JPS6126859Y2 - - Google Patents

Info

Publication number
JPS6126859Y2
JPS6126859Y2 JP11749183U JP11749183U JPS6126859Y2 JP S6126859 Y2 JPS6126859 Y2 JP S6126859Y2 JP 11749183 U JP11749183 U JP 11749183U JP 11749183 U JP11749183 U JP 11749183U JP S6126859 Y2 JPS6126859 Y2 JP S6126859Y2
Authority
JP
Japan
Prior art keywords
sic
main body
refractory
refractories
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11749183U
Other languages
Japanese (ja)
Other versions
JPS6025897U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11749183U priority Critical patent/JPS6025897U/en
Publication of JPS6025897U publication Critical patent/JPS6025897U/en
Application granted granted Critical
Publication of JPS6126859Y2 publication Critical patent/JPS6126859Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は各種高温炉の内張用耐火物に関するも
のであり、詳細には被加熱面側を保護して表面領
域の酸化を防止する様に構成したブロツク状2層
耐火物に関するものである。 製鋼分野においては、例えば低P鋼や低S鋼等
で代表される高級鋼の要請が強く、溶銑処理或は
溶鋼処理等の操業条件が次第に厳しくなる傾向に
あり、溶銑予備処理炉(例えば混銑車や取鍋等)
や溶鋼処理炉(例えば転炉や電炉取鍋等)の炉体
内面側に形成される内張耐火壁は、従来に比べる
と極めて苛酷な操業条件に曝されることが多い。
その為従来繁用されてきたシヤモツト質、ハイア
ルミナ質、ジルコン質、ろう石系等の耐火物では
操業寿命を維持・延長することが困難となり、最
近ではAl2O3−SiC−C系或はMgO−C系で代表
される様なSiC含有系、C含有系、SiCとC含有
系の耐火材を内張に用いることが多くなつてい
る。ところが耐火材のこの様な高級化指向にもか
かわらず、この様な耐火材を前記炉体の内面にラ
イニング施工した後乾燥し、高温溶湯の受け入れ
に備えて例えばバーナ加熱等の昇温操作を加えて
いくと、耐火材の最内面側に含まれるSiCやCが
酸化消耗され、脆弱層が形成されるという事実が
判明した。この様な脆弱層の厚みは乾燥及び昇温
操作の条件(手段・温度・所要時間等)によつて
左右されるので常に一定という訳ではないが、い
ずれにせよ物理的性質及び化学的性質は著じるし
く悪化し耐火層としての機能は全く発揮されな
い。即ちこの様な脆弱層に変化する部分について
は、始めから全く無意味な強化層を形成したこと
になり、これが炉の内表面全体に及ぶことを考え
れば材料面での損失は極めて甚大なものとなり、
又炉体の寿命を誤まつて判断することになり、生
産計画や品質管理に重大な阻ごを来たす。 この様な状況は憂慮されるところであり、例え
〓〓〓〓〓
ば次の様な対策が考えられる。 (1) 酸化防止剤を前記SiC系等の高級耐火材中に
配合分散する方法。 (2) 酸化防止剤を該耐火材の表面(被加熱側面)
に塗布する方法。 しかしながら(1)の方法は耐火材全体の中へ均一
に分散させ得る量の酸化防止剤を必要とするから
コスト高を招くという問題がある。特に操業にお
ける実態を考えてみると、ライニング後の第1回
溶湯注入によつて耐火材表面がスラグでコーテイ
ングされた状態となり、該コーテイングによつて
耐火材の酸化防止効果が得られる結果、耐火材の
深部側迄酸化防止剤を分散させるという(1)の方式
は、該深部側まで過剰対策を行なつたことになつ
て、上記コスト高が全く無意味なものとなる。こ
れに対して(2)の方式は上記の様な無駄がなく、そ
の意味では効率的であるが、吹付け方式にせよ刷
毛塗り方式にせよ、かなりの労働負担が強いら
れ、特に混銑車の様に入口が狭く内部の広いもの
では作業環境が劣悪であり労働衛生面から見て問
題が多い。又上記SiC,C系等の耐火材は酸化さ
れ易いという特性の為一般に非焼成タイプになつ
ており、有機系結合剤を使つていることが多いか
ら、上記塗装後の乾燥或は昇温工程中に燃焼ガス
の発生を見、せつかく塗布された酸化防止層が剥
離してしまうこともあつて満足すべき対策とは言
えない。 本考案者等はこの様な情況に鑑み、経剤性及び
築成作業性の両面において上述の様な問題を伴わ
ない様な内張耐火材酸化防止技術を確立すべきで
あると考え種々検討を行なつた。その結果耐火材
の被加熱面側のみを酸化防止処理でき、しかも築
成作業上の問題がない様な手段としては、本体部
と保護部からなるブロツク状の2層耐火物を形成
しこれを炉体内面に築成する手段が良いとの着装
を得、更に素材面或は形状面からの検討を加えた
結果本考案を完成するに至つた。 即ち本考案に系るブロツク状2層耐火物とは、
C及びSiCの一方又は両方を含む耐火質材料から
構成される本体部と、C及びSiCの一方又は両方
を含む耐火質材料かから構成される本体部と、C
及びSiCの一方又は両方を含む他、炭化ほう素と
易酸化性金属の一方又は両方を含む耐火質材料か
ら構成される保護部からなり、前記本体部の被加
熱面側に前記保護部を一体的に積層して形成した
点に要旨が存在するものである。 以下実施例図面に基づいて本考案の構成及び作
用効果を明らかにしていく。第1図はもつとも代
表的な実施例を示す斜視図で、本体部1及び保護
部2が直接一体的に接合されてブロツク状2層耐
火物が形成されている。本体部1の構成は、前記
説明から明らかである様にCとSiCの一方又は両
方を含む耐火質材料であり、該耐火質材料の主成
分を構成する酸化物については特に制御がなく、
適用対象に応じて任意に採用できるが、特に代表
的なものを例示しておくと、SiO2,Al2O3
MgO,ZrO2等が挙げられ、副成分として
Fe2O3,TiO2,MnO,CaO,Cr2O3,FeO等を含
むことができ、更に具体的に例示すると、珪酸質
耐火物、アルミナ質耐火物、シリカアルミナ系耐
火物、マグネシア質耐火物、ドロマイト質耐火
物、グネシア・クロミア質耐火物、ジルコニア質
耐火物、ジルコン質耐火物、あるいはこれらのい
ずれにも分類されない各種耐火物が用いられる。
そして特に重要な点は、C及びSiCの一方又は両
方を含有する点にあり、これらを含有することに
よつて前記の如く被加熱面側における酸化劣化が
問題となつたものである。ところでCやSiCの含
有量については特に制限を受けないが、通常の含
有量範囲は、 C:3〜28重量% SiC:3〜25重量% と考えられているので、本考案の場合も一応これ
に準じて含有量を設定するが本考案では前記構成
によつて後述の如く本体部の脆弱化が防止される
ので、従来の含有量設定基準が多めに置かれてい
たものでは下限値を更に低下させても良く、逆に
少なめに置かれていたものでは上限値を更に高め
ても良い。 一方保護部2の組成については、本質的に本体
部1と同程度の組成(特にC及びSiCの一方又は
両方を含むという点)を有する場合と、本体部1
とは異なつた性状を示す耐火材を主成分とする場
合(但しC及びSiCの一方又は両方は必ず含まれ
ていなければならない)に分けられるが、いずれ
にしてもCやSiCの存在が酸化劣化の原因となる
ものであると考えられるから、CやSiCの酸化劣
化を防止するものとして炭化ほう素と易酸化性金
〓〓〓〓〓
属の一方又は両方を含有する点が重要である。炭
化ほう素についてはB4Cと考えられているものを
使用するが、B16Cのいずれでもかまわない。
一方易酸化性金属としては、Al,Mg,Si,Ti等
が例示されるが経済性を考慮すれば、前3者が汎
用性において優れている。尚易酸化性金属を用い
る場合は前記金属を単独で用いても良く、又併用
してもよい。併用の場合の組合わせは全く自由で
あるが、例えばAl−Mgの如く合金として添加す
ることもできる。又フエロアロイ例えばFe−Si
等の形態で配合することもできる。更に炭化ほう
素と易酸化性金属の併用も効果的な実施態様と考
えられている。 炭化ほう素や易酸化性金属の配合によつてCや
SiCの酸化劣化が防止されることは後記実施例に
も示される通りであるが、その作用原理について
は必ずしも明確に把握されている訳ではない。従
つて具体的に得られる作用効果の実態という意味
においてこれらは選択性成分であると考えられる
が、一方これらの配合量という観点からみても炭
化ほう素と易酸化性金属の間には特別の差が存在
せず、所期の効果を達成する為には、単独及び併
用の如何を問わず、総量として0.5〜5重量%の
枠内に納めることが必要である。即ち0.5重量%
未満では保護部2内のC及びSiCの酸化を防止す
ることができず保護部2自体が脆弱化する。一方
5重量%を越えると、耐酸化防止効果は得られて
も保護部2としての耐食性が急激に悪化する。 次に保護部2の厚みt(第1図)について混銑
車への適用実績から考慮すると、少なくとも5mm
の厚みtを与えておけば施工後の乾燥及び昇温過
程における本体部1の酸化劣化については全く問
題がなかつた。もつともより好ましい下限厚みt
は、前記乾燥及び昇温操作の条件が更に過酷にな
る場合もあることを考慮すれば10mmと設定する方
が安全である。一方上限についてはコスト面から
配慮すれば良く、ブロツク状耐火物の全厚みT1
に対して20%以下に抑制することが推奨される。 ところで本体部1と保護部2を構成する耐火質
材料の主要成分については、同一でも良く或は異
なつていても良いと述べたが、同一の場合は両者
の熱膨張率に大差がないので製造中や施工後の乾
燥・昇温、更には実操業時点で歪応力が発生せ
ず、従つて剥離の心配もないから、第1図に示し
た如く単に平面同士を密着させる様にしたもので
も良いが、両者の熱膨張率に差が生じる様な素材
を選択した場合には、第2図や第3図に示す様な
嵌合方式、或はこれらに代る強固な結合方式を採
用して両部材の剥離を防止する様な設計を施すこ
とが推奨される。但しこの場合においても保護部
