JPS6126831A - Measuring method of impact strain - Google Patents

Measuring method of impact strain

Info

Publication number
JPS6126831A
JPS6126831A JP14678584A JP14678584A JPS6126831A JP S6126831 A JPS6126831 A JP S6126831A JP 14678584 A JP14678584 A JP 14678584A JP 14678584 A JP14678584 A JP 14678584A JP S6126831 A JPS6126831 A JP S6126831A
Authority
JP
Japan
Prior art keywords
coil
impact
variation
wave
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14678584A
Other languages
Japanese (ja)
Inventor
Shigeru Kitamura
茂 北村
Kenichi Katsumata
健一 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship Research Institute
Original Assignee
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship Research Institute filed Critical Ship Research Institute
Priority to JP14678584A priority Critical patent/JPS6126831A/en
Publication of JPS6126831A publication Critical patent/JPS6126831A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To eliminate the need for an exciting coil by winding a coil around an anode-cathod type probe formed by winding a coil around a ferromagnetic body and a test body or jig, test-piece, etc., and measuring strain at the time of an impact. CONSTITUTION:When an impact 2 is applied to the ferromagnetic body, the longitudinal wave of an elastic body propagate as a compressional wave while accompanies by variation in volume due to expansion and contraction. At this time, the ferromagenetic body is magnetized in the propagation direction of the elastic wave by the reverse effect of magneto-striction to produce magnetic flux in a round bar 1 made of the ferromagnetic body. This magenetic flux is proportional to the intensity of the impact force. Then, a voltage having a speed proportional to variation of magenetic flux penetrating the coil 3 is induced according to the Faraday rule. Thus, variation of the compressional wave of the elastic wave itself is detected to eleminate the problem of follow-up property, eliminating the need for the exciting coil.

Description

【発明の詳細な説明】 従来の磁気によるセンサや計測では一次コイル(励磁コ
イル)で励磁し、磁気抵抗等の変化を二次コイル(サー
チコイル)で検出する方法がとられてきたが、本計測法
は励磁コイルを必要としないことを特徴とする。
[Detailed Description of the Invention] Conventional magnetic sensors and measurements have used a method in which a primary coil (excitation coil) is used to excite the magnet and changes in magnetic resistance, etc. are detected using a secondary coil (search coil). The measurement method is characterized in that it does not require an excitation coil.

一般に使用されている歪ゲージは物体表面の歪を計測し
、高速衝撃の場合は追従しなくなる。本発明では弾性波
が強磁性体内を通過するときの、プローブあるいはコイ
ルを巻いた断面内部の平均歪を計測し、かつ弾性波の疎
密波の変化そのものを検出しているので、追従性には問
題ない。
Commonly used strain gauges measure the strain on the surface of an object and cannot track it in the case of high-speed impact. In the present invention, when an elastic wave passes through a ferromagnetic body, the average strain inside the cross section of the probe or coil wound is measured, and the change in the compression wave of the elastic wave itself is detected. no problem.

強磁性体に衝撃が加わった場合に弾性波の縦波は疎密波
として、伸びや縮みの体積変化を伴なつ※ て伝播する第1図。この時、磁歪の逆効果により、弾性
波の伝播方向に磁化され、強磁性体の丸棒の中に磁束が
発生する。この磁束は衝撃力の強さに比例する。ファラ
デーの法則により、コイルをつらぬく磁束の変化に比例
した速さの電圧を誘起する。誘起電圧の大きさはコイル
の巻数に比例する第2図。丸棒に発生した磁束を磁気回
路によって極間形のコイルを巻いたプローブに誘導して
誘起電圧を求めても、上記のコイルをじかに巻いた場合
と同様に求めることができる第3図。
Figure 1 shows that when a shock is applied to a ferromagnetic material, longitudinal elastic waves propagate as compressional waves accompanied by volumetric changes such as expansion and contraction*. At this time, due to the reverse effect of magnetostriction, the rod is magnetized in the direction of propagation of the elastic wave, and magnetic flux is generated within the ferromagnetic round rod. This magnetic flux is proportional to the strength of the impact force. Faraday's law induces a voltage at a rate proportional to the change in magnetic flux passing through the coil. Figure 2 shows that the magnitude of the induced voltage is proportional to the number of turns of the coil. Fig. 3 shows that even if the magnetic flux generated in a round bar is induced by a magnetic circuit to a probe wound with a pole-to-pole coil, the induced voltage can be determined in the same way as when the coil is wound directly.

