JPS6126894B2 - - Google Patents

Info

Publication number
JPS6126894B2
JPS6126894B2 JP6849579A JP6849579A JPS6126894B2 JP S6126894 B2 JPS6126894 B2 JP S6126894B2 JP 6849579 A JP6849579 A JP 6849579A JP 6849579 A JP6849579 A JP 6849579A JP S6126894 B2 JPS6126894 B2 JP S6126894B2
Authority
JP
Japan
Prior art keywords
formula
group
general formula
represented
cyclopentenone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6849579A
Other languages
Japanese (ja)
Other versions
JPS55160740A (en
Inventor
Kenji Saito
Hiroshi Yamachika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6849579A priority Critical patent/JPS55160740A/en
Priority to US06/151,603 priority patent/US4371711A/en
Priority to EP80102834A priority patent/EP0022162B1/en
Priority to DE8080102834T priority patent/DE3062712D1/en
Publication of JPS55160740A publication Critical patent/JPS55160740A/en
Priority to US06/420,082 priority patent/US4465862A/en
Publication of JPS6126894B2 publication Critical patent/JPS6126894B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はシクロペンテノロン類の製造方法に関
する。さらに詳しくは農薬の有用な中間体である
下記一般式()で示されるシクロペンテノロン類
の製造方法に関するものである。 (式中、R1はアルキル基、アルケニル基、ア
ルキニル基、環状アルキル基、チエニル基、フエ
ニル基、p―メチルベンジル基またはベンジル基
を表わし、R2は炭素数6以下のアルキル基、ア
ルケニル基またはアルキニル基を表わす。) 有用な農薬として知られるアレスリンは1949年
に、M.S.Schechterにより発明され、そのすぐれ
た殺虫活性と低毒性のゆえに広く全世界で使用さ
れており、その合成法についても種々の検討がな
されている。 その中で、アレスリンのアルコール成分の合成
法についても種々の提案がなされており、その一
部は実際の製造に用いられている。 しかし、これらは収率、操作の煩雑さ、さらに
環境問題上の種々の欠点を有し、工業的に必ずし
も満足できるものではなかつた。その中で本発明
と同様にフラン化合物を経由するアレスロロンの
合成法としては例えばG.Piancatelliらの方法(テ
トラヘドロン(Tetrahedron)34巻、2775
(1978)) およびT.Shonoらの方法(ケミストリーレターズ
(Chemistry Letters)、1249(1976)) が知られているが、共に出発物質が入手し難くま
た高価であり、しかも操作が煩雑で収率が高いと
は言えず、工業的には必ずしも満足出来ない。 このような背景の下に、本発明者らはこの殺虫
化合物の中間体として使用されるシクロペンテノ
ロン類の製造法につき鋭意検討した結果、新規で
しかも極めて有利にこれを製造し得る方法を見い
だし、これに基づき種々の検討を加え本発明を完
成した。 即ち、本発明は フルフラールに一般式() R1MgX () (式中、R1は前述と同じ意味を有し、Xは
塩素原子、臭素原子またはヨウ素原子を表わ
す。) で示されるグリニヤール試薬を反応させて得ら
れる一般式() (式中、R1は前述と同じ意味を有する。) で示されるフリルカルビノール化合物を水―有
機溶媒中、酸の存在下で反応させて一般式() (式中、R1は前述と同じ意味を有する。) で示されるシクロペンテノン化合物を得る工程
(以下、本工程Aと呼ぶ) 次いで該シクロペンテノン化合物を酸化して
一般式() (式中、R1は前述と同じ意味を有する。) で示されるシクロペンテンジオン化合物を得る
工程(以下、本工程を工程Bと呼ぶ) 次いで、該シクロペンテンジオン化合物に一
般式() R2MgX () (式中、R2およびXは前記と同じ意味を有
する。) で示されるグリニヤール試薬を反応させて一般
式() (式中、R1およびR2は前述と同じ意味を有
する。) で示されるシクロペンテノン化合物を得る工程
(以下、本工程を工程Cと呼ぶ) 次いで、該シクロペンテノン化合物を塩基の
存在下に反応させて前記一般式()で示される
シクロペンテノロン類を得る工程(以下、本工
程を工程Dを呼ぶ) を含む前記一般式()で示されるシクロペンテノ
ロン類の製造方法を提供するものである。 一般式()で示されるシクロペンテノン化合物
において、R1の具体例としてはメチル、エチ
ル、プロピル、ヘキシルなどのアルキル基、アリ
ル、2―ブテニルなどのアルケニル基、プロパル
ギル、エチニルなどのアルキニル基、シクロペン
タン、シクロヘキサンなどの環状アルキル基、チ
エニル基、フエニル基、p―メチルベンジル基お
よびベンジル基などを挙げることができる。また
R2の具体例としてはメチル、エチル、n―ヘキ
シルなどのアルキル基、アリル、3―ブテニル、
5―ヘキセニルなどのアルケニル基、プロパルギ
ル、ブタン―3―イン、ヘキサン―3―インなど
のアルキニル基を挙げることができる。 本発明方法において、先ず工程Aで用いられる
代表的な酸としてはギ酸、トリクロル酢酸、ジク
ロル酢酸、リン酸、ポリリン酸、ピロリン酸が挙
げられ、その量は前記一般式()で示されるフリ
ルカルビノールに対し、0.3〜4.0倍量(重量)の
範囲、より好ましくは0.3〜1.5倍量の範囲が適当
である。 有機溶媒としてはアセトン、ジオキサン、メチ
ルエチルケトン、テトラヒドロフラン、ジメチル
スルホキシドなどが挙げられ、水の量は水と有機
溶媒の合計量(重量)に対し10%以上(重量)に
するのが好ましい。 また反応温度は40℃〜110℃の範囲が一般的で
ある。 工程Bにおいて用いられる酸化剤としては無水
クロム酸、クロム酸塩、重クロム酸、重クロム酸
塩、塩化クロミル、クロム酸エステル、二酸化マ
ンガン、活性二酸化マンガン、過マンガン酸カリ
ウム、アルミニウムi―プロポキシド、アルミニ
ウムt―ブトキシド、四酢酸鉛、四酸化ルテニウ
ム、N―ハロカルボン酸アミド、酸素、過酸化水
素、有機過酸化物、ハロゲン、硝酸、亜硝酸、ジ
メチルスルホキシド、キノン類、炭酸銀()、酸
