JPS61267373A - Backplane electrode of photoelectric conversion element - Google Patents

Backplane electrode of photoelectric conversion element

Info

Publication number
JPS61267373A
JPS61267373A JP60108789A JP10878985A JPS61267373A JP S61267373 A JPS61267373 A JP S61267373A JP 60108789 A JP60108789 A JP 60108789A JP 10878985 A JP10878985 A JP 10878985A JP S61267373 A JPS61267373 A JP S61267373A
Authority
JP
Japan
Prior art keywords
film
back electrode
electrode
photoelectric conversion
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108789A
Other languages
Japanese (ja)
Inventor
Takao Maeda
貴雄 前田
Tadashi Igarashi
五十嵐 廉
Kazuo Kanehiro
金廣 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60108789A priority Critical patent/JPS61267373A/en
Publication of JPS61267373A publication Critical patent/JPS61267373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an Al backplane electrode with excellent corrosion resistance by composing the backplane electrode of an Al film under compression stress. CONSTITUTION:On a transparent glass substrate 10, an ITO film 11 is formed as a transparent electrode and an amorphous silicon film 12 is formed as a semiconductor film so as to expose a part of the electrode 11. An Al film 13 is formed as a backplane electrode by an ion plating method and a Schottky junction between the Al film 13 and the amorphous silicon film 12 is formed. Lead wires 14 are bonded to bonding parts 15 with aluminum solder and the hole body is sealed with silicon resin 16 to obtain a solar battery. As a means to form the Al film, an ion plating method utilizing ion beam or cluster ion beam or a sputtering method is employed to leave compression stress in the Al film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光電変換素子の背面電極に関するものであり
、詳述するならば、光電変換素子の非常に耐食性に優れ
たAl背面電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a back electrode of a photoelectric conversion element, and more specifically, to an Al back electrode of a photoelectric conversion element that has extremely excellent corrosion resistance. .

従来の技術 現在、太陽電池や光通信用受光素子などに広く光電変換
素子が利用されている。それら光電変換素子は、素子の
中心部分を構成する半導体の改良により長寿命になって
きており、長時間交換の必要なく使用できるようになっ
てきている。しかし、その半導体の寿命に匹敵するだけ
の寿命が光電変換素子に実現されていない。その理由の
1つは、半導体に形成される電極の劣化である。
2. Description of the Related Art Currently, photoelectric conversion elements are widely used in solar cells, light receiving elements for optical communications, and the like. These photoelectric conversion elements have become longer-lasting due to improvements in the semiconductor that constitutes the central part of the element, and can now be used for long periods of time without the need for replacement. However, photoelectric conversion elements have not yet achieved a lifespan comparable to that of semiconductors. One of the reasons for this is the deterioration of electrodes formed on semiconductors.

次の具体例を挙げて説明する。第3図は、従来の光電変
換素子の1例として太陽電池の構造を図解した断面図で
ある。図示の太陽電池は、透明な基板1を有し、その上
に透明電極2が形成され、更にその上に、透明電極2の
一部を露出させるように半導体膜3が形成されている。
This will be explained using the following specific example. FIG. 3 is a cross-sectional view illustrating the structure of a solar cell as an example of a conventional photoelectric conversion element. The illustrated solar cell has a transparent substrate 1, on which a transparent electrode 2 is formed, and further on which a semiconductor film 3 is formed so as to expose a part of the transparent electrode 2.

そして、その半導体膜3の上には、背面電極4が形成さ
れ、半導体膜3とショットキー接合している。また、透
明電極2と背面電極4とには、リード線5がボンディン
グ部6により接続されている。更に、透明電極2より半
導体膜3側全てが樹脂7により封止されている。なお、
上記太陽電池の各層の厚さの関係は、実際には、図示の
寸法関係にはなく、図面は薄い層を適宜誇張して厚く図
示しである。
A back electrode 4 is formed on the semiconductor film 3 and is in a Schottky junction with the semiconductor film 3. Furthermore, a lead wire 5 is connected to the transparent electrode 2 and the back electrode 4 through a bonding portion 6 . Further, the entire area closer to the semiconductor film 3 than the transparent electrode 2 is sealed with a resin 7. In addition,
The relationship between the thicknesses of the respective layers of the solar cell is not actually the dimensional relationship shown in the drawings, and the drawings appropriately exaggerate the thinner layers to make them thicker.

