JPS61269079A - Temperature rise test for transformer - Google Patents

Temperature rise test for transformer

Info

Publication number
JPS61269079A
JPS61269079A JP60111420A JP11142085A JPS61269079A JP S61269079 A JPS61269079 A JP S61269079A JP 60111420 A JP60111420 A JP 60111420A JP 11142085 A JP11142085 A JP 11142085A JP S61269079 A JPS61269079 A JP S61269079A
Authority
JP
Japan
Prior art keywords
transformer
temperature rise
secondary windings
series
rise test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111420A
Other languages
Japanese (ja)
Inventor
Norio Furubayashi
古林 寛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60111420A priority Critical patent/JPS61269079A/en
Publication of JPS61269079A publication Critical patent/JPS61269079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To enable the temperature rise test of a transformer to be simply and accurately performed by short-circuiting a secondary winding in series and supplying a required current from a voltage to a primary winding side. CONSTITUTION:Star-connected secondary windings 2a and 2b are connected to each other in series through three short bars 3. Therefore, when a voltage is applied to a primary winding 1, current with the same strength flows in the secondary windings 2a and 2b through the short bars 3. That is, Ia=Ib. Thus, by connecting a plurality of secondary windings in series, an operation to be conducted in a test can be simplified and performed with a good accuracy without the necessity of using an impedance adjusting load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は変圧器の温度上昇試験方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for testing a temperature rise in a transformer.

〔従来の技術〕[Conventional technology]

変圧器の組立工場における温度上昇試験には短絡法が採
用される。即ち、変圧器の2巻線を短絡して1次巻線に
変圧器全損失(鉄損+銅損)に相当する電流を供給して
行い、第3図に示すように、複数の2次巻線が2a(Y
結線)及び2b(Δ結線)がある場合には、各2次巻線
を短絡片3で短絡して1次巻線1 (Δ結線)側から全
損失を与りる電流を供給する。U、V、Wは1次巻線1
のU相、■相、W相の入力端子をそれぞれ示し、2次巻
線2aのU相、■相、W相の出力端子はUl、vl、 
Wlで、2次巻線2bのU相、■相、W相の出力端子は
U2、V2、W2で示しである。
The short circuit method is used for temperature rise tests in transformer assembly plants. That is, the two windings of the transformer are short-circuited and a current corresponding to the total transformer loss (iron loss + copper loss) is supplied to the primary winding. The winding is 2a (Y
When there are 2b (Δ connection) and 2b (Δ connection), each secondary winding is short-circuited with the shorting piece 3 to supply a current that causes total loss from the primary winding 1 (Δ connection) side. U, V, W are primary winding 1
The U-phase, ■-phase, and W-phase input terminals of the secondary winding 2a are shown respectively, and the U-phase, ■-phase, and W-phase output terminals of the secondary winding 2a are Ul, vl,
In Wl, the output terminals of the U phase, ■ phase, and W phase of the secondary winding 2b are indicated by U2, V2, and W2.

しかしながら、1次巻線1と2次巻線2a、1次巻線1
と2次巻線2bとのインピーダンスに差があると、各2
次巻線を流れる短絡電流1aとrbが異なる値となり、
インピーダンスの小さい側の2次巻線に過大な電流が流
れ、温度上昇試験が信頼性を欠く結果となる。
However, the primary winding 1 and the secondary winding 2a, the primary winding 1
If there is a difference in impedance between and the secondary winding 2b, each 2
The short circuit currents 1a and rb flowing through the next winding have different values,
Excessive current flows through the secondary winding on the lower impedance side, making the temperature rise test unreliable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このため、従来は、2次巻線2a及び2bにそ    
  4れぞれ適切な負荷を挿入して該負荷を調整するこ
とにより各2次巻線2a、2bの短絡電流が同じになる
ようにしているが、変圧器が第3図に示す      
1゜如く、整流器4a、4bに電力を供給する整流器用
変圧器であって、大電流が流れる2次巻線であるような
場合には、上記負荷が大容量負荷となるので、インピー
ダンス調整が非常に面倒になるという問題があった。
For this reason, conventionally, the secondary windings 2a and 2b
4. By inserting an appropriate load and adjusting the load, the short-circuit current of each secondary winding 2a, 2b is made to be the same.
1°, when the rectifier transformer supplies power to the rectifiers 4a and 4b, and the secondary winding through which a large current flows, the load becomes a large capacity load, so impedance adjustment is necessary. The problem was that it was very troublesome.

この発明は上記問題を解決するためになされたもので、
簡単に、しかも精度良く行うことができる変圧器の温度
上昇試験方法を得ることを目的とする。
This invention was made to solve the above problem.
The purpose of the present invention is to obtain a temperature rise test method for a transformer that can be easily and accurately performed.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、2次巻線を直列に
短絡して1次側に電圧から所要の電流を供給するように
したものである。
In order to achieve the above object, the present invention short-circuits the secondary windings in series to supply the required current from the voltage to the primary side.

〔作用〕[Effect]

この発明では、2次巻線が順次直列に接続されているの
で、2次巻線にインピーダンス調整用負荷を挿入しなく
ても、各2次巻線に流れる電流は同一大きさとなる。
In this invention, since the secondary windings are sequentially connected in series, the current flowing through each secondary winding has the same magnitude even without inserting an impedance adjustment load into the secondary winding.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す回路図であって、Y
結線された2次巻線2a及び2bが3個の短絡片3によ
り直列に接続されている。
FIG. 1 is a circuit diagram showing an embodiment of the present invention,
The connected secondary windings 2a and 2b are connected in series by three shorting pieces 3.