化銀()、酸化銅()、水酸化銅()、セリウム
()塩、バナジン酸塩、コバルト()塩、オゾン
等があげられる。 工程Cにおいて、一般式()で示されるグリニ
ヤール試薬は一般式() R2X () (式中、R2およびXは前記と同じ意味を有す
る。) で示されるハロゲン化物と金属マグネシウムとか
ら常法により調整することができ、またグリニヤ
ール反応も常法により容易に進行する。 工程Dにおいて、用いられる塩基としてはナト
リウム、カリウム等のアルカリ金属類の水酸化
物、炭酸塩、重炭酸塩、酢酸塩等およびカルシウ
ム、バリウム等のアルカリ土類金属類の水酸化
物、炭酸塩、重炭酸塩、酢酸塩等の塩基性塩、ト
リエチルアミン、ピリジン等のアミン類、塩基性
イオン交換樹脂、アルミナ等が挙げられる。かか
る塩基の量はアルミナにおいては通常、該シクロ
ペンテノン化合物1に対し0.5〜30倍(重量)、好
ましくは2〜20倍(重量)であり、またアルミナ
以外の塩基では通常、該シクロペンテノン化合物
1モルに対し0.01〜10モル、好ましくは0.05〜1
モルの範囲で使用される。 また、使用される溶媒系としては、水および水
と有機溶媒の混合液が挙げられ、この時有機溶媒
としてはメタノール、エタノール等のアルコール
類、ジエチルエーテル、テトラヒドロフラン、ジ
メトキシエタン等のエーテル類、クロロホルム、
トリクロルエチレン等のハロゲン化炭化水素類、
ジメチルホルムアミド、ジメチルスルホキシド等
の非プロトン性極性溶媒、ベンゼン、トルエン等
の芳香族炭化水素類、アセトン、メチルエチルケ
トン等のケトン類およびこれらの混合物が挙げら
れる。反応温度はアルミナの場合は0〜150℃、
通常は20〜70℃であり、その他の塩基では0〜
200℃、通常は10〜150℃で行なわれる。また反応
時間はアルミナで10〜48時間、その他の塩基では
1〜4時間が一般的である。 次に本発明を実施例によつてさらに詳細に説明
するが、本発明がこれらに限定されるものではな
いことは言うまでもない。 実施例 1 2―(1―ハイドロキシ―3―ブテニル)フラ
ン10gを水―アセトン溶液(水:アセトン=1:
6(容量))350mlに溶解し、加熱還流下(55℃)
ポリリン酸6.6gを滴下する。96時間同温度で撹
拌後、アセトンを留去し、エーテル300mlで2回
抽出する。抽出液を炭酸水素ナトリウム水溶液、
飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥
し、溶媒を留去し8.5gの濃縮物を得る。該濃縮
物をシリカゲル(ワコーゲルC―200)100gを用
いたカラムクロマトグラフイーで精製(溶出液ト
ルエン:エーテル=2:1(容量))し、4.3gの
4―ハイドロキシ―5―アリル―2―シクロペン
テノンを得た。(収率43%) NMRデータ(CCl4,内部標準TMS δppm60M
Hz) 7.48(d of d,1H,3―H) 6.08(d,1H,2―H) 5.70(complex m,1H,―CH2―C
CHaHb) 5.13(m,1H,―CH2―CH=CHab 4.90(m,1H,―CH2―CH=CHa Hb) 4.59(broad s,1H,4―H) 4.42(broad s,1H,4―O) 2,32(m,3H,5―H&―CH2 ―CH=
CHaHb) 実施例 2 2―(1―ハイドロキシ―3―ブテニル)フラ
ン10gを水―アセトン溶液(水:アセトン=1:
6(容量))350mlに溶解し、加熱還流下(55℃)
ポリリン酸6.6gを滴下する。48時間同温度で撹
拌後、アセトンを留去し、エーテル300mlで2回
抽出する。抽出液を炭酸水素ナトリウム水溶液、
飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥
し、溶媒を留去し9.5gの濃縮物を得た。次いで
該濃縮物を蒸留に付し未反応の2―(1―ハイド
ロキシ―3―ブテニル)フラン4.2g(78℃/10
mmHg)と目的の4―ハイドロキシ―5―アリル
―2―シクロペンテノン3.8g(97℃/0.7mmHg)
を得た。(収率65.5%対消費原料) 実施例 3 無水クロム酸1.9gを水5.4gに溶解し、次いで
これに氷冷下濃硫酸1.6mlを加え混合溶解する。
次いでこの混合液を4―ハイドロキシ―5―アリ
ル―2―シクロペンテノン3.7gとアセトン8ml
からなる溶液に氷冷下2時間で滴下する。滴下後
さらに1時間氷冷で撹拌を続けた後、エーテルで
抽出し、抽出液を炭酸水素ナトリウム水溶液、飽
和食塩水の順に洗浄する。次にこれを無水硫酸ナ
トリウムで乾燥後、溶媒を留去し3.2gの濃縮残
渣を得た。これをシリカゲル(ワコーゲル C―
200)40gを用いたカラムクロマトグラフイーで
分離精製し(溶出液 酢酸エチル:n―ヘキサン
=2:3(容量))2.91gの4―ケト―5―アリ
ル―2―シクロペンテノンを得る。(収率80.0
%) n20 1.5065 NMRデーター(CDCl3,内部標準TMS δ
ppm90MHz) 7.32(s,2H,2―H&3―H) 5.65(complex m,1H,―CH2―C
CHaHb) 5.11(m,1H,―CH2―CH=CHab 4.95(m,1H,―CH2―CH=CHa Hb 2.88(m,1H,5―H) 2.52(t,2H,―CH2 ―CH=CHaHb) 実施例 4 金属マグネシウム0.8gとエーテル20mlをフラ
スコに入れ、これに室温でヨウ化メチル1.9gを
2時間を要し撹拌しながら滴下し、滴下終了後さ
らに1時間撹拌する。次いでこのようにして調整
したグリニヤール試薬を4―ケト―5―アリル―
2―シクロペンテノン2.0gとエーテル10mlの溶
液に室温で2時間を要し撹拌しながら滴下し、滴
下終了後さらに1時間撹拌後氷冷下飽和塩化アン
モニア水溶液30mlを加え1時間撹拌する。反応液
を分液し、水層はエーテル30mlで2回抽出し、抽
出液は先のエーテル層を合し炭酸水素ナトリウム
水溶液、飽和食塩水で洗浄する。次に無水硫酸ナ
トリウムで乾燥後エーテルを留去し2.2gの残渣
を得た。これをシリカゲル(ワコーゲル C―
200)20gを用いたカラムクロマトグラフイーで
精製し(溶出液 トルエン:エーテル=2:1
(容量))、1.5gの4―ハイドロキシ―4―メチル
―5―アリル―2―シクロペンテノンを得た。
(収率67%) NMRデーター(CCl4,内部標準TMS δ
ppm60MHz) 7.32(d,1H,3―H) 5.92(d,1H,2―H) 5.81(complex m,1H,―CH2―C
CHaHb) 5.12(m,1H,―CH2―CH=CHab) 4.93(m,1H,―CH2―CH=CHa Hb) 4.12(broad s,1H,4―O) 2.37(m,3H,5―H&―C ―CH=
CHaHb) 1.28(s,3H,4―C ) 実施例 5 4―ハイドロキシ―4―メチル―5―アリル―
2―シクロペンテノン4.0gをトルエン―エーテ
ル溶液(1:1(容量))100mlと水2.4gの混液
に300メツシユカラムクロマト用活性アルミナ
(和光純薬)20gを懸濁させた液に加え30℃で24
時間撹拌後、アルミナを去し、去したアルミ
ナをトルエン―エーテル溶液(1:1(容量))
50mlで3回抽出し、過し、抽出液と先の液を