かかる太陽電池は、光8が基板1、透明電極2を通過し
、半導体膜3に入射し、半導体膜3で電気に変換され、
透明電極2および背面電極4にそれぞれボンディング部
5で接続された2本のリード線5を通して、装置外に取
り出される。
In such a solar cell, light 8 passes through a substrate 1 and a transparent electrode 2, enters a semiconductor film 3, and is converted into electricity by the semiconductor film 3.
It is taken out of the device through two lead wires 5 connected to the transparent electrode 2 and the back electrode 4 through bonding portions 5, respectively.

以上のような太陽電池の効率は、表面反射率や、半導体
の吸収係数や、背面電極□の電気抵抗と光反射率などに
より評価できる。その中で背面電極の特性の安定は現在
比較的重要になっている。なぜならば、表面反射率は、
反射防止膜などを設けることによりほぼ恒久的に改善で
き、また、半導体の吸収係数は半導体材料の性質により
決定されるためである。
The efficiency of the solar cell described above can be evaluated based on the surface reflectance, the absorption coefficient of the semiconductor, the electrical resistance and light reflectance of the back electrode □, etc. Among these, the stability of the characteristics of the back electrode is now relatively important. This is because the surface reflectance is
This is because it can be almost permanently improved by providing an antireflection film, and the absorption coefficient of a semiconductor is determined by the properties of the semiconductor material.

背面電極の電気抵抗が大きいと、それだけ取り出す電力
の損失になり、従って、電気抵抗が低いことが必要であ
る。一方、背面電極まで達した光を効率的に電力に変換
するには、その光を半導体膜に戻すことが必要であり、
反面、背面電極が光を吸収するとそれだけ温度が上昇す
るので、背面電極の光反射率は高いことが必要である。
If the electrical resistance of the back electrode is large, the amount of power extracted will be lost, so it is necessary that the electrical resistance be low. On the other hand, in order to efficiently convert the light that has reached the back electrode into electricity, it is necessary to return the light to the semiconductor film.
On the other hand, as the back electrode absorbs light, the temperature increases accordingly, so the light reflectance of the back electrode needs to be high.

更に、リード線にアルミニウム線が現在広く利用され始
めており、そのアルミニウム線との間に絶縁性金属間化
合物を生成しないことが好ましい。そこで、現在、背面
電極にアルミニウム(八1)膜が利用されている。
Furthermore, aluminum wires are now being widely used as lead wires, and it is preferable not to form insulating intermetallic compounds between the lead wires and the aluminum wires. Therefore, an aluminum (81) film is currently used for the back electrode.

発明が解決しようとする問題点 以上の如き、従来のAl膜背面電極を使用した太陽電池
は、使用時間が長くなるにつれて、半導体膜自体の寿命
に達していないにもかかわらず、一対のリード線5間の
電気抵抗が上昇し、光電変換率が低下する問題があった
Problems to be Solved by the Invention As described above, in solar cells using conventional Al film back electrodes, as the usage time becomes longer, a pair of lead wires becomes weaker even though the life of the semiconductor film itself has not been reached. There was a problem in that the electrical resistance between the electrodes increased and the photoelectric conversion rate decreased.

その理由を検討したところ、背面電極の電気抵抗が増大
したためと考えられる。そのことを確認するために、背
面電極の電気抵抗を測定する第4・図に示す構造の光電
変換装置を試作して、半導体膜上の背面電極の電気抵抗
を測定した。
The reason for this was considered to be that the electrical resistance of the back electrode increased. In order to confirm this, a photoelectric conversion device having the structure shown in FIG. 4 was fabricated as a prototype to measure the electrical resistance of the back electrode on the semiconductor film, and the electrical resistance of the back electrode on the semiconductor film was measured.

第4図において、第3図と同様な部分については、同一
の参照番号を付して説明を省略する。第4図に示す測定
用太陽電池は、一対のリード線5を共に背面電極上に成
る距離圧いに離してワイヤポンディングした点が第3図
の太陽電池と異なるものである。そのような半導体装置
を高湿度の雰囲気に所定の時間放置したところ、一対の
リード線5間の抵抗が上昇した。
In FIG. 4, parts similar to those in FIG. 3 are given the same reference numerals and their explanations will be omitted. The solar cell for measurement shown in FIG. 4 differs from the solar cell shown in FIG. 3 in that a pair of lead wires 5 are wire-bonded with a distance between them on the back electrode. When such a semiconductor device was left in a high humidity atmosphere for a predetermined period of time, the resistance between the pair of lead wires 5 increased.