2の単位受熱量が本体部1の単位受熱量よりはる
かに多いことを意識し、保護部2に使う耐火質材
料を、本体部1に使う耐火質材料より低熱膨張係
数のものにして両者の熱変形量差を少なくするこ
とが必要である。 ブロツク状耐火物としては、やゝ扁平な矩形体
を例示(第1〜3図)してきたが、適用対象炉の
形状が大きさ、耐火壁の必要厚さ、施工部位(直
線部、隅部、湾曲部等の違い)等を考慮して直方
体、立方体、扇形、筒形、L形、凸形、凹形等
種々変更できることは言うまでもなく、これらの
場合被加熱面側に保護部を形成することは当然で
ある。そして本考案耐火物は前に例示した混銑車
や取鍋に限らず、ほとどあらゆる形式の高温炉に
適用することができる。 次に本考案耐火物の使用例を説明する。 第1表に示す本体部1−a,1−bと保護部2
−a,2−bを夫々対応する様に組合わせてブロ
ツク状耐火物A,Bを製造した。耐火物A(本体
部1−a:280mm、保護部2−a:25mm)、耐火物
B(本体部1−b:400mm、保護部2−b:25
mm)を用いて混銑車の内張りを行ない、受銑及び
搬送に供したところ、従来例(本体部1−a,同
1−b単独で内張りしたもの)に比べて平均で50
チヤージ(重量にして15000トン)の延命効果が
認められた。尚本体部1−aのみを内張りした従
来例において、内張施工後の乾燥及び昇温(約3
日間、最高1000℃)を行ない、内張りの内表面を
検査したところ、20〜40mm(全厚みに対して7〜
15%に相当)に亘つて酸化脆弱層が形成されてい
た。 〓〓〓〓〓
The present invention relates to refractories for lining various high-temperature furnaces, and more particularly to a block-shaped two-layer refractory constructed to protect the surface to be heated and prevent oxidation of the surface area. In the steel manufacturing field, there is a strong demand for high-grade steels, such as low P steel and low S steel, and the operating conditions for hot metal processing and molten steel processing are becoming increasingly severe. cars, ladles, etc.)
The inner fireproof walls formed on the inner surface of the furnace body of molten steel processing furnaces (for example, converters, electric furnace ladles, etc.) are often exposed to extremely severe operating conditions compared to conventional ones.
For this reason, it has become difficult to maintain and extend the operational life of the conventionally frequently used refractories such as syamoto, high alumina, zircon, and pyrolithite, and recently Al 2 O 3 -SiC-C and other refractories have For the inner lining, refractory materials containing SiC, C, or SiC and C, such as MgO-C, are increasingly being used. However, despite this trend toward higher-grade refractory materials, it is still difficult to line the inner surface of the furnace body with such refractory materials, dry them, and perform temperature-raising operations such as burner heating in preparation for receiving high-temperature molten metal. It has been found that as the amount of refractory material is added, the SiC and C contained in the innermost surface of the refractory material are oxidized and consumed, forming a brittle layer. The thickness of such a brittle layer depends on the conditions of drying and heating operations (method, temperature, time required, etc.), so it is not always constant, but in any case, the physical and chemical properties It deteriorates significantly and does not function as a fireproof layer at all. In other words, in the part that changes to such a brittle layer, a completely meaningless reinforcing layer has been formed from the beginning, and considering that this covers the entire inner surface of the furnace, the loss in terms of material is extremely large. Then,
Furthermore, the lifespan of the furnace body may be incorrectly judged, which seriously hinders production planning and quality control. This situation is a cause for concern, and examples such as 〓〓〓〓〓
The following countermeasures can be considered. (1) A method of blending and dispersing an antioxidant into the above-mentioned SiC-based high-grade refractory material. (2) Apply antioxidant to the surface of the refractory material (side surface to be heated)
How to apply it. However, method (1) requires an amount of antioxidant that can be uniformly dispersed throughout the refractory material, resulting in an increase in cost. Particularly considering the actual situation during operation, the surface of the refractory material is coated with slag due to the first injection of molten metal after lining, and as a result of this coating, the effect of preventing oxidation of the refractory material is obtained. Method (1) of dispersing the antioxidant to the deep side of the material means that excessive measures are taken to the deep side, and the above-mentioned high cost becomes completely meaningless. On the other hand, method (2) eliminates waste as mentioned above and is efficient in that sense, but whether it is a spraying method or a brush coating method, it imposes a considerable labor burden, especially for mixed iron cars. If the entrance is narrow and the interior is wide, the working environment is poor and there are many problems from an occupational health perspective. In addition, since the SiC and C-based refractory materials mentioned above are easily oxidized, they are generally non-sintered types, and organic binders are often used. This cannot be said to be a satisfactory countermeasure because combustion gas is generated during