合わせ濃縮する。濃縮液を精留(155℃/1mm
Hg)し、2―アリル―3―メチル―4―ハイド
ロキシ―2―シクロペンテノン2.5gを得た。(収
率62.5%) NMRデーター(CDCl3,内部標準TMS δ
ppm90MHz) 5.71(complex m,1H,―CH2―C
CHaHb) 5.06(m,1H,―CH2―CH=CHab) 4.93(m 1H,―CH2―CH=CHa Hb) 4.74(broad d,1H,4―H) 3.94(broad s,1H,4―O) 2.96(d,2H,―CH2 ―CH=CHaHb) 2.85(d of d,1H,5―H) 2.27(d of d,1H,5―H) 2.11(s,3H,3―CH3 ) 実施例 6 4―ハイドロキシ―4―メチル―5―アリル―
2―シクロペンテノン29gを5%炭酸水素ナトリ
ウム水溶液200mlに溶解分散させ1時間加熱還流
下に撹拌した。放冷後クロロホルムで3回抽出
し、抽出液を無水硫酸マグネシウムで乾燥し、次
いでクロロホルムを留去した。残渣を蒸留し3―
メチル―2―アリル―2―シクロペンテノン21.7
gを得た。(沸点155℃/1mmHg、収率75%) 実施例 7〜13 実施例7〜9については実施例2,3,4およ
び5と同様にして、また実施例10〜13については
実施例2,3,4および6と同様にして下記の結
果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclopentenolones. More specifically, the present invention relates to a method for producing cyclopentenolones represented by the following general formula (), which are useful intermediates for agricultural chemicals. (In the formula, R 1 represents an alkyl group, an alkenyl group, an alkynyl group, a cyclic alkyl group, a thienyl group, a phenyl group, a p-methylbenzyl group, or a benzyl group, and R 2 represents an alkyl group or an alkenyl group having 6 or less carbon atoms. Allethrin, known as a useful pesticide, was invented by MS Schechter in 1949 and is widely used throughout the world due to its excellent insecticidal activity and low toxicity. It is being considered. Among these, various proposals have been made regarding methods for synthesizing the alcohol component of allethrin, some of which are used in actual production. However, these have various drawbacks in terms of yield, complexity of operation, and environmental issues, and are not necessarily industrially satisfactory. Among them, as a method for synthesizing arethrolone via a furan compound as in the present invention, for example, the method of G. Piancatelli et al. (Tetrahedron, Vol. 34, 2775)
(1978)) and the method of T. Shono et al. (Chemistry Letters, 1249 (1976)) However, the starting materials are difficult to obtain and are expensive, and furthermore, the operations are complicated and the yields are not high, so they are not necessarily industrially satisfactory. Against this background, the present inventors have conducted intensive studies on the method for producing cyclopentenolones, which are used as intermediates for insecticidal compounds, and have discovered a novel and extremely advantageous method for producing them. Based on this, various studies were conducted and the present invention was completed. That is, the present invention provides furfural with the general formula () R 1 M g General formula () obtained by reacting Grignard reagent (In the formula, R 1 has the same meaning as above.) A furyl carbinol compound represented by the formula (R 1 ) is reacted in the presence of an acid in a water-organic solvent to form the general formula (). (In the formula, R 1 has the same meaning as above.) A step of obtaining a cyclopentenone compound represented by the formula (hereinafter referred to as this step A).Then, the cyclopentenone compound is oxidized to obtain the general formula () (In the formula, R 1 has the same meaning as above.) A step of obtaining a cyclopentenedione