を製造する場合と同様に原料濃度が濃いすぎると
沈でん析出する生成物が多くなり、コロイド粒子
の凝集に基づくコロイド溶液の安定性に欠けるよ
うになる。従つて、これらの原料濃度は原料の種
類、反応条件等によつて予め好適な濃度を決定す
るのが好ましい。また反応系に仕込む原料比即ち
有機リン化合物のモル数/ジルコニウム化合物の
モル数(以下単にP/Zrモル比と略記する)は、
一般に1〜4の範囲で用いるのが最も好適であ
る。特に後述する実施例で示す如く、コロイド粒
子組成比がP/Zr=2となることから、P/Zrモ
ル比が約2となるように仕込むと好ましい。一般
的にはP/Zrモル比が大きなるように原料を仕込
むと沈でんが生成する傾向にある。 本発明で使用する原料のうち一般式
(RO)2POOHで示される有機リン化合物のアルキ
ル基が炭素原子数4以上になると、前記反応条件
を如何に選択しても本発明のコロイド溶液を決定
して製造することは出来ない。従つて、一般式の
Rが炭素原子数4以上のアルキル基のものは本発
明の原料としては使用出来ない。上記アルキル基
を構成する炭素原子数はコロイド溶液を製造する
際に重要な要件となり、炭素原子数が少ない程仕
込み原料比即ちP/Zrモル比を大きくとりうる。
例えばジエチルリン酸エステル及びジイソプロピ
ルリン酸エステルを用いる場合はP/Zrモル比が
1〜4で安定したコロイド溶液が得られるのに対
し、ジメチルリン酸エステルを用いる場合はP/
Zrモル比が5になつても安定なコロイド溶液とな
りうる。 本発明における反応は低温で実施する程コロイ
ド溶液が安定で、一般には室温で実施するとよ
い。勿論、加熱下での反応も可能であるが60℃以
上になると得られるコロイド溶液は不安定になる
傾向がある。また反応時間は特に考慮する必要は
なく、一般に原料を添加すると同時に反応も起
る。一般には撹拌下に原料を添加することによつ
て瞬時にコロイド溶液となる。 本発明で得られたコロイド溶液はそのまま各種
の基材表面に塗布して防錆剤或いは撥水剤等とし
たり、難燃性を付与する原料としても使用出来
る。 本発明を更に具体的に説明するため以下実施例
及び比較例を挙げて説明するが、本発明はこれら
の実施例に限定されるものではない。 実施例 1 濃度0.04モル/lのジメチルリン酸エステル水
溶液50mlに濃度0.02モル/lのオキシ塩化ジルコ
ニウム水溶液を室温で撹拌下混合した。得られた
混合溶液は完全に無色透明であつた。この溶液を
限外顕微鏡でコロイド溶液であることを確認し
た。このコロイド溶液を100℃で4時間加熱する
と、コロイド粒子の凝集が起り、液中に白色沈で
んが生成する。 白色沈でんを濾別分離し、化学分析したとこ
ろ、P/Zr原子比=2.07,Cl3.1%、H3.6%、
P17.7%、Zr25.1%であつた。またこの白色沈で
んの赤外吸収スピクトルは2800〜3000cm-1にC−
H伸縮振動、1370〜1470cm-1にC−H変角振動、
1000〜1200cm-1にP−O又はP−O−Cに基づく
伸縮振動が認められた。更にまた、この白色沈で
んのX線回折パターンはブラツグ角(2θ)が10
゜以下に強い1本のピークをもつのみでほとんど
非晶質とみなし得た。 なお、沈でんを分離した後の濾液にはジメチル
リン酸エステル及びジルコニウムイオンは認めら
れなかつた。以上の事実より本実施例におけるコ
ロイド粒子の構造式は明確に示し得ないが、ZrO
〔(CH302PO22と推定される。 実施例 2 実施例1においてオキシ塩化ジルコニウムの濃
度を0.04モル/lにした以外は全く同様に実施し
た。得られた混合溶液は完全に無色透明のコロイ
ド溶液で、100℃、4時間加熱すると白色沈でん
が生じた。この白沈を濾別分離して化学分析、赤
外吸収スペクトル、X線回折パターンを調べたと
ころ、実施例1と全く同様であつた。しかしなが
ら、白沈を濾別分離した濾液中には使用したオキ
塩化ジルコニウムの半分が残存していた。 実施例 3 実施例1においてオキシ塩化ジルコニウムの濃
度を0.01モル/lにした以外は、実施例1と同様
に行ない無色透明のコロイド溶液を得た。また実
施例1と同様に加温することにより白沈を得た。
その化学分析値、赤外吸収スペクトル、X線回折
パターンは実施例1と同様であつた。しかしなが
ら、白沈を濾別分離した濾液中には使用したジエ
チルリン酸エステルの半分が残存していた。 実施例 4 濃度0.01モル/lのジエチルリン酸エステル水
溶液50mlに濃度0.01モル/lのオキシ塩化ジルコ
ニウム水溶液50mlを室温で撹拌下混合した。得ら
れた混合溶液は完全に無色透明のコロイド溶液で
あつた。この混合溶液を100℃で4時間加熱し
て、コロイド粒子を凝集させると白色沈でんが生
成した。白色沈でんを濾別分離して分析したとこ
ろ、P/Zr原子比=1.94、C23.1%、H4.6%、
P14.7%、Zr22.2%であつた。またこの白色沈で
んの赤外吸収スペクトルは実施例1のそれと大差
なく、X線回折パターンはブラツグ角(2θ)が
10゜以下に1本の強いピークをもつのみでほとん
ど非晶質であつた。なお沈でん分離した後の濾液
には、使用したオキシ塩化ジルコニウムの半分が
残存していた。 以上の事実より、本実施例におけるコロイド粒
子の構造式は明確には示し得ないが、ZrO
〔(C2H502PO22と推定される。 実施例 5 実施例4において0.02モル/lのジエチルリン
酸エステルを用いた以外は、実施例4と同様に行
なつた。得られた混合溶液はコロイド溶液に特有
な乳光を発して、ごくわずかに白濁していた。こ
のコロイド溶液を100℃、4時間加熱してコロイ
ド粒子を凝集沈でんさせ濾別分離した。分離され
た白色沈でんの化学分析値、赤外吸収スペクト
ル、X線回折パターンは実施例4と同じであつ
た。なお沈でん分離した後の濾液には、ジエチル
リン酸エステル及びジルコニウムイオンは認めら
れなかつた。 実施例 6 実施例5において0.04モル/lのジエチルリン
酸エステルを用いた以外は、実施例4と同様に行
なつた。生成コロイド溶液は実施例5の場合より
も強く、白濁していたが層分離はしなかつた。実
施例5と同様にコロイド粒子を濾別分離して調べ
たところ、化学分析値、赤外吸収スペクトル、X
線回折パターンは実施例5と同様であつた。しか
しながら、白沈を分離した際の濾液からは、使用
したジエチルリン酸エステルのうち半分が残存し
ていた。 実施例 7 濃度0.04モル/lのジイソプロピルリン酸エス
テル水溶液50mlに濃度0.01モル/lのオキシ塩化
ジルコニウム水溶液50mlを室温で撹拌下混合し
た。生成コロイド溶液は実施例5より多少強い乳
白色を呈するコロイド溶液であつた。実施例1と
同様にこのコロイド溶液を加温してコロイド粒子
を凝集させ濾別分離して化学分析したところ、
P/Zr原子比2.0、C29.7%、H5.8%、P12.8%、
Zr18.8%で赤外吸収スペクトル、X線回折パター
ンは実施例1と同様であつた。以上の事実より本
実施例におけるコロイド粒子の構造式は明確に示
し得ないが、ZrO〔(C3H702PO22と推定され
る。 実施例 8 実施例7においてジイソプロピルエステルの濃
度を0.01モル/lにした以外は実施例7と同様に
行なつた結果、乳白色のコロイド溶液を得た。こ
のコロイド溶液を実施例7と同様に処理したもの
の化学分析値、赤外吸収スペクトル、X線回折パ
ターンなど実施例7と同様であつた。なおコロイ
ド粒子を分離した後の濾液には使用したオキシ塩
化ジルコニウムの半分が残存していた。 実施例 9 第1表に示す原料及び仕込モル比を変化させた
以外は、実施例1と同様に実施した。その結果は
第1表に示す通りであつた。
The present invention relates to a method for producing a colloidal solution containing a zirconium-containing compound. Specifically, a water-soluble organic phosphorus compound represented by the general formula (RO) 2 POOH (where R is an alkyl group having 1 to 3 carbon atoms) and a water-soluble zirconium compound are reacted in an aqueous medium,
A method for producing a colloidal solution containing zirconium salt is provided. General formula (RO) 3 POOH (R is 1 carbon atom