the process, and the oxidation prevention layer that has been painstakingly applied may peel off. In view of these circumstances, the inventors of the present invention believe that it is necessary to establish a technology for preventing oxidation of fireproof lining materials that does not involve the above-mentioned problems in terms of both durability and construction workability, and have conducted various studies. I did this. As a result, as a means to prevent oxidation from being applied only to the heated side of the refractory material without causing any problems during the construction process, it is possible to form a block-shaped two-layer refractory consisting of a main body part and a protective part. After finding that a suitable method for forming it on the inner surface of the furnace body was suitable, and after further consideration from the material and shape aspects, the present invention was completed. In other words, the block-shaped two-layer refractory according to the present invention is:
A main body made of a refractory material containing one or both of C and SiC; a main body made of a refractory material containing one or both of C and SiC;
and SiC and one or both of boron carbide and an easily oxidizable metal. The gist lies in the fact that they are formed by laminating them. The configuration and effects of the present invention will be explained below based on the drawings of the embodiments. FIG. 1 is a perspective view showing a typical embodiment, in which a main body part 1 and a protection part 2 are directly joined together to form a block-shaped two-layer refractory. As is clear from the above description, the structure of the main body part 1 is a refractory material containing one or both of C and SiC, and there is no particular control on the oxide that constitutes the main component of the refractory material.
Although it can be arbitrarily adopted depending on the application, some typical examples include SiO 2 , Al 2 O 3 ,
MgO, ZrO 2 , etc. are listed as subcomponents.
It can contain Fe 2 O 3 , TiO 2 , MnO, CaO, Cr 2 O 3 , FeO, etc., and more specific examples include silicic refractories, alumina refractories, silica-alumina refractories, and magnesia refractories. Refractories, dolomitic refractories, gnesia-chromia refractories, zirconia refractories, zircon refractories, or various refractories not classified into any of these are used.
A particularly important point is that it contains one or both of C and SiC, and the inclusion of these causes the problem of oxidative deterioration on the heated surface side as described above. By the way, there are no particular restrictions on the content of C or SiC, but the normal content range is considered to be C: 3-28% by weight, SiC: 3-25% by weight, so in the case of the present invention, this is also the case. The content is set according to this, but in the present invention, the above-mentioned structure prevents the main body from weakening as described later, so the lower limit value is set in contrast to the conventional content setting standard, which was set a little higher. It may be further lowered, or conversely, the upper limit value may be further increased for those placed in a relatively small amount. On the other hand, regarding the composition of the protective part 2, there are two cases in which the protective part 2 has essentially the same composition as the main body part 1 (particularly in that it contains one or both of C and SiC), and a case in which the protective part 2 has a composition essentially the same as that of the main body part 1 (particularly in that it contains one or both of C and SiC).
(However, one or both of C and SiC must be included); however, in any case, the presence of C or SiC causes oxidative deterioration. Boron carbide and easily oxidizable gold are considered to be the cause of oxidative deterioration of C and SiC.
It is important to include one or both of the genera. Regarding boron carbide, one considered to be B 4 C is used, but any of B 1 to B 6 C may be used.
On the other hand, examples of easily oxidizable metals include Al, Mg, Si, and Ti, but the former three are superior in terms of versatility when considering economic efficiency. When using easily oxidizable metals, these metals may be used alone or in combination. When used in combination, the combination is completely free, but they can also be added as an alloy, such as Al-Mg. Also, ferroalloys such as Fe-Si
It can also be blended in the form of Furthermore, the combined use of boron carbide and easily oxidizable metals is considered to be an effective embodiment. Due to the combination of boron carbide and easily oxidizable metals, C and