compound represented by (hereinafter, this step is referred to as step B) Next, the cyclopentenedione compound is given the general formula () R 2 M g By reacting a Grignard reagent represented by X () (wherein R 2 and X have the same meanings as above), the general formula () (In the formula, R 1 and R 2 have the same meanings as above.) Step of obtaining a cyclopentenone compound represented by (hereinafter, this step is referred to as Step C) Provided is a method for producing a cyclopentenolone represented by the general formula (), which comprises a step of reacting the following to obtain a cyclopentenolone represented by the general formula () (hereinafter, this step is referred to as step D). It is something to do. In the cyclopentenone compound represented by the general formula (), specific examples of R 1 include alkyl groups such as methyl, ethyl, propyl, and hexyl; alkenyl groups such as allyl and 2-butenyl; alkynyl groups such as propargyl and ethynyl; Examples include cyclic alkyl groups such as cyclopentane and cyclohexane, thienyl group, phenyl group, p-methylbenzyl group, and benzyl group. Also
Specific examples of R2 include alkyl groups such as methyl, ethyl, n-hexyl, allyl, 3-butenyl,
Examples include alkenyl groups such as 5-hexenyl, and alkynyl groups such as propargyl, butan-3-yne, and hexane-3-yne. In the method of the present invention, typical acids used in step A include formic acid, trichloroacetic acid, dichloroacetic acid, phosphoric acid, polyphosphoric acid, and pyrophosphoric acid, and the amount thereof is determined by A suitable amount is 0.3 to 4.0 times (by weight), more preferably 0.3 to 1.5 times the amount of alcohol. Examples of the organic solvent include acetone, dioxane, methyl ethyl ketone, tetrahydrofuran, dimethyl sulfoxide, etc., and the amount of water is preferably 10% or more (by weight) based on the total amount (weight) of water and organic solvent. Further, the reaction temperature is generally in the range of 40°C to 110°C. Oxidizing agents used in step B include chromic anhydride, chromate, dichromic acid, dichromate, chromyl chloride, chromate ester, manganese dioxide, activated manganese dioxide, potassium permanganate, aluminum i-propoxide. , aluminum t-butoxide, lead tetraacetate, ruthenium tetroxide, N-halocarboxylic acid amide, oxygen, hydrogen peroxide, organic peroxide, halogen, nitric acid, nitrous acid, dimethyl sulfoxide, quinones, silver carbonate (), oxidation Silver (), copper oxide (), copper hydroxide (), cerium
() salt, vanadate, cobalt () salt, ozone, etc. In step C, the Grignard reagent represented by the general formula () is prepared from a halide represented by the general formula () R 2 X () (wherein R 2 and X have the same meanings as above) and metallic magnesium. It can be prepared by a conventional method, and the Grignard reaction also proceeds easily by a conventional method. In step D, the bases used include hydroxides, carbonates, bicarbonates, acetates, etc. of alkali metals such as sodium and potassium, and hydroxides and carbonates of alkaline earth metals such as calcium and barium. , basic salts such as bicarbonate and acetate, amines such as triethylamine and pyridine, basic ion exchange resins, and alumina. In the case of alumina, the amount of such base is usually 0.5 to 30 times (by weight), preferably 2 to 20 times (by weight) to 1 part of the cyclopentenone compound. 0.01 to 10 mol, preferably 0.05 to 1 mol per mol of compound