In the technical field of solvent extraction, in which rare earth elements and the like are selectively separated and extracted from an aqueous phase into a water-soluble organic solvent, organic phosphorus compounds represented by alkyl groups in Phosphate esters and the like are only in practical use. Therefore, the uses of phosphoric acid dialkyl esters composed of lower alkyl groups having 1 to 3 carbon atoms are hardly known. On the other hand, in most cases, insoluble zirconium salts become soluble, and it is not known that they exist in the form of colloidal solutions. As a result of extensive research into the reaction between phosphorus-containing compounds and zirconium compounds, the present inventors found that a specific organic phosphorus compound having the general formula (RO) 2 POOH (where R is an alkyl group having 1 to 3 carbon atoms) but,
The present invention was completed by discovering that a stable colloidal solution can be produced by reacting with a zirconium compound in an aqueous medium. The organic phosphorus compound used in the present invention is a compound represented by the general formula (RO) 2 POOH (where R is an alkyl group having 1 to 3 carbon atoms), in which the alkyl group has 3 or less carbon atoms, and Any known material can be used without particular limitation as long as it is water-soluble. Generally, dimethyl phosphate, diethyl phosphate, diisopropyl phosphate, etc. are preferably used. Further, the zirconium compound used in the present invention is not particularly limited as long as it is water-soluble, and for example, zirconium nitrate and zirconium oxyhalide are preferably used.
Above all, zirconium oxychloride is most suitable. The reaction between the water-soluble organic phosphorus compound and the water-soluble zirconium compound in the present invention is not particularly limited, and any embodiment may be used. For example, even if raw materials are reacted by adding them to an aqueous medium, it is also possible to adjust each raw material to an aqueous solution in advance and mix the aqueous solutions to react. Of course, the order in which these raw materials are added is not limited, and other raw materials may be added at the same time or to any of the raw materials. In order to produce a colloidal solution containing zirconium salt in a more stable state in the present invention, it is preferable to appropriately select the raw material concentration and the molar ratio of the raw materials. Although these conditions cannot be absolutely defined depending on the type of raw materials, reaction conditions, etc., they may generally be selected from the following ranges. That is, the concentration of the water-soluble zirconium compound is preferably 0.02 mol/l or less, and the concentration of the water-soluble organic phosphorus compound is preferably 0.1 mol/l or less. Of course, it is possible to react raw materials with a concentration higher than the above, but as in the case of generally producing colloidal solutions, if the raw material concentration is too high, many products will precipitate out, and the colloidal solution based on the aggregation of colloidal particles. becomes unstable. Therefore, it is preferable to determine a suitable concentration of these raw materials in advance depending on the type of raw materials, reaction conditions, etc. In addition, the raw material ratio charged into the reaction system, that is, the number of moles of organic phosphorus compound/the number of moles of zirconium compound (hereinafter simply abbreviated as P/Zr molar ratio), is:
In general, it is most suitable to use a range of 1 to 4. In particular, as shown in the examples described later, since the colloidal particle composition ratio is P/Zr=2, it is preferable to prepare so that the P/Zr molar ratio is about 2. Generally, if the raw materials are prepared so that the P/Zr molar ratio is large, precipitates tend to form. Among the raw materials used in the present invention, when the alkyl group of the organic phosphorus compound represented by the general formula (RO) 2 POOH has 4 or more carbon atoms, the colloidal solution of the present invention is determined no matter how the reaction conditions are selected. It cannot be manufactured by Therefore, compounds in which R in the general formula is an alkyl group having 4 or more carbon atoms cannot be used as a raw material in the present invention. The number of carbon atoms constituting the alkyl group is an important requirement when producing a colloidal solution, and the smaller the number of carbon atoms, the greater the ratio of raw materials to be charged, that is, the molar ratio of P/Zr.