Although the oxidative deterioration of SiC is prevented, as shown in the examples below, the principle of its action is not necessarily clearly understood. Therefore, these are considered to be selective components in terms of the actual effects that can be obtained, but on the other hand, there are special differences between boron carbide and easily oxidizable metals from the perspective of their blending amounts. In order to achieve the desired effect without any difference, it is necessary to keep the total amount within the range of 0.5 to 5% by weight, regardless of whether they are used alone or in combination. i.e. 0.5% by weight
If it is less than that, oxidation of C and SiC in the protection part 2 cannot be prevented, and the protection part 2 itself becomes brittle. On the other hand, if it exceeds 5% by weight, the corrosion resistance of the protective portion 2 will deteriorate rapidly even though the anti-oxidation effect can be obtained. Next, the thickness t (Fig. 1) of the protective part 2 is at least 5 mm, considering the past application results for pig iron mixed vehicles.
If the thickness t was given, there would be no problem with oxidation deterioration of the main body part 1 during the drying and temperature rising process after construction. Even more preferable lower limit thickness t
It is safer to set it to 10 mm, considering that the conditions of the drying and temperature raising operations may become even more severe. On the other hand, the upper limit should be taken into consideration from the cost perspective, and the total thickness of the block-shaped refractory T 1
It is recommended to suppress the amount to 20% or less. By the way, as for the main components of the fire-resistant materials constituting the main body part 1 and the protection part 2, it was stated that they may be the same or different, but if they are the same, there is no big difference in the coefficient of thermal expansion between the two. There is no strain stress during manufacturing, drying and temperature rise after construction, or even during actual operation, so there is no risk of peeling, so the flat surfaces are simply brought into close contact as shown in Figure 1. However, if you select a material that causes a difference in the coefficient of thermal expansion between the two, use the fitting method shown in Figures 2 and 3, or an alternative strong bonding method. It is recommended that the design be designed to prevent separation of both parts. However, even in this case, be aware that the unit amount of heat received by the protection part 2 is much larger than the unit amount of heat received by the main body part 1, and the fire-resistant material used for the protection part 2 should have a lower thermal expansion than the fire-resistant material used for the main body part 1. It is necessary to reduce the difference in the amount of thermal deformation between the two by using a coefficient. As for the block-shaped refractories, a rather flat rectangular body has been illustrated (Figs. 1 to 3), but the shape of the applicable furnace depends on the size, the required thickness of the refractory wall, and the construction location (straight sections, corner sections). It goes without saying that various shapes such as rectangular parallelepiped, cubic, fan-shaped, cylindrical, L-shaped, convex, concave, etc. can be made in consideration of differences in curved parts, etc., and in these cases, a protective part is formed on the side to be heated. Of course. The refractory of the present invention can be applied to almost any type of high-temperature furnace, not just the pig iron mixer or ladle as exemplified above. Next, an example of use of the refractory of the present invention will be explained. Main body parts 1-a, 1-b and protection part 2 shown in Table 1
Block-shaped refractories A and B were manufactured by combining 2-a and 2-b in a corresponding manner. Refractory A (main body part 1-a: 280 mm, protective part 2-a: 25 mm), refractory B (main body part 1-b: 400 mm, protective part 2-b: 25
mm) was used to line a mixed pig iron car for receiving and transporting pig iron.
The life-extending effect of charge (15,000 tons in weight) was recognized. In addition, in the conventional example in which only the main body part 1-a is lined, drying and temperature rise (approximately 3
When inspecting the inner surface of the lining, it was found that the temperature was 20 to 40 mm (7 to 7 mm for the total thickness).
A weak oxidation layer was formed over the area (equivalent to 15%). 〓〓〓〓〓