それは、AI電極の耐食性が悪いため、透明電極3と封
止樹脂7との間のリークパス9などから水分が侵入して
、背面電極のアルミニウムが腐食・変質して抵抗値が上
昇するためであると判断される。
This is because the corrosion resistance of the AI electrode is poor, and moisture enters from the leak path 9 between the transparent electrode 3 and the sealing resin 7, causing corrosion and deterioration of the aluminum of the back electrode, increasing the resistance value. It is judged that.

これに関連して、アルミニウム線の腐食も考えられる。Corrosion of the aluminum wire is also considered in this connection.

しかし、■アルミニウム線はリークパスから離れている
こと、■AI背面電極が数百〜千人程度であり、その腐
食の電気抵抗に対する影響が大きいのに対して、アルミ
ニウム線は数十μmあり、多少の腐食はその電気抵抗に
ほとんど影響しないことの2つの理由から、アルミニウ
ム線の腐食が原因でないと判断される。
However, ■The aluminum wire is far from the leak path, and ■The AI back electrode has a thickness of several hundred to one thousand people, and its corrosion has a large effect on the electrical resistance, whereas the aluminum wire has a thickness of several tens of μm, which is somewhat It is judged that corrosion of the aluminum wire is not the cause for two reasons: the corrosion has almost no effect on the electrical resistance.

かかる理由から、第4図の測定用太陽電池の一対のリー
ド線5間の抵抗の増大は、背面電極の劣化によると判断
できる。
For this reason, it can be determined that the increase in resistance between the pair of lead wires 5 of the solar cell for measurement shown in FIG. 4 is due to deterioration of the back electrode.

以上のような背面電極の劣化はリークパス9などを介し
ての水分の侵入が原因であり、封止樹脂と半導体膜との
間の封止を完全無欠にすることにより背面電極の劣化を
防止できると観念的には言うことができるが、現実には
、封止樹脂と半導体とは材料が異なるために、様々な温
度条件において長時間にわたり完全な封止を実現するこ
とは不可能である。
The deterioration of the back electrode as described above is caused by the intrusion of moisture through the leak path 9, etc., and deterioration of the back electrode can be prevented by ensuring complete sealing between the sealing resin and the semiconductor film. However, in reality, since the sealing resin and the semiconductor are different materials, it is impossible to achieve complete sealing over a long period of time under various temperature conditions.

そして、以上の問題は、太陽電池に限らず、光通信用の
受光素子などの他の光電変換素子にも共通した問題であ
る。
The above problems are common not only to solar cells but also to other photoelectric conversion elements such as light receiving elements for optical communication.

そこで、本発明は、光電変換素子のための非常に耐食性
に優れたAl背面電極を提供せんとするものである。
Therefore, the present invention aims to provide an Al back electrode with extremely excellent corrosion resistance for a photoelectric conversion element.

問題点を解決するための手段 本発明者は、上記のような現状に鑑みて、光電変換素子
の背面電極の耐食性を改善すべく種々検討した結果、A
l電極の腐食はその結晶粒界から生じ、その腐食の程度
はAl膜の応力状態に依存しており、また、その腐食は
Al膜を圧縮応力状態とすることにより解決できること
を見出した。本発明はこのような知見に基くものである
Means for Solving the Problems In view of the above-mentioned current situation, the inventor of the present invention has conducted various studies to improve the corrosion resistance of the back electrode of a photoelectric conversion element, and has developed the following.
It has been found that the corrosion of the l electrode occurs from its grain boundaries, the degree of corrosion depends on the stress state of the Al film, and that the corrosion can be solved by placing the Al film in a compressive stress state. The present invention is based on this knowledge.

すなわち、本発明は、半導体膜と、該半導体膜の光入射
側に設けられた入射側電極と、前記半導体膜の前記入射
側電極と反対側に設けられた背面電極とを有する光電変
換素子において、前記背面電極が、圧縮応力状態にある
Al膜で構成されていることを特徴とする。
That is, the present invention provides a photoelectric conversion element having a semiconductor film, an incident side electrode provided on the light incident side of the semiconductor film, and a back electrode provided on the side opposite to the incident side electrode of the semiconductor film. , the back electrode is made of an Al film under compressive stress.