For example, when diethyl phosphate and diisopropyl phosphate are used, a stable colloidal solution can be obtained with a P/Zr molar ratio of 1 to 4, whereas when dimethyl phosphate is used, P/Zr
Even when the Zr molar ratio is 5, a stable colloidal solution can be obtained. The reaction in the present invention is carried out at a lower temperature, the more stable the colloidal solution becomes, and it is generally preferable to carry out the reaction at room temperature. Of course, the reaction can be carried out under heating, but the colloidal solution obtained tends to become unstable at temperatures above 60°C. Further, there is no need to particularly consider the reaction time, and the reaction generally occurs at the same time as the raw materials are added. Generally, by adding raw materials under stirring, a colloidal solution is instantaneously formed. The colloidal solution obtained in the present invention can be directly applied to the surface of various substrates to be used as a rust preventive agent or water repellent, or can be used as a raw material for imparting flame retardancy. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. Example 1 A zirconium oxychloride aqueous solution having a concentration of 0.02 mol/l was mixed with 50 ml of a dimethyl phosphate aqueous solution having a concentration of 0.04 mol/l at room temperature under stirring. The resulting mixed solution was completely colorless and transparent. This solution was confirmed to be a colloid solution using an ultraviolet microscope. When this colloidal solution is heated at 100°C for 4 hours, the colloidal particles coagulate and a white precipitate is formed in the solution. When the white precipitate was separated by filtration and chemically analyzed, the atomic ratio of P/Zr = 2.07, Cl 3.1%, H 3.6%,
P17.7% and Zr25.1%. In addition, the infrared absorption spectrum of this white precipitate is C-
H stretching vibration, C-H bending vibration from 1370 to 1470 cm -1 ,
Stretching vibration based on P-O or P-O-C was observed at 1000 to 1200 cm -1 . Furthermore, the X-ray diffraction pattern of this white precipitate has a Bragg angle (2θ) of 10
It could be considered to be almost amorphous since it had only one strong peak below 100°. Note that dimethyl phosphate and zirconium ions were not observed in the filtrate after separating the precipitate. Based on the above facts, the structural formula of the colloidal particles in this example cannot be clearly shown, but ZrO
[(CH 30 ) 2 PO 2 ] 2 is estimated. Example 2 The same procedure as in Example 1 was carried out except that the concentration of zirconium oxychloride was changed to 0.04 mol/l. The resulting mixed solution was a completely colorless and transparent colloidal solution, and a white precipitate formed when heated at 100°C for 4 hours. When this white precipitate was separated by filtration and examined for chemical analysis, infrared absorption spectrum, and X-ray diffraction pattern, it was found to be exactly the same as in Example 1. However, half of the zirconium oxychloride used remained in the filtrate from which the white precipitate was filtered off. Example 3 A colorless and transparent colloidal solution was obtained in the same manner as in Example 1 except that the concentration of zirconium oxychloride in Example 1 was changed to 0.01 mol/l. Further, a white precipitate was obtained by heating in the same manner as in Example 1.