磁性材料の磁気特性はBH曲線で示される。初透磁率の
範囲ではB(磁束密度)とH(磁界の強さ)の関係は可
逆的である。本計測法は静的な荷重の計測には適用でき
ない。
The magnetic properties of a magnetic material are shown by a BH curve. In the range of initial magnetic permeability, the relationship between B (magnetic flux density) and H (magnetic field strength) is reversible. This measurement method cannot be applied to static load measurements.

強磁性体の丸棒にフィルを巻いて計測した波形と一般に
使用されている歪ゲージの波形の比較および極間形プロ
ーブおよび歪ゲ゛−ジで計測した波形の比較をそれぞれ
第1図に示す。
Figure 1 shows a comparison of the waveform measured by wrapping a fill around a ferromagnetic round bar and the waveform of a commonly used strain gauge, and the comparison of the waveform measured by a pole-to-pole probe and a strain gauge, respectively. .

試験機本体および治具あるいは試験片にコイルを巻いて
計測した場合と簡便な極間形プローブを取付けた場合の
計測の仕方の7例を第5図にそれぞれ示す。
FIG. 5 shows seven examples of how to measure by winding a coil around the testing machine body, jig, or test piece, and by attaching a simple probe between poles.

※ 磁歪とは強磁性体を磁化したとき、磁性体の外形が
変形する現象をいう。
*Magnetostriction is a phenomenon in which the external shape of a ferromagnetic material changes when it is magnetized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 強磁性体を伝播する弾性波の疎密波伝播状況 
■衝撃、■密、■疎、 第2図 強磁性体にコイルを巻いた場合■丸棒、■衝撃
、■コイル、 第3図 極間形プローブを取付けた場合■丸棒、■衝撃
、■極間形プローブ、 第を図 計測例 ■丸棒、■ゴム板、■鋼球、■極間形
プローブ、■歪ゲージ、■極間形プローブで計測した波
形、■歪ゲージで計測した波形、■丸棒、■ネジで固定
した場合、 O鋼球、Oコイル1.G)歪ゲージ、@コ
イルで計測した波形、Q歪ゲージで計測した波形。 第5図 衝撃試験機への適用例 ■衝撃試験機、■高圧シリンダー、■試験片、■試験機
にコイルを巻いた場合、■試験機に極間形プローブを取
付けた場合、■治具にコイルを巻いた場合、■治具に極
間形プローブを取付けた場合、■試験片にコイルを巻い
た場合 第1図 ■ 第3図
Figure 1 Compression wave propagation situation of elastic waves propagating in ferromagnetic material
■Impact, ■Dense, ■Loose, Fig. 2 When a coil is wound around a ferromagnetic material ■Round bar, ■Impact, ■Coil, Fig. 3 When a pole-to-pole probe is attached ■Round bar, ■Impact, ■ Measurement examples ■Round bar, ■Rubber plate, ■Steel ball, ■Strain gauge, ■Waveform measured with a gap type probe, ■Waveform measured with a strain gauge, ■When fixed with round rod, ■screw, O steel ball, O coil 1. G) Strain gauge, waveform measured with @coil, waveform measured with Q strain gauge. Figure 5 Examples of application to impact testers ■Impact testers, ■High-pressure cylinders, ■Test specimens, ■When a coil is wound around a tester, ■When an interpole type probe is attached to a tester, ■When a jig is used When a coil is wound, ■ When a pole-to-pole probe is attached to a jig, ■ When a coil is wound around a test piece, Figure 1 ■ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 鉄鋼などの強磁性体にコイルを巻いた極間形(コの字形
)のプローブおよび試験機本体あるいは治具、試験片等
にコイルを巻いて、衝撃時の歪を計測する方法
A method of measuring strain upon impact using a pole-to-pole (U-shaped) probe with a coil wound around a ferromagnetic material such as steel, and a coil wound around the testing machine body, jig, test piece, etc.
JP14678584A 1984-07-17 1984-07-17 Measuring method of impact strain Pending JPS6126831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14678584A JPS6126831A (en) 1984-07-17 1984-07-17 Measuring method of impact strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14678584A JPS6126831A (en) 1984-07-17 1984-07-17 Measuring method of impact strain