このため、1次巻線1に電圧が印加されると、短絡片3
を通して各2次巻線2a及び2bには同一大きさの電流
が流れる。即ちIa=Ibとなる。
Therefore, when voltage is applied to the primary winding 1, the shorting piece 3
A current of the same magnitude flows through each of the secondary windings 2a and 2b. That is, Ia=Ib.

なお、上記実施例では、2個の2次巻線を有する変圧器
について説明したが、3個以上の2次巻線を有する場合
にも、これらを順次直列に接続すれば良く、また、複数
2次巻線の結線の種類は問わない。
In the above embodiment, a transformer having two secondary windings has been described, but even if the transformer has three or more secondary windings, they may be connected in series in sequence. The type of connection of the secondary winding does not matter.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、温度上昇試験を短絡法に
より行う場合に、複数の2次巻線を直列に接続するので
、インピーダンス調整用負荷を用いる必要がなく、温度
上昇試験に際して行うべき作業が従来に比して簡単にな
り、しかも、精度の良い試験を行うことができる。
As explained above, this invention connects a plurality of secondary windings in series when performing a temperature rise test using the short circuit method, so there is no need to use an impedance adjustment load, and the work to be performed during the temperature rise test is reduced. This method is simpler than the conventional method and allows for highly accurate testing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す回路図、第2図はこの
発明が適用される変圧器回路の一例を示す回路図、第3
図は従来の試験方法を示す回路図である。 図において、1−= 1次巻線、2 a 、 2 b−
2次巻線、3−短絡片。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing an example of a transformer circuit to which this invention is applied, and FIG.
The figure is a circuit diagram showing a conventional test method. In the figure, 1-= primary winding, 2 a, 2 b-
Secondary winding, 3 - shorting piece. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 定格を同じくする複数の2次巻線を有する変圧器の温度
上昇試験を短絡法により行う場合において、上記複数の
2次巻線相互を順次直列に短絡して行うことを特徴とす
る変圧器の温度上昇試験方法。
When a temperature rise test of a transformer having a plurality of secondary windings having the same rating is carried out by the short circuit method, the plurality of secondary windings are successively short-circuited in series. Temperature rise test method.
JP60111420A 1985-05-22 1985-05-22 Temperature rise test for transformer Pending JPS61269079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111420A JPS61269079A (en) 1985-05-22 1985-05-22 Temperature rise test for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111420A JPS61269079A (en) 1985-05-22 1985-05-22 Temperature rise test for transformer

Publications (1)

Publication Number Publication Date
JPS61269079A true JPS61269079A (en) 1986-11-28

Family

ID=14560721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111420A Pending JPS61269079A (en) 1985-05-22 1985-05-22 Temperature rise test for transformer

Country Status (1)

Country Link
JP (1) JPS61269079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175151A (en) * 2008-01-22 2009-08-06 Electric Power Res Inst Inc Chemical enhancement of ultrasonic fuel cleaning
WO2012097596A1 (en) * 2011-01-20 2012-07-26 国电南瑞科技股份有限公司 Temperature rise testing system of electric vehicle conduction type charging interface
CN107505521A (en) * 2017-08-10 2017-12-22 中国科学院上海高等研究院 The passive and wireless temperature rise sensor and detection method for temperature rise of a kind of power distribution network transformer
CN111912544A (en) * 2020-06-15 2020-11-10 北京交通大学 Experimental device for measuring temperature rise of winding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102225A (en) * 1972-04-10 1973-12-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102225A (en) * 1972-04-10 1973-12-22

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175151A (en) * 2008-01-22 2009-08-06 Electric Power Res Inst Inc Chemical enhancement of ultrasonic fuel cleaning
WO2012097596A1 (en) * 2011-01-20 2012-07-26 国电南瑞科技股份有限公司 Temperature rise testing system of electric vehicle conduction type charging interface
CN107505521A (en) * 2017-08-10 2017-12-22 中国科学院上海高等研究院 The passive and wireless temperature rise sensor and detection method for temperature rise of a kind of power distribution network transformer
CN111912544A (en) * 2020-06-15 2020-11-10 北京交通大学 Experimental device for measuring temperature rise of winding

Similar Documents

Publication Publication Date Title
JPS61269079A (en) Temperature rise test for transformer
US4147972A (en) Control circuit for an a-c control element
JPH1132437A (en) Three-phase four-wire low voltage distribution system
US2224755A (en) Electrical transformation apparatus
JPS59161712A (en) Saturable reactor controlling rectifier
JPH0462444B2 (en)
JPS6159047B2 (en)
US3944919A (en) Direct current measuring system for rectifiers
SU1291889A1 (en) D.c.instrument transducer
US1893354A (en) Arc welding system
US3193605A (en) Means for symmetrizing the load in electric three-phase arc furnaces
US3388315A (en) Excitation circuits for self-excited alternating current generators
JPS625665Y2 (en)
JPS63187609A (en) Toroidal core testing apparatus
JP2576098B2 (en) Gate control method for forward conversion circuit
JP3047691U (en) Distribution transformer in three-phase four-wire low-voltage distribution circuit
JPS63121499A (en) Generating set for welding
SU881951A1 (en) Ac-to-dc converter ac voltage-to-dc voltage converter
SU504603A1 (en) System of electrocontact heating of blanks for upsetting
JPH0442898Y2 (en)
SU1259385A1 (en) Device for protection of electric installations against current overload and short-circuit
SU1250973A1 (en) Method of measuring active power of three-phase a.c.network
SU1290181A1 (en) Device for measuring d.c.
JPH08251816A (en) Current-transformer circuit
SU1078343A1 (en) Transformer bridge for measuring complex resistance parameters