Its chemical analysis values, infrared absorption spectrum, and X-ray diffraction pattern were the same as in Example 1. However, half of the diethyl phosphate used remained in the filtrate from which the white precipitate was separated by filtration. Example 4 50 ml of a diethyl phosphate aqueous solution having a concentration of 0.01 mol/l and 50 ml of a zirconium oxychloride aqueous solution having a concentration of 0.01 mol/l were mixed at room temperature with stirring. The resulting mixed solution was a completely colorless and transparent colloidal solution. This mixed solution was heated at 100° C. for 4 hours to coagulate the colloid particles, producing a white precipitate. When the white precipitate was separated by filtration and analyzed, the atomic ratio of P/Zr = 1.94, C23.1%, H4.6%,
P was 14.7% and Zr was 22.2%. Furthermore, the infrared absorption spectrum of this white precipitate is not much different from that of Example 1, and the X-ray diffraction pattern shows that the Bragg angle (2θ) is
It was almost amorphous with only one strong peak below 10°. Note that half of the used zirconium oxychloride remained in the filtrate after the sedimentation separation. Based on the above facts, although the structural formula of the colloidal particles in this example cannot be clearly shown, ZrO
[(C 2 H 50 ) 2 PO 2 ] 2 . Example 5 The same procedure as in Example 4 was carried out except that 0.02 mol/l of diethyl phosphate was used. The resulting mixed solution emitted opalescence characteristic of colloidal solutions and was slightly cloudy. This colloidal solution was heated at 100° C. for 4 hours to coagulate and precipitate colloidal particles, which were then separated by filtration. The chemical analysis values, infrared absorption spectrum, and X-ray diffraction pattern of the separated white precipitate were the same as in Example 4. Note that diethyl phosphate and zirconium ions were not observed in the filtrate after the sedimentation separation. Example 6 The same procedure as in Example 4 was carried out except that 0.04 mol/l of diethyl phosphate was used in Example 5. The resulting colloidal solution was stronger and cloudy than in Example 5, but the layers did not separate. When colloidal particles were separated by filtration and examined in the same manner as in Example 5, chemical analysis values, infrared absorption spectra,
The line diffraction pattern was similar to Example 5. However, half of the diethyl phosphate used remained in the filtrate when the white precipitate was separated. Example 7 50 ml of a diisopropyl phosphate aqueous solution with a concentration of 0.04 mol/l and 50 ml of a zirconium oxychloride aqueous solution with a concentration of 0.01 mol/l were mixed at room temperature with stirring. The colloid solution produced was a colloid solution exhibiting a milky white color that was slightly stronger than that of Example 5. As in Example 1, this colloidal solution was heated to aggregate colloidal particles, separated by filtration, and chemically analyzed.
P/Zr atomic ratio 2.0, C29.7%, H5.8%, P12.8%,
The infrared absorption spectrum and X-ray diffraction pattern were the same as in Example 1 at 18.8% Zr. Although the structural formula of the colloidal particles in this example cannot be clearly shown based on the above facts, it is presumed to be ZrO[(C 3 H 70 ) 2 PO 2 ] 2 . Example 8 The procedure of Example 7 was repeated except that the concentration of diisopropyl ester in Example 7 was changed to 0.01 mol/l. As a result, a milky white colloidal solution was obtained. This colloidal solution was treated in the same manner as in Example 7, but the chemical analysis values, infrared absorption spectrum, and X-ray diffraction pattern were the same as in Example 7. Note that half of the zirconium oxychloride used remained in the filtrate after the colloidal particles were separated. Example 9 The same procedure as Example 1 was carried out except that the raw materials and charging molar ratios shown in Table 1 were changed. The results were as shown in Table 1.