Used in molar range. In addition, examples of the solvent system used include water and a mixture of water and an organic solvent. In this case, organic solvents include alcohols such as methanol and ethanol, ethers such as diethyl ether, tetrahydrofuran, and dimethoxyethane, and chloroform. ,
halogenated hydrocarbons such as trichlorethylene,
Examples include aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide, aromatic hydrocarbons such as benzene and toluene, ketones such as acetone and methyl ethyl ketone, and mixtures thereof. The reaction temperature is 0 to 150℃ for alumina,
Normally it is 20-70℃, and for other bases it is 0-70℃.
It is carried out at 200°C, usually between 10 and 150°C. The reaction time is generally 10 to 48 hours for alumina, and 1 to 4 hours for other bases. Next, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these. Example 1 10g of 2-(1-hydroxy-3-butenyl)furan was dissolved in a water-acetone solution (water:acetone=1:
6 (volume)) Dissolve in 350ml and heat under reflux (55℃)
Add 6.6 g of polyphosphoric acid dropwise. After stirring at the same temperature for 96 hours, the acetone was distilled off and the mixture was extracted twice with 300 ml of ether. Add the extract to aqueous sodium hydrogen carbonate solution,
After washing with saturated brine, drying over anhydrous sodium sulfate, and distilling off the solvent, 8.5 g of concentrate was obtained. The concentrate was purified by column chromatography using 100 g of silica gel (Wako Gel C-200) (eluent: toluene:ether = 2:1 (volume)), and 4.3 g of 4-hydroxy-5-allyl-2- Cyclopentenone was obtained. (yield 43%) NMR data (CCl 4 , internal standard TMS δppm60M
Hz) 7.48 (d of d, 1H, 3-H) 6.08 (d, 1H, 2-H) 5.70 (complex m, 1H, -CH 2 -CH =
CH a H b ) 5.13 (m, 1H, -CH 2 -CH=C Ha H b 4.90 (m, 1H, -CH 2 -CH=CH a Hb ) 4.59 (broad s, 1H, 4-H) 4.42 ( broad s, 1H, 4- OH ) 2,32 (m, 3H, 5-H&-C H 2 -CH=
CH a H b ) Example 2 A water-acetone solution of 10 g of 2-(1-hydroxy-3-butenyl)furan (water:acetone=1:
6 (volume)) Dissolve in 350ml and heat under reflux (55℃)
Add 6.6 g of polyphosphoric acid dropwise. After stirring at the same temperature for 48 hours, the acetone was distilled off and the mixture was extracted twice with 300 ml of ether. Add the extract to aqueous sodium hydrogen carbonate solution,
After washing with saturated brine, it was dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 9.5 g of a concentrate. The concentrate was then distilled to remove 4.2 g of unreacted 2-(1-hydroxy-3-butenyl)furan (78°C/10
mmHg) and the desired 4-hydroxy-5-allyl-2-cyclopentenone 3.8g (97℃/0.7mmHg)
I got it. (Yield: 65.5% vs. raw materials consumed) Example 3 1.9 g of chromic anhydride is dissolved in 5.4 g of water, and then 1.6 ml of concentrated sulfuric acid is added thereto under ice cooling and mixed and dissolved.