また、上記した半導体膜は、従来公知の任意の材料を使
用することができ、例えば、アモルファス・シリコン系
、アモルファス・ゲルマニウム系、結晶シリコン系、結
晶ゲルマニウム系などの単体半導体の単一層で構成する
ことも、また、PN接合やPIN接合を有するシリコン
、ゲルマニウムなどの単体半導体または■−■族などの
化合物半導体で構成することもできる。特に、アモルフ
ァス・シリコン系、アモルファスφゲルマニウム系は、
屋外等過酷な腐食環境下で用いられる光電変換素子に対
しては、特に適した材料である。
Further, the semiconductor film described above can be made of any conventionally known material, for example, it is composed of a single layer of a single semiconductor such as amorphous silicon, amorphous germanium, crystalline silicon, or crystalline germanium. Alternatively, it can be made of an elemental semiconductor such as silicon or germanium having a PN junction or a PIN junction, or a compound semiconductor such as a ■-■ group semiconductor. In particular, amorphous silicon-based and amorphous φ germanium-based
It is a particularly suitable material for photoelectric conversion elements used in harsh corrosive environments such as outdoors.

上記したAl膜の圧縮応力状態は、封止材料により与え
ることも可能であるが、前記半導体膜上にAl膜を形成
した後に残る残留応力によって実現することが確実であ
り、好ましい。
Although the compressive stress state of the Al film described above can be provided by a sealing material, it is certainly and preferably achieved by the residual stress remaining after forming the Al film on the semiconductor film.

Al膜形成手段としては、半導体膜を保護する意味で、
真空手段を用いた物理蒸着(PVD)法や化学蒸着(C
VD)法を使用する必要がある。これら方法のうち、A
I膜に関しては、コストの面から真空蒸着法なとが種々
検討されているが、これらの方法で形成されたAl膜は
一般的に引張応力状態にある。そこで、上記したように
Al膜に圧縮応力を残すためには、イオンビームやクラ
スタイオンビームを利用したイオンプレーティング法、
スパッタリング法を利用することが有利である。
As an Al film forming means, in the sense of protecting the semiconductor film,
Physical vapor deposition (PVD) using vacuum means and chemical vapor deposition (C
VD) method must be used. Among these methods, A
Regarding the I film, various methods such as vacuum evaporation are being considered from the viewpoint of cost, but the Al film formed by these methods is generally in a state of tensile stress. Therefore, as mentioned above, in order to leave compressive stress in the Al film, the ion plating method using an ion beam or cluster ion beam,
It is advantageous to use sputtering methods.

また、前記Al膜の残留応力は、少なくとも6kg/m
m2であることが好ましく、更に、前記Al膜の結晶粒
径は、1μm以下であることが好ましい。
Further, the residual stress of the Al film is at least 6 kg/m
m2, and further preferably, the crystal grain size of the Al film is 1 μm or less.

〕月 以上説明したように、AI背面電極を圧縮応力状態に維
持することにより、従来問題となっていたAl背面電極
の腐食の問題、特に最短リークパス9部分から侵入する
水分などによる腐食が防止できる。
As explained above, by maintaining the AI back electrode in a compressive stress state, it is possible to prevent corrosion of the Al back electrode, which has been a problem in the past, especially corrosion caused by moisture entering through the 9 shortest leak paths. .

発明者らは、半導体膜上のAl膜に関して、層膜質と腐
食性について克明に調査した。その結果、上述したよう
に、Al膜の腐食は結晶粒界から生じること、即ちAI
膜の応力状態に依存していることを見出した。
The inventors conducted a thorough investigation on the layer quality and corrosivity of an Al film on a semiconductor film. As a result, as mentioned above, corrosion of the Al film occurs from the grain boundaries, that is, the corrosion of the Al film occurs from the grain boundaries.
It was found that it depends on the stress state of the membrane.

詳しく述べると、基板として42%Ni −Fe合金を
用いて、各種方法でAl膜を形成し、Al膜応力と腐食
性との関係を調べ、4段階評価した。その結果を第1表
に示す。なお、第1表中のイオンプレーティング法及び
スパッタリング法の条件については光電変換素子の背面
電極としての他の特性、例えばAl膜−半導体膜間の密
着性等を考慮しながら、蒸着速度、バイアス電圧、基板
温度を配慮して形成している。第1表の結果より、AI
膜応力が引張状態にある場合、耐食性は極端に劣化し、
逆に圧縮応力状態にある場合には、耐食性が良好であり
、更に、圧縮応力が高い程耐食性は向上することがわか
ろう。
Specifically, using a 42% Ni-Fe alloy as a substrate, an Al film was formed by various methods, and the relationship between Al film stress and corrosivity was investigated and evaluated in four stages. The results are shown in Table 1. Regarding the conditions for the ion plating method and the sputtering method in Table 1, the deposition rate, bias, etc. should be adjusted while taking into account other characteristics of the back electrode of the photoelectric conversion element, such as the adhesion between the Al film and the semiconductor film. It is formed with consideration to voltage and substrate temperature. From the results in Table 1, AI
When the membrane stress is in a tensile state, corrosion resistance deteriorates extremely;
On the contrary, when the material is in a compressive stress state, the corrosion resistance is good, and it will be understood that the higher the compressive stress is, the better the corrosion resistance is.