【表】 実施例 10 実施例1におけるオキシ塩化ジルコニウムの代
りに0.02モル/lのオキシ臭化ジルコニウム及び
硝酸ジルコニルを用いた以外は実施例1と同様に
実施した。いずれも無色の透明のコロイド溶液を
得た。なお、コロイド溶液中には沈でん物が認め
られなかつた。 比較例 1 実施例1におけるジメチルリン酸エステルの代
りに0.04モル/lのモノメチルリン酸を用いた以
外は実施例1と同様に実施した。この場合、反応
と同時に白色沈でんが生成した。該反応系を約10
分間放置しておいたところ、反応系内で上澄液と
沈でん層に分離してコロイド溶液を形成しなかつ
た。 比較例 2 実施例1におけるジメチルリン酸エステルの代
りに0.04モル/lの正リン酸を用いた以外は実施
例1と同様に実施した。この場合反応と同時に白
色沈でんが生成した。該反応系を約10分間放置し
ておいたところ、反応系内で上澄液と沈でん層に
分離してコロイド溶液を形成しなかつた。
[Table] Example 10 The same procedure as in Example 1 was carried out except that 0.02 mol/l of zirconium oxybromide and zirconyl nitrate were used in place of the zirconium oxychloride in Example 1. In both cases, colorless and transparent colloidal solutions were obtained. Note that no precipitate was observed in the colloid solution. Comparative Example 1 The same procedure as in Example 1 was carried out except that 0.04 mol/l of monomethyl phosphoric acid was used instead of dimethyl phosphoric acid ester in Example 1. In this case, a white precipitate was generated simultaneously with the reaction. The reaction system was heated for about 10
When the reaction system was left to stand for a minute, the reaction system separated into a supernatant liquid and a precipitate layer, and no colloidal solution was formed. Comparative Example 2 The same procedure as in Example 1 was carried out except that 0.04 mol/l of orthophosphoric acid was used instead of dimethyl phosphate in Example 1. In this case, a white precipitate was formed simultaneously with the reaction. When the reaction system was left to stand for about 10 minutes, the reaction system separated into a supernatant liquid and a precipitate layer, and no colloidal solution was formed.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式(RO)2POOH(但しRは炭素原子数
1〜3のアルキル基)で示される水溶性有機リン
化合物と水溶性ジルコニウム化合物を水媒体中で
反応させることを特徴とする含有機リンジルコニ
ウム塩コロイド溶液の製造方法。
1 A phosphorus-containing organic phosphorus compound characterized by reacting a water-soluble organic phosphorus compound represented by the general formula (RO) 2 POOH (where R is an alkyl group having 1 to 3 carbon atoms) and a water-soluble zirconium compound in an aqueous medium. A method for producing a zirconium salt colloidal solution.
JP8291578A 1978-07-10 1978-07-10 Preparation of colloidal solution of organic phosphorus- containing zirconium salt Granted JPS5511514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291578A JPS5511514A (en) 1978-07-10 1978-07-10 Preparation of colloidal solution of organic phosphorus- containing zirconium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291578A JPS5511514A (en) 1978-07-10 1978-07-10 Preparation of colloidal solution of organic phosphorus- containing zirconium salt