Next, add 3.7 g of 4-hydroxy-5-allyl-2-cyclopentenone and 8 ml of acetone to this mixture.
It was added dropwise to a solution consisting of under ice cooling for 2 hours. After the dropwise addition, stirring was continued under ice-cooling for an additional hour, followed by extraction with ether, and the extract was washed successively with an aqueous sodium bicarbonate solution and a saturated saline solution. Next, this was dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain 3.2 g of a concentrated residue. Add this to silica gel (Wakogel C-
200) Separate and purify by column chromatography using 40 g (eluent: ethyl acetate:n-hexane = 2:3 (volume)) to obtain 2.91 g of 4-keto-5-allyl-2-cyclopentenone. (yield 80.0
%) n 20 D 1.5065 NMR data (CDCl 3 , internal standard TMS δ
ppm90MHz) 7.32 (s, 2H, 2-H & 3-H) 5.65 (complex m, 1H, -CH 2 -CH =
CH a H b ) 5.11 (m, 1H, -CH 2 -CH=C Ha H b 4.95 (m, 1H, -CH 2 -CH=CH a Hb 2.88 (m, 1H, 5-H) 2.52 (t, 2H, -C H 2 -CH=CH a H b ) Example 4 0.8 g of metallic magnesium and 20 ml of ether were placed in a flask, and 1.9 g of methyl iodide was added dropwise to this at room temperature while stirring for 2 hours. After the addition is complete, stir for another hour.Then, the Grignard reagent prepared in this way is mixed with 4-keto-5-allyl.
It was added dropwise to a solution of 2.0 g of 2-cyclopentenone and 10 ml of ether with stirring at room temperature for 2 hours, and after the addition was completed, the mixture was stirred for an additional hour, and then 30 ml of a saturated aqueous ammonium chloride solution was added under ice cooling and stirred for 1 hour. The reaction solution is separated, the aqueous layer is extracted twice with 30 ml of ether, and the ether layers are combined and washed with an aqueous sodium bicarbonate solution and saturated brine. Next, after drying over anhydrous sodium sulfate, the ether was distilled off to obtain 2.2 g of residue. Add this to silica gel (Wakogel C-
200) Purified by column chromatography using 20g (eluent toluene:ether = 2:1
(volume)), 1.5 g of 4-hydroxy-4-methyl-5-allyl-2-cyclopentenone was obtained.
(yield 67%) NMR data (CCl 4 , internal standard TMS δ
ppm60MHz) 7.32 (d, 1H, 3-H) 5.92 (d, 1H, 2-H) 5.81 (complex m, 1H, -CH 2 -CH =
CH a H b ) 5.12 (m, 1H, -CH 2 -CH=C Ha H b ) 4.93 (m, 1H, -CH 2 -CH=CH a Hb ) 4.12 (broad s, 1H, 4- OH ) 2.37 (m, 3H, 5-H&-C H 2 -CH=
CH a H b ) 1.28 (s, 3H, 4- CH 3 ) Example 5 4-Hydroxy-4-methyl-5-allyl-
Add 4.0 g of 2-cyclopentenone to a suspension of 20 g of activated alumina for 300 mesh column chromatography (Wako Pure Chemical Industries) in a mixture of 100 ml of toluene-ether solution (1:1 (volume)) and 2.4 g of water. 24 at 30℃
After stirring for an hour, remove the alumina and add the removed alumina to a toluene-ether solution (1:1 (volume)).