第1表 注1:八1膜応力は、十が引張り力を示し、−が圧縮力
を示している。
Table 1 Note 1: In the 81 membrane stress, 10 indicates tensile force and - indicates compressive force.

注2:耐食性は、◎が最もよく、順次、○、△となり、
×は最も悪いことを示している。
Note 2: For corrosion resistance, ◎ is the best, followed by ○, △, and
× indicates the worst condition.

なお、Al膜応力はX線回折より求め、腐食性試験は、
プレッシャークツカーテスト(121℃、2気圧)によ
って行ったものである。
The Al film stress was determined by X-ray diffraction, and the corrosion test was conducted using
This was carried out using a pressure test (121°C, 2 atmospheres).

上記の現象、すなわちAl被覆の応力状態と耐食性との
正確な関連性については、現在のところ定かではないが
、Al膜に残留引張り応力が存在した場合、その応力は
粒界近傍に集中し一種の応力腐食が生じていると考えら
れる。即ち、膜応力が引張状態にある場合には、応力腐
食が生じやすく、又、腐食電位、水素ぜい性の観点から
も不利であるものと考えられる。
The exact relationship between the above phenomenon, that is, the stress state of the Al coating and its corrosion resistance, is currently unclear, but if residual tensile stress exists in the Al film, the stress will be concentrated near the grain boundaries and It is thought that stress corrosion has occurred. That is, when the membrane stress is in a tensile state, stress corrosion is likely to occur, and it is considered to be disadvantageous from the viewpoint of corrosion potential and hydrogen embrittlement.

更に粒径についてみると、微粒であるほど結晶方位差に
より優先的に腐食された結晶粒の周囲に及ぼす影響が少
ない。また、イオン・ブレーティング法などを用いた場
合にはAl電極と半導体層との密着性が改善され、ふく
れを生じにくく、かつ接触電位が小さくなる。それ故、
Al膜を残留圧縮応力状態にすることに加えて、結晶粒
径を1μm以下にすることにより、背面電極にふくれが
生じ難く、安定する。
Furthermore, regarding the grain size, the finer the grain, the less influence it has on the surroundings of crystal grains that are preferentially corroded due to crystal orientation differences. Furthermore, when an ion blating method or the like is used, the adhesion between the Al electrode and the semiconductor layer is improved, making it difficult to cause blisters and reducing the contact potential. Therefore,
In addition to bringing the Al film into a state of residual compressive stress, by setting the crystal grain size to 1 μm or less, the back electrode is less likely to bulge and becomes stable.

かくして、本発明にあっては、以上の諸作用により、充
分な耐食性を、背面電極をなすAl膜に付与することが
できる。
Thus, in the present invention, sufficient corrosion resistance can be imparted to the Al film forming the back electrode due to the above-mentioned effects.

実施例 以下、添付図面を参照して本発明による光電変換素子の
背面電極の実施例を説明する。
EXAMPLES Hereinafter, examples of the back electrode of a photoelectric conversion element according to the present invention will be described with reference to the accompanying drawings.

