JPS6126736A - Method for judging end of operation of copper converter - Google Patents
Method for judging end of operation of copper converterInfo
- Publication number
- JPS6126736A JPS6126736A JP14538384A JP14538384A JPS6126736A JP S6126736 A JPS6126736 A JP S6126736A JP 14538384 A JP14538384 A JP 14538384A JP 14538384 A JP14538384 A JP 14538384A JP S6126736 A JPS6126736 A JP S6126736A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- converter
- evaporation
- amount
- decrease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅転炉操業の終点判定法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for determining the end point of copper converter operation.
銅転炉操業における造銅期の終点判定は、従来一般的に
は羽口からロッドを差し込み、その先端に付着した白鍍
や粗銅の色を調べたり、あるいは転炉炉口より出るガス
の色を観察して、作業者の長年の経験に基すいて判断し
ている。しかしこの方法は熟練を要するうえに個人差も
あり、判定毎のバラツキが大きいので計器による定量的
且つ客観的な終点判定法が望まれていた。特に造銅期の
終点判定の良否は、操業成績に大きな影響を与えるので
定量性のある正確さが要求される。例えば、吹込み空気
量が不足すると粗銅中のS含有量が高くなり、次工程の
精製炉における脱硫処理に時間を要する等の悪影響を及
ぼす。また吹込み空気量が過剰となると銅の酸化損失が
増加するうえ、次ヒートの転炉操業の鍼装入時に酸化銅
が反応して、多量のSOガスを発生する等の支障をきた
す。Conventionally, the end point of the copper production period in copper converter operation has been determined by inserting a rod through the tuyere and examining the color of the white scum or blister deposited on the tip, or by checking the color of the gas coming out of the converter mouth. The decision is made based on the operator's many years of experience. However, this method requires skill, has individual differences, and has large variations in each determination, so a quantitative and objective end point determination method using a meter has been desired. In particular, the quality of determining the end point of the copper production stage has a large impact on operational performance, so quantitative accuracy is required. For example, if the amount of blown air is insufficient, the S content in the blister copper will increase, which will have an adverse effect such as requiring time for the desulfurization treatment in the refining furnace in the next step. Furthermore, if the amount of air blown is excessive, the oxidation loss of copper will increase, and the copper oxide will react when inserting the needle in the converter operation in the next heat, causing problems such as generation of a large amount of SO gas.
従って、計器による定量的な終点判定法が種々検討され
、次の三方法が提案されている。Therefore, various methods of quantitatively determining the end point using instruments have been studied, and the following three methods have been proposed.
(1)吹込み空気置針を利用する方法
(2)排ガスSO濃度計を利用する方法しかしながら、
(1)の方法では必要な理論空気量が装入物(鍼、冷材
等)及び産出物(粗銅、媛、ダスト箒)の物量および組
成の変動や酸素効率のバラツキにより変動するため、理
論式に基ずく計算吹込量で終点を判定することは従来の
熟練作業者の経験に基ずく判定に比べて精度が悪く、次
工程に支障をきたす危険性がある。また(2)の方法で
は炉口より出る製錬排ガスだけを直接に吸引することは
困難であり、フリーエアーの混入量のバラツキによって
SO濃度検出値が変動して正確さに欠ける点がある。ま
た排ガス中S02濃度の絶対値ではなく造銅期末期に現
われるsO濃度の急激な変化を検知することにより終点
判定の基準とする方法も提案されているが(特開昭54
−84828号)、銅転炉排ガスは多量のダストを含有
しているのでSO濃度計の吸引管が詰るなどの支障が頻
繁に発生し、SO濃度計の保守に多大な労力を要すると
いう実操業上の欠点を有する。(1) Method using a blow-in air indicator (2) Method using an exhaust gas SO concentration meter However,
In method (1), the theoretical amount of air required varies depending on the amount and composition of the charges (acupuncture needles, cold materials, etc.) and output products (blister copper, Hime, dust broom), and variations in oxygen efficiency. Determining the end point based on the calculated injection amount based on a formula is less accurate than conventional determination based on the experience of a skilled worker, and there is a risk of interfering with the next process. Furthermore, in method (2), it is difficult to directly suck only the smelting exhaust gas exiting from the furnace mouth, and the detected SO concentration value fluctuates due to variations in the amount of free air mixed in, resulting in a lack of accuracy. In addition, a method has been proposed in which the rapid change in SO concentration that appears at the end of the copper production stage is used as the criterion for determining the end point, rather than the absolute value of the S02 concentration in the exhaust gas (Japanese Patent Application Laid-Open No. 1983-1993).
-84828), copper converter exhaust gas contains a large amount of dust, so problems such as clogging of the suction pipe of the SO concentration meter frequently occur, and maintenance of the SO concentration meter requires a great deal of effort in actual operation. It has the above drawbacks.
本発明は上記のような従来の銅転炉操業の終点判定法の
欠点を解消して、定量的で精度が高く、且つ保守に労力
を要するSO濃度計を使用せずに、実操業上有利な銅転
炉操業の終点判定法を提供することを目的とする。The present invention eliminates the drawbacks of the conventional end point determination method for copper converter operation as described above, and provides quantitative and highly accurate methods that are advantageous in actual operation without using an SO concentration meter that requires laborious maintenance. The purpose of this study is to provide a method for determining the end point of copper converter operation.