【表】 次に第2表に示す組成の本体部1−c,1−d
及び保護部2−c,2−c′2−d,2−d′を準備
し耐火物C,C′,D,D′を作つた。耐火物C,
C′は本体部1−c:150mm、保護部2−c,2−
c′:10mm、耐火物D,D′は本状部1−d:200
mm、保護部2−d,2−d′:10mmであり、夫々を
用いて取鍋のスラグライン用内張りを行なつた。
その結果耐火物C,D,D′を用いたものでは従
来例(本体部1−c,1−d単独で内張りしたも
の)に比べて平均で8チヤージの延命効果が認め
られた。尚本体部1−cのみを内張にした従来例
において内張施工後の乾燥及び昇温(約1日、最
高1200℃)を行ない、内張りの内表面を調査した
ところ、10〜25mm(全厚みに対して7〜15%に相
当)に亘つて酸化脆弱層が形成されていた。 一方本体部1−cに保護部2−c′を組合わせた
耐火物C′の場合は、保護部2−c′における炭化ほ
う素や易酸化金属の配合量が多い為耐食性が悪く
実用炉には適さなかつた。
[Table] Next, main body parts 1-c and 1-d with the compositions shown in Table 2.
and protection parts 2-c, 2-c', 2-d, and 2-d' were prepared, and refractories C, C', D, and D' were made. Refractory C,
C' is main body part 1-c: 150mm, protection part 2-c, 2-
c': 10mm, refractories D and D' are main part 1-d: 200
mm, and protective portions 2-d and 2-d': 10 mm, and each was used to line the slag line of the ladle.
As a result, the life extension effect of the refractories C, D, and D' using refractories C, D, and D' was found to be 8 charges on average compared to the conventional example (in which the main body portions 1-c and 1-d were lined alone). In addition, in the conventional example in which only the main body part 1-c was lined, after the lining was applied, it was dried and heated (approximately 1 day, maximum 1200℃), and the inner surface of the lining was investigated. An oxidation brittle layer was formed over an area (equivalent to 7 to 15% of the thickness). On the other hand, in the case of refractory C' which is a combination of main body part 1-c and protective part 2-c', the corrosion resistance is poor due to the high content of boron carbide and easily oxidizable metals in protective part 2-c'. It was not suitable for