実施例1 第1図に示す構造の太陽電池を作製した。透明なガラス
基板10の上に、透明電極としてITO膜1膜上100
0への厚さに形成し、更にその上に、透明電極11の一
部を露出させるように、半導体膜として厚さ5000八
にアモルファス・シリコン膜12を形成した。次いで、
アモルファス・シリコン膜12の上に、背面電極として
へl膜13をイオン・ブレーティング法(真空度2 X
IO’torr、基板温度200℃、バイアス電圧1k
V、成膜速度15人/sec、 )により厚さ500八
に形成し、アモルファス・シリコン膜12とショットキ
ー接合させた。そして、ITO膜1膜上1I膜13とに
、リード線14をボンディング部15でアルミニウム半
田により接続した。その後、ITO膜1膜上1アモルフ
ァス・シリコン膜12側全てをシリコン樹脂16により
封止した。そのように作成された太陽電池のAl膜の残
留応力は、圧縮方向に8Kg/mm2であった。この太
陽電池も、矢印17の方向より光をガラス基板10を介
して照射することにより使用する。
Example 1 A solar cell having the structure shown in FIG. 1 was manufactured. On a transparent glass substrate 10, an ITO film 100 is placed as a transparent electrode.
Further, an amorphous silicon film 12 was formed as a semiconductor film to a thickness of 5,000 mm so as to expose a part of the transparent electrode 11. Then,
A helium film 13 is placed on top of the amorphous silicon film 12 as a back electrode using an ion-blating method (vacuum level 2
IO'torr, substrate temperature 200℃, bias voltage 1k
The film was formed to a thickness of 500 mm at a deposition rate of 15 people/sec) and Schottky bonded to the amorphous silicon film 12. Then, a lead wire 14 was connected to the ITO film 1 and the 1I film 13 at a bonding portion 15 using aluminum solder. Thereafter, the entire surface of the ITO film 1 and the amorphous silicon film 12 was sealed with a silicone resin 16. The residual stress of the Al film of the solar cell thus prepared was 8 Kg/mm2 in the compression direction. This solar cell is also used by irradiating light through the glass substrate 10 in the direction of the arrow 17.

また、上記した実施例の背面電極の耐食性を試験するた
めに、同一条件で第4図に示すような試験用太陽電池を
作成した。そして、プレッシャークツカーテスト(12
1℃、2気圧、相対湿度100%×26時間)を施した
。そのテスト前後における2本のリード線14間の電気
抵抗を第2図に実線で示す。
Further, in order to test the corrosion resistance of the back electrode of the above-described example, a test solar cell as shown in FIG. 4 was prepared under the same conditions. Then, the pressure kicker test (12
1°C, 2 atm, and 100% relative humidity for 26 hours). The electrical resistance between the two lead wires 14 before and after the test is shown by a solid line in FIG.

比較例1 背面電極であるAI膜を真空蒸着法で形成したこと以外
実施例1と同一にして太陽電池を作成し、また、第4図
に示す試験用太陽電池も作成した。
Comparative Example 1 A solar cell was produced in the same manner as in Example 1 except that the AI film serving as the back electrode was formed by vacuum evaporation, and a test solar cell shown in FIG. 4 was also produced.

背面電極であるAl膜の残留応力は、この比較例1では
引張力向に3Kg/mm2であった。
In Comparative Example 1, the residual stress of the Al film serving as the back electrode was 3 Kg/mm2 in the tensile force direction.

更に、実施例1と同一条件で、プレッシャークツカーテ
ストを施して、テスト前後における2本のリード線14
間の電気抵抗を測定した。その結果を第2図に点線で示
す。
Furthermore, a pressure test was conducted under the same conditions as in Example 1, and the two lead wires 14 were tested before and after the test.
The electrical resistance between them was measured. The results are shown in FIG. 2 by dotted lines.

第2図のグラフの実線と点線との比較から明らかなよう
に、本発明による実施例1の抵抗変化は僅少である。す
なわち、本発明によるAl背面電極の耐湿性は在来より
もはるかに優れ、光電変換素子の背面電極として適して
いることがわかろう。
As is clear from the comparison between the solid line and the dotted line in the graph of FIG. 2, the resistance change in Example 1 according to the present invention is slight. That is, it can be seen that the moisture resistance of the Al back electrode according to the present invention is far superior to that of the conventional one, and it is suitable as a back electrode of a photoelectric conversion element.

従って、かかる背面電極を有する太陽電池は、従来より
長時間、光電変換効率が低下することなく使用できる。
Therefore, a solar cell having such a back electrode can be used for a longer period of time than before without decreasing photoelectric conversion efficiency.

なお、本実施例では、半導体膜としてはアモルファス・
シリコン、封止物質としてはシリコン樹脂を使用してい
るが、他の材料であっても同様に本発明の効果は実現で
きる。
Note that in this example, the semiconductor film is amorphous.
Although silicone and silicone resin are used as the sealing material, the effects of the present invention can be similarly achieved using other materials.

また、透明電極さして、■TO膜11を使用しているが
、他の透明導電性材料の膜を使用してもよい。更には、
透明電極上に櫛状の不透明電極を使用してもよく、その
場合該不透明電極に本発明品を用いることができる。
Further, although the TO film 11 is used as the transparent electrode, films of other transparent conductive materials may be used. Furthermore,
A comb-shaped opaque electrode may be used on the transparent electrode, and in that case, the product of the present invention can be used for the opaque electrode.