Publications (2)

Publication Number Publication Date
JPS5511514A JPS5511514A (en) 1980-01-26
JPS6126911B2 true JPS6126911B2 (en) 1986-06-23

Family

ID=13787538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291578A Granted JPS5511514A (en) 1978-07-10 1978-07-10 Preparation of colloidal solution of organic phosphorus- containing zirconium salt

Country Status (1)

Country Link
JP (1) JPS5511514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354917U (en) * 1986-09-30 1988-04-13

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525959Y2 (en) * 1989-06-01 1997-02-12 東芝タンガロイ株式会社 Cutting tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354917U (en) * 1986-09-30 1988-04-13

Also Published As

Publication number Publication date
JPS5511514A (en) 1980-01-26

Similar Documents

Publication Publication Date Title
Miguel Synthesis and crystal structures of two metal phosphonates, M (HO 3 PC 6 H 5) 2 (M= Ba, Pb)
Granoth et al. Direct observation of phosphoranide anions. Extremely stable phosphorus-hydrogen dioxyphosphoranes containing two carbon-phosphorus bonds
US4298723A (en) Layered or amorphous acyclic organometallic inorganic polymers
CA1124252A (en) Layered or amorphous organometallic inorganic polymers
Semenov et al. Decomposition of zinc (1-hydroxyethylidene) diphosphonate induced by aliphatic amines and ammonia. Molecular structures of ammonium (1-hydroxyethylidene) diphosphonates
US4962228A (en) Layered divalent metal phosphates containing pendent substituent groups and their preparation
JPS6126911B2 (en)
US4299943A (en) Nonaqueous preparation of layered or amorphous organometallic inorganic polymers
DE60107997T2 (en) A material containing organic sulfur and phosphorus groups, wherein the phosphorus group is bonded to a metal oxide via an oxygen atom
JPH0212234B2 (en)
US5072031A (en) Layered divalent metal phosphates containing pendent substituent groups and their preparation
Chadha et al. Preparation and crystal structures of tetrakis (O, O'-dimethyl dithiophosphato) germanium and bis [(. mu.-sulfido) bis (O, O'-dimethyl dithiophosphato)] digermanium, an unusual sulfur-bridged binuclear compound
EP0469682A1 (en) Mesoporous crystalline compound of a tetravalent metal
Münchenberg et al. SYNTHESIS AND STRUCTURE OF TETRAORGANOGUANIDINYL-SUBSTITUTED PHOSPHORUS-HALOGEN COMPOUNDS AND OF TRIS-N-(N′, N′, N ″, N ″-TETRAMETHYL) GUANIDINYL-PHOSPHONIUM SALTS
AU653954B2 (en) Process for producing aminomethanephosphonic acid and aminomethylphosphinic acids
Chaplais et al. Novel aluminium phenyl, benzyl, and bromobenzylphosphonates: structural characterisation and hydration–dehydration reactionsElectronic supplementary information (ESI) available: X-ray powder diffraction data and Rietveld plots. See http://www. rsc. org/suppdata/jm/b0/b000103l
Bissinger et al. Preparation and Crystal Structures of 2‐Aminoethyl Phosphate Complexes of Magnesium, Calcium, and Zinc
US3258492A (en) P-chloro or hydroxy benzyl tertiary phosphine oxides
US4373079A (en) Layered or amorphous cyclic organometallic inorganic polymers
GB2179661A (en) Phosphoric esters
Poojary et al. Synthesis and crystal structure of zirconium chloromethylphosphonate
EP0061106B1 (en) Process for preparing oligophosphonic acids or oligophosphinic acids, their salts and/or esters, as well as phosphonic acid derivatives
EP0134157B1 (en) Layered vanadium compounds containing phosphorus or arsenic and pendant organic groups
EP0475695B1 (en) Manganese oligomer containing main group elements
Howlader et al. Mono and dinuclear group 12 phosphonates derived from a sterically encumbered phosphonic acid: Observation of esterification