【表】 〓〓〓〓〓
本考案は上記の如く構成されているので、C及
びSiCの一方又は両方を含有させることによつて
高級化された耐火層の被加熱面側に耐酸化性の保
護層を形成した安価なブロツク状耐火物が提供さ
れ、被加熱面側の酸化劣化を確実に防止できる様
になつた。その結果C及びSiCによる耐火材の高
級化効果を表層部から深層部にかけてほゞ完全に
享受することが可能となり、内張り材の延命効果
が確実に発揮されることとなつた。
[Table] 〓〓〓〓〓
Since the present invention is constructed as described above, it is an inexpensive block in which an oxidation-resistant protective layer is formed on the heated surface side of a refractory layer that is upgraded by containing one or both of C and SiC. With the provision of refractories, it has become possible to reliably prevent oxidative deterioration on the heated surface side. As a result, it became possible to almost completely enjoy the effect of upgrading the refractory material by C and SiC from the surface layer to the deep layer, and the life-extending effect of the lining material was reliably demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本考案の実施例であつて、第1図
は斜視図、第2,3図は平面図である。 1……本体部、2……保護部。 〓〓〓〓〓
1 to 3 show examples of the present invention, in which FIG. 1 is a perspective view and FIGS. 2 and 3 are plan views. 1... Main body part, 2... Protection part. 〓〓〓〓〓