更に、上記実施例では、ガラス基板10を使用している
が、半導体膜12を半導体基板として、透明電極などの
入射側電極と背面電極との支持体とすれば、ガラス基板
は省略することができる。
Furthermore, although the glass substrate 10 is used in the above embodiment, the glass substrate can be omitted if the semiconductor film 12 is used as a support for an incident side electrode such as a transparent electrode and a back electrode. can.

なお、上記実施例は本発明による背面電極を太陽電池に
適用したものであるが、本発明による光電変換素子のA
l背面電極は、樹脂封止型パッケージを施したあらゆる
光電変換素子に対し適用することができる。
In addition, although the above-mentioned example applies the back electrode according to the present invention to a solar cell, A of the photoelectric conversion element according to the present invention
The back electrode can be applied to any photoelectric conversion element packaged in a resin-sealed package.

発明の効果 以上の説明から明らかなように、本発明の背面電極は、
圧縮応力を作用しているAl膜で構成されているために
、応力の作用していないAl膜や、残留引張応力を持つ
Al膜よりも、耐湿性が良い。従って、光電変換素子の
一対のリード線間の抵抗の1 コ 経年変化が小さい。
Effects of the Invention As is clear from the above explanation, the back electrode of the present invention has the following effects:
Since it is composed of an Al film to which compressive stress is applied, it has better moisture resistance than an Al film to which no stress is applied or an Al film with residual tensile stress. Therefore, the change in resistance between the pair of lead wires of the photoelectric conversion element over time is small.

更に、応力腐食の程度は、引張応力場で大きく圧縮応力
場で小さく、そして、特に残留圧縮応力が5Kg/mm
2以上のときには効果が顕著である。
Furthermore, the degree of stress corrosion is large in the tensile stress field and small in the compressive stress field, and especially when the residual compressive stress is 5 Kg/mm.
When the number is 2 or more, the effect is significant.

それ故、本発明による背面電極の残留圧縮応力を6Kg
/mrn2J2J上とすることにより、Al電極3の粒
界腐食が著しく遅くでき、リード線間の抵抗の経年変化
を更に抑えることができる。
Therefore, the residual compressive stress of the back electrode according to the present invention can be reduced to 6Kg.
/mrn2J2J or above, intergranular corrosion of the Al electrode 3 can be significantly slowed down, and aging change in resistance between lead wires can be further suppressed.

以上の効果により、本発明によるAl背面電極を有し、
樹脂封止型パッケージを施した光電変換素子は、長時間
にわたり安定した光電変換効率を維持することができる
。それ故、交換などを間隔を長くすることができ、装置
の保守を安価にできる。
Due to the above effects, having the Al back electrode according to the present invention,
A photoelectric conversion element provided with a resin-sealed package can maintain stable photoelectric conversion efficiency over a long period of time. Therefore, replacement intervals can be extended, and maintenance of the device can be made inexpensive.

特に、厳しい環境で使用される太陽電池に本発明の背面
電極を使用した場合、効果がある。
Particularly, when the back electrode of the present invention is used in a solar cell used in a harsh environment, it is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による背面電極を有する太陽電池の概
略断面図、 第2図は、本発明と従来例とにより背面電極の電気抵抗
の値の経時変化の例を示すグラフ、第3図は、従来の背
面電極を有する太陽電池の概略断面図、 第4図は、背面電極の抵抗値を試験するための光電変換
素子構造の断面図である。 〔主な参照番号〕 ■・・透明な基板、2・・透明電極 3・・半導体膜、 4・・背面電極 5・・す〜ド線、  6・・ポンディング部7・・封止
樹脂、  9・・リークパス10・・透明なガラス基板
、11・・ITO膜12・・アモルファス・シリコン膜
、13・・AI膜膜種4・リード、   15・・ポン
ディング部16・・シリコン樹脂
FIG. 1 is a schematic cross-sectional view of a solar cell having a back electrode according to the present invention, FIG. 2 is a graph showing an example of the change over time in the electrical resistance value of the back electrode according to the present invention and a conventional example, and FIG. 4 is a schematic cross-sectional view of a solar cell having a conventional back electrode, and FIG. 4 is a cross-sectional view of a photoelectric conversion element structure for testing the resistance value of the back electrode. [Main reference numbers] ■...Transparent substrate, 2...Transparent electrode 3...Semiconductor film, 4...Back electrode 5...Stone wire, 6...Ponding part 7...Sealing resin, 9..Leak path 10..Transparent glass substrate, 11..ITO film 12..Amorphous silicon film, 13..AI film film type 4.Lead, 15..Ponding part 16..Silicon resin