Publications (1)

Publication Number Publication Date
JPS6126831A true JPS6126831A (en) 1986-02-06

Family

ID=15415478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14678584A Pending JPS6126831A (en) 1984-07-17 1984-07-17 Measuring method of impact strain

Country Status (1)

Country Link
JP (1) JPS6126831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069417A2 (en) * 1999-07-14 2001-01-17 HILTI Aktiengesellschaft Method and device for determining the temporal form of the shock wave in a ferrmomagnetic member which is objected to impacts
WO2007082997A1 (en) * 2006-01-17 2007-07-26 Sandvik Mining And Construction Oy Measuring device, rock breaking device and method of measuring stress wave

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069417A2 (en) * 1999-07-14 2001-01-17 HILTI Aktiengesellschaft Method and device for determining the temporal form of the shock wave in a ferrmomagnetic member which is objected to impacts
EP1069417A3 (en) * 1999-07-14 2001-02-21 HILTI Aktiengesellschaft Method and device for determining the temporal form of the shock wave in a ferrmomagnetic member which is objected to impacts
WO2007082997A1 (en) * 2006-01-17 2007-07-26 Sandvik Mining And Construction Oy Measuring device, rock breaking device and method of measuring stress wave
US7895900B2 (en) 2006-01-17 2011-03-01 Sandvik Mining And Construction Oy Measuring device, rock breaking device and method of measuring stress wave

Similar Documents

Publication Publication Date Title
US5010299A (en) Method for measuring stress on steel by determining the reverse magnetic permeability under a magnetic bias field
US4891992A (en) Torque detecting apparatus
US4316146A (en) Method and device for measuring and detecting a change in the mechanical state of a body
Piotrowski et al. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel
DE3037932A1 (en) Measuring coercive field strengths on extensive surfaces - by quasi-stationary and dynamic cycling through hysteresis curve
JPS6126831A (en) Measuring method of impact strain
Langman Some comparisons between the measurement of stress in mild steel by means of Barkhausen noise and rotation of magnetization
Chen et al. A theoretical and experimental study of alternating current stress measurement under different loading modes
Gobov et al. Measuring coercive force in local domains of a sample
RU2552124C1 (en) Mechanical stress measurement sensor
RU2483301C1 (en) Method for local measurement of coercitive force of ferromagnetic objects
US3976935A (en) Apparatus for measuring the internal field intensity of magnet bodies
RU2746040C1 (en) Device for testing magnetic force of pole elements of magnetic devices and instruments
SU1113732A1 (en) Electromagnetic acoustic method of quality control of articles of ferromagnetic materials
SU1114939A2 (en) Magnetic anisotropy pickup
RU2210786C2 (en) Permanent magnet coercimeter
SU1727004A1 (en) Method of locating residual stress zones in ferromagnetic products
FI89414B (en) Method for measurement of plastic shape change and dislocation structure in magnetic material
RU2658595C1 (en) Device for non-destructive testing of compressive mechanical stresses in low-carbon steels
SU956972A1 (en) Mechanical parameter measuring transducer
SU144546A1 (en) Magnetometer
SU1717977A1 (en) Method of determining non-magnetic material object deformations
SU1010537A1 (en) Strapped electromagnetic converter
SU600488A1 (en) Ferroprobe
UA142070U (en) MAGNETIC SENSOR FOR DETERMINATION OF MECHANICAL STRESSES IN FERROMAGNETIC MATERIALS