Extract 3 times with 50 ml, filter, combine the extract and the previous solution, and concentrate. Rectify the concentrated liquid (155℃/1mm
Hg) to obtain 2.5 g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone. (yield 62.5%) NMR data (CDCl 3 , internal standard TMS δ
ppm90MHz) 5.71 (complex m, 1H, -CH 2 -CH =
CH a H b ) 5.06 (m, 1H, -CH 2 -CH=C Ha H b ) 4.93 (m 1H, -CH 2 -CH=CH a Hb ) 4.74 (broad d, 1H, 4-H) 3.94 ( broad s, 1H, 4- OH ) 2.96 (d, 2H, -CH 2 -CH=CH a H b ) 2.85 (d of d, 1H, 5-H) 2.27 (d of d, 1H, 5- H) 2.11 (s, 3H, 3-C H 3 ) Example 6 4-Hydroxy-4-methyl-5-allyl-
29 g of 2-cyclopentenone was dissolved and dispersed in 200 ml of a 5% aqueous sodium hydrogen carbonate solution, and the mixture was stirred under heating under reflux for 1 hour. After cooling, the mixture was extracted three times with chloroform, the extract was dried over anhydrous magnesium sulfate, and then the chloroform was distilled off. Distill the residue 3-
Methyl-2-allyl-2-cyclopentenone 21.7
I got g. (Boiling point 155°C/1 mmHg, yield 75%) Examples 7 to 13 Examples 7 to 9 were prepared in the same manner as Examples 2, 3, 4, and 5, and Examples 10 to 13 were prepared in the same manner as in Examples 2, 3, 4, and 5. The following results were obtained in the same manner as in 3, 4 and 6. 【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1はアルキル基、アルケニル基、ア
ルキニル基、環状アルキル基、チエニル基、フエ
ニル基、p―メチルベンジル基またはベンジル基
を表わす。) で示されるシクロペンテンジオン化合物に一般式 R2MgX (式中、R2は炭素数6以下のアルキル基、ア
ルケニル基またはアルキニル基を表わし、Xは塩
素原子、臭素原子またはヨウ素原子を表わす。) で示されるグリニヤール試薬を反応させ一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノン化合物を得、次いで
該シクロペンテノン化合物の塩基の存在下に反応
させることを特徴とする一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノロン類の製造方法 2 一般式 (式中、R1はアルキル基、アルケニル基、ア
ルキニル基、環状アルキル基、チエニル基、フエ
ニル基、p―メチルベンジル基またはベンジル基
を表わす。) で示されるシクロペンテノン化合物を酸化剤の存
在下に反応させて一般式 (式中、R1は前述と同じ意味を有する。) で示されるシクロペンテンジオン化合物を得、次
いで該化合物に一般式 R2MgX (式中、R2は炭素数6以下のアルキル基、ア
ルケニル基またはアルキニル基を表わし、Xは塩
素原子、臭素原子またはヨウ素原子を表わす。) で示されるグリニヤール試薬を反応させ一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノン化合物を得、次いで
該シクロペンテノン化合物を塩基の存在下に反応
させることを特徴とする一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノロン類の製造方法 3 一般式 (式中、R1はアルキル基、アルケニル基、ア
ルキニル基、環状アルキル基、チエニル基、フエ
ニル基、p―メチルベンジル基またはベンジル基
を表わす。) で示されるフリルカルビノール化合物を水―有機
溶媒の混合溶媒中、酸の存在下に反応させ一般式 (式中、R1は前述と同じ意味を有する。) で示されるシクロペンテノン化合物を得、次にこ
れを酸化剤の存在下に反応させて一般式 (式中、R1は前述と同じ意味を有する。) で示されるシクロペンテンジオン化合物を得、次
いで該化合物に一般式 R2MgX (式中、R2は炭素数6以下のアルキル基、ア
ルケニル基またはアルキニル基を表わし、Xは塩
素原子、臭素原子またはヨウ素原子を表わす。) で示されるグリニヤール試薬を反応させ一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノン化合物を得、次いで
該シクロペンテノン化合物を塩基の存在下に反応
させることを特徴とする一般式 (式中、R1およびR2は前述と同じ意味を有す
る。) で示されるシクロペンテノロン類の製造方法
[Claims] 1. General formula (In the formula, R 1 represents an alkyl group, an alkenyl group, an alkynyl group, a cyclic alkyl group, a thienyl group, a phenyl group, a p-methylbenzyl group, or a benzyl group.) The cyclopentenedione compound represented by the general formula R 2 MgX (In the formula, R2 represents an alkyl group, an alkenyl group, or an alkynyl group having 6 or less carbon atoms, and X represents a chlorine atom, a bromine atom, or an iodine atom.) A Grignard reagent represented by the general formula (In the formula, R 1 and R 2 have the same meanings as above.) A general formula characterized by obtaining a cyclopentenone compound represented by the formula and then reacting the cyclopentenone compound in the presence of a base. (In the formula, R 1 and R 2 have the same meanings as above.) Method 2 for producing cyclopentenolones represented by the general formula (In the formula, R 1 represents an alkyl group, an alkenyl group, an alkynyl group, a cyclic alkyl group, a thienyl group, a phenyl group, a p-methylbenzyl group, or a benzyl group.) The general formula for the reaction below is (In the formula, R 1 has the same meaning as above.) A cyclopentenedione compound represented by the formula R 2 Mg or an alkynyl group, and X represents a chlorine atom, a bromine atom, or an iodine atom) to react with a Grignard reagent represented by the general formula (In the formula, R 1 and R 2 have the same meanings as above.) A general formula characterized by obtaining a cyclopentenone compound represented by the formula and then reacting the cyclopentenone compound in the presence of a base. (In the formula, R 1 and R 2 have the same meanings as above.) Method 3 