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] C及びSiCの一方又は両方を含む耐火質材料か
ら構成される本体部と、C及びSiCの一方又は両
方を含む他、炭化ほう素と易酸化性金属の一方又
は両方を含む耐火質材料から構成される保護部か
らなり、前記本体部の被加熱面側に前記保護部を
一体的に積層してなることを特徴とするブロツク
状2層耐火物。
A main body made of a refractory material containing one or both of C and SiC, and a refractory material containing one or both of C and SiC, as well as one or both of boron carbide and an easily oxidizable metal. A block-shaped two-layer refractory, characterized in that the protection part is integrally laminated on the heated surface side of the main body part.
JP11749183U 1983-07-27 1983-07-27 Block-shaped two-layer refractory Granted JPS6025897U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11749183U JPS6025897U (en) 1983-07-27 1983-07-27 Block-shaped two-layer refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11749183U JPS6025897U (en) 1983-07-27 1983-07-27 Block-shaped two-layer refractory

Publications (2)

Publication Number Publication Date
JPS6025897U JPS6025897U (en) 1985-02-21
JPS6126859Y2 true JPS6126859Y2 (en) 1986-08-11

Family

ID=30270441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11749183U Granted JPS6025897U (en) 1983-07-27 1983-07-27 Block-shaped two-layer refractory

Country Status (1)

Country Link
JP (1) JPS6025897U (en)

Also Published As

Publication number Publication date
JPS6025897U (en) 1985-02-21

Similar Documents

Publication Publication Date Title
CA2242243C (en) Nozzle for use in continuous casting of steel
JPS6126859Y2 (en)
KR100490988B1 (en) Composition of Al2O3-SiC-C typed refractories with high oxidation resistance
JPH082975A (en) Refractory for casting application
JP3464323B2 (en) Molten steel ladle and its repair method
JPH08175878A (en) Alumina-magnesia-based casting material
JPH0261436B2 (en)
JPH01282143A (en) Refractory mortar composition
KR100355140B1 (en) A method of producing and using MgO-C based refractory bricks with a coated back side for prevention of oxidation
JP3018057B2 (en) MgO-ZrO2-SiO2-based thermal spray material
JP2000327406A (en) Chromia-containing brick excellent in slag infiltration resistance, and molten metal vessel
JPH05117046A (en) Baking reparative material and method for baking and repairing furnace using baking reparative material
JP2885630B2 (en) Flame spray material
JPH107479A (en) Refractory for metal smelting and casting
KR20030000565A (en) Materials for Slag Cutting Devices in Steelmaking Process
JP3606352B2 (en) Castable refractories
JPH04342454A (en) Magnesia-containing unburned refractory
JP2000054015A (en) Method for prolonging service life of molten iron vessel
JPH054180B2 (en)
JP3795933B2 (en) Magnesia-chromic fired brick
JPH07291710A (en) Graphite containing refractory
KR960005218B1 (en) An antioxidant of carbon steel slab
JPH11131128A (en) Lining structure of refining furnace
KR19980048902A (en) Flame Retardant Powder
JP3018056B2 (en) CaO-SiO2 spray material