Claims (1)

【特許請求の範囲】 (1)半導体膜と、該半導体膜の光入射側に設けられた
入射側電極と、前記半導体膜の前記入射側電極と反対側
に設けられた背面電極とを有する光電変換素子において
、前記背面電極が、圧縮応力状態にあるAl膜で構成さ
れていることを特徴とする光電変換素子の背面電極。 (2)前記Al膜の圧縮応力状態は、前記半導体膜上に
Al膜を形成した後に残る残留圧縮応力によって実現さ
れていることを特徴とする特許請求の範囲第(1)項記
載の光電変換素子の背面電極。 (3)前記Al膜の残留圧縮応力は、少なくとも6kg
/mm^2であることを特徴とする特許請求の範囲第(
2)項記載の光電変換素子の背面電極。 (5)前記Al膜は、イオンプレーティング法及びスパ
ッタリング法の内のいずれかを使用して前記半導体膜上
にAlを堆積させることにより形成されていることを特
徴とする特許請求の範囲第(2)項から第(4)項まで
のいずれかに記載の光電変換素子の背面電極。
Scope of Claims: (1) A photovoltaic device having a semiconductor film, an incident side electrode provided on the light incident side of the semiconductor film, and a back electrode provided on the side opposite to the incident side electrode of the semiconductor film. A back electrode of a photoelectric conversion element, wherein the back electrode is made of an Al film under compressive stress. (2) The photoelectric conversion according to claim (1), wherein the compressive stress state of the Al film is realized by residual compressive stress remaining after forming the Al film on the semiconductor film. Back electrode of element. (3) The residual compressive stress of the Al film is at least 6 kg.
/mm^2
2) A back electrode of the photoelectric conversion element described in section 2). (5) The Al film is formed by depositing Al on the semiconductor film using either an ion plating method or a sputtering method. A back electrode of a photoelectric conversion element according to any one of items 2) to 4).
JP60108789A 1985-05-21 1985-05-21 Backplane electrode of photoelectric conversion element Pending JPS61267373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60108789A JPS61267373A (en) 1985-05-21 1985-05-21 Backplane electrode of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108789A JPS61267373A (en) 1985-05-21 1985-05-21 Backplane electrode of photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS61267373A true JPS61267373A (en) 1986-11-26

Family

ID=14493519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108789A Pending JPS61267373A (en) 1985-05-21 1985-05-21 Backplane electrode of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS61267373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128393B2 (en) 2010-07-21 2018-11-13 First Solar, Inc. Connection assembly protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128393B2 (en) 2010-07-21 2018-11-13 First Solar, Inc. Connection assembly protection

Similar Documents

Publication Publication Date Title
US6175075B1 (en) Solar cell module excelling in reliability
US5248345A (en) Integrated photovoltaic device
JP5122435B2 (en) Solar cell module and sealing method thereof
US6320115B1 (en) Semicondonductor device and a process for the production thereof
JP3057671B2 (en) Solar cell module
US7781670B2 (en) Organic photovoltaic component with encapsulation
EP1981088B1 (en) Solar battery element
EP0769818A2 (en) Solar cell module having a surface side covering material with a specific nonwoven glass fiber member
JP3288876B2 (en) Solar cell module and method of manufacturing the same
US20110214714A1 (en) Thin-film solar cell interconnection
US20140034113A1 (en) Module level solutions to solar cell polarization
US20120000512A1 (en) Solar Cell And Method For Manufacturing Solar Cell
US20100313943A1 (en) Thin-film solar cell and process for producing it
US11257965B2 (en) Forming front metal contact on solar cell with enhanced resistance to stress
JPH04209576A (en) Photoelectric transducer
US4005468A (en) Semiconductor photoelectric device with plural tin oxide heterojunctions and common electrical connection
JPS61267373A (en) Backplane electrode of photoelectric conversion element
JP2000507393A (en) Layer structure with weather and corrosion resistance
Contreras et al. Development of Cu (In, Ga) Se 2 test coupons for potential induced degradation studies
TW201347202A (en) Multi-junction photovoltaic modules incorporating ultra-thin flexible glass
JPS61199674A (en) Thin film solar cell module
JP3033140B2 (en) Solar cell module
WO2012124463A1 (en) Solar cell and solar cell module
JPH0458710B2 (en)
JPS6318349B2 (en)