for producing cyclopentenolones represented by the general formula (In the formula, R 1 represents an alkyl group, an alkenyl group, an alkynyl group, a cyclic alkyl group, a thienyl group, a phenyl group, a p-methylbenzyl group, or a benzyl group.) The general formula is obtained by reacting in the presence of an acid in a mixed solvent of (In the formula, R 1 has the same meaning as above.) A cyclopentenone compound represented by the formula is obtained, and then this is reacted in the presence of an oxidizing agent to form the general formula (In the formula, R 1 has the same meaning as above.) A cyclopentenedione compound represented by the formula R 2 Mg or an alkynyl group, and X represents a chlorine atom, a bromine atom, or an iodine atom) to react with a Grignard reagent represented by the general formula (In the formula, R 1 and R 2 have the same meanings as above.) A general formula characterized by obtaining a cyclopentenone compound represented by the formula and then reacting the cyclopentenone compound in the presence of a base. (In the formula, R 1 and R 2 have the same meanings as above.) Process for producing cyclopentenolones represented by
JP6849579A 1979-05-30 1979-05-31 Preparation of cyclopentenolone Granted JPS55160740A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6849579A JPS55160740A (en) 1979-05-31 1979-05-31 Preparation of cyclopentenolone
US06/151,603 US4371711A (en) 1979-05-30 1980-05-20 Process for producing 4-hydroxycyclopentenones
EP80102834A EP0022162B1 (en) 1979-05-30 1980-05-21 Process for producing disubstituted 4-hydroxycyclopentenones; monosubstituted cyclopentendiones and 4-hydroxycyclopentenones
DE8080102834T DE3062712D1 (en) 1979-05-30 1980-05-21 Process for producing disubstituted 4-hydroxycyclopentenones; monosubstituted cyclopentendiones and 4-hydroxycyclopentenones
US06/420,082 US4465862A (en) 1979-05-30 1982-09-20 Cyclopentendione and cyclopentenone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6849579A JPS55160740A (en) 1979-05-31 1979-05-31 Preparation of cyclopentenolone

Publications (2)

Publication Number Publication Date
JPS55160740A JPS55160740A (en) 1980-12-13
JPS6126894B2 true JPS6126894B2 (en) 1986-06-23

Family

ID=13375325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6849579A Granted JPS55160740A (en) 1979-05-30 1979-05-31 Preparation of cyclopentenolone

Country Status (1)

Country Link
JP (1) JPS55160740A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111690A (en) * 1981-12-25 1983-07-02 Sumitomo Chem Co Ltd L(-)-2-allyl-3-hydroxy-3-methyl-4-cyclopentenone and its preparation
CN111253231B (en) * 2020-02-03 2021-08-03 厦门大学 Preparation method of 4-cyclopentene-1, 3-dione

Also Published As

Publication number Publication date
JPS55160740A (en) 1980-12-13

Similar Documents

Publication Publication Date Title
US4371711A (en) Process for producing 4-hydroxycyclopentenones
CH652385A5 (en) 5-(2-OPTIONALLY SUBSTITUTE-4-TRIFLUOROMETHYL-6-OPTIONALLY SUBSTITUTE-PHENOXY)-2-NITRO, -HALO OR -CYANO-PHENYLCARBONYL ALPHA SUBSTITUTE-OXIMES AND CORRESPONDING CARBONYL DERIVATIVES.
JPS6126894B2 (en)
JP4020141B2 (en) Method for producing 1-acetoxy-3- (substituted phenyl) propene compound
JPS6126893B2 (en)
JPS62201842A (en) Manufacture of 3-hydroxycyclopent-4-ene-1-ones
JPS6228140B2 (en)
US4107181A (en) Useful prostaglandin intermediates
JP3039025B2 (en) Method for producing substituted acetaldehyde
JP2004161702A (en) METHOD FOR PRODUCING gamma-JASMOLACTONE
US4296038A (en) Preparation of (-)-dihydrochrysanthemolactone
SU1366061A3 (en) Method of obtaining lineatine
US5310926A (en) Process for producing isoxazole derivatives
JP2838664B2 (en) Process for producing oxo compound
Carlsen et al. Oxidation of Alcohols with Potassium Chlorochromate.
JPS6232739B2 (en)
US4058567A (en) Cyclopentene sulfoxides
US4052434A (en) Prostaglandin intermediates
JPS6252735B2 (en)
EP0464218B1 (en) Process for producing isoxazole derivative
JP2003112045A (en) Activated zinc, its use, method for preparing the same and method for preparing ethyl 3-hydroxy-3-(2- phenylethyl)hexanoate using the same
JPH0142951B2 (en)
JPS6254416B2 (en)
JPS59163345A (en) Production of alpha-arylalkanoic acid ester
EP0002851B1 (en) Novel intermediate in the preparation of cyclopropylcarboxylate esters and process for its manufacture