(問題点を解決するための手段〕
この目的を達成するために本発明は、銅転炉の付帯設備
である廃熱ボイラーの時間当り蒸発量を計測し、造銅期
末期の蒸発量が急激に減少し始める時点を検出し、その
時点から時間当り蒸発量の減少幅が予め設定した値に達
したときをもって終点とすることを特徴°とする銅転炉
操業の終点判定法を提供する。(Means for solving the problem) In order to achieve this objective, the present invention measures the amount of evaporation per hour of the waste heat boiler, which is ancillary equipment of the copper converter. Provided is a method for determining the end point of copper converter operation, which is characterized in that the point in time when the amount of evaporation per hour starts to decrease is detected, and the end point is determined when the amount of decrease in the amount of evaporation per hour reaches a preset value from that point.
本発明者等は、銅転炉の排ガス熱回収を行なう転炉廃熱
ボイラーの蒸発量変化曲線は造媛期、造銅期で特有のパ
ターンを示し、特に造鋼期末期における急激な蒸発量減
少の過程はどのヒートにも共通のものであり、経過時間
に対してほぼ直線的な変化を示すことに着目した。第1
図にその代表例を示す。第1図において曲線Vはボイラ
ーの時間当り蒸発量の変化曲線であり、曲線Sは溶融浴
中のS濃度変化を示す。第1図におけるA点が蒸発量の
急激な減少が始まる時点であり、この後は送風時間に対
してほぼ直線的に蒸発量が減少する。The present inventors discovered that the evaporation change curve of the converter waste heat boiler, which recovers exhaust gas heat from the copper converter, shows a unique pattern in the Hime-making period and the Copper-making period, with a particularly rapid evaporation rate at the end of the steel-making period. We focused on the fact that the process of decrease is common to all heats, and shows a nearly linear change with respect to elapsed time. 1st
A typical example is shown in the figure. In FIG. 1, a curve V shows a change in the amount of evaporation per hour in the boiler, and a curve S shows a change in the S concentration in the molten bath. Point A in FIG. 1 is the point at which the evaporation amount begins to decrease rapidly, and after this point, the evaporation amount decreases almost linearly with respect to the air blowing time.
この蒸発量の急激な減少が始まる時点では、どのヒート
でも炉内反応はほぼ同一の状態となっていると判断でき
、また粗銅中のS含有量の急激な低下が緩まりほぼ定常
となる時点は、処理鋏量が200tの転炉の場合1時間
当り蒸発量の減少幅がA点から測って!、7tに達する
時点と一致することが確認されている。従って、時間当
り蒸発量の急激な減少が始まる時点(第1図におけるA
点)を検出して、そこから蒸発量の減少幅が予め設定し
た値に達したときを終点とすれば正確な終点とすること
ができる。なお、前記したように、終点とするに適切な
1時間当り蒸発量の減少幅は200 を転炉の場合4.
7tであるが、転炉の規模等が大きく変われば異なった
値となるが、この適正値は経験的に容易に見出し得るも
のである。At the point when the amount of evaporation starts to rapidly decrease, it can be judged that the reaction in the furnace is almost the same in all heats, and at the point when the rapid decrease in the S content in blister copper slows down and becomes almost steady. In the case of a converter with a processing capacity of 200 tons, the amount of decrease in evaporation per hour is measured from point A! , 7t. Therefore, the point at which a rapid decrease in the amount of evaporation per hour begins (A in Fig. 1)
An accurate end point can be obtained by detecting a point) and determining the end point when the amount of decrease in evaporation reaches a preset value. As mentioned above, the appropriate range of decrease in the amount of evaporation per hour for the end point is 200 in the case of a converter.
7t, but if the scale of the converter changes significantly, the value will be different, but this appropriate value can be easily found empirically.
(発明の効果)
以上に詳細に述べた本発明の銅転炉操業の終点判定法に
よれば、従来の作業者による目視判定よりも精度が高い
終点判定を計器によって定量的に行なうことができるの
で粗銅中の8%を低くすることができ、且つ銅の酸化ロ
スも防止することができるという大きな効果があり、ま
たSO濃度計を使用しないのでその保守に手間を要する
ことがなく実操業に適しているという効果もある。(Effects of the Invention) According to the method for determining the end point of copper converter operation of the present invention described in detail above, it is possible to quantitatively determine the end point using a meter with higher accuracy than the conventional visual determination by an operator. This has the great effect of reducing the content of blister copper by 8% and preventing copper oxidation loss.Also, since an SO concentration meter is not used, there is no need for maintenance, making it suitable for actual operation. It also has the effect of being suitable.
実施例1
0u品位51.8重量%の銅鍍208.5 tを冷材と
ともに装入して転炉操業を行ない、2回に分けて行なう
造銅期の後半開始後76分にて転炉ボイラーの蒸発量の
急激な減少が始まり、これより1時間当り蒸発量の減少
幅が4.7tに達したところで送風を止め終点とした。Example 1 208.5 tons of copper plated with 51.8 wt. The amount of evaporation in the boiler began to rapidly decrease, and when the amount of decrease in evaporation amount reached 4.7 tons per hour, the blowing of air was stopped and the end point was determined.
その結果、S含有量0.018重量%、02含有量0.
54重量%の粗銅178tが得られ、次工程の精製炉に
おける脱硫処理時間は5分間と極めて短かくできた。As a result, the S content was 0.018% by weight, and the 02 content was 0.01% by weight.
178 tons of blister copper containing 54% by weight was obtained, and the desulfurization treatment time in the refining furnace in the next step was extremely short, 5 minutes.
実施例2
0u品位55二3重量%の銅鍍を各ヒー) 2]0土1
0を装入して、造銅期にボイラー蒸発量の急激な減少が
始まる時点を検出し、その時点から1時間当り蒸発量の
減少幅が4.7tに達したときを終点とする本発明の終
点判定法による転炉操業を25回行なった。各ヒートで
得られた粗銅中のS重量%を第2図に示す。また、上記
と同様の面品位の銅鍍を各ヒート210土10を装入し
て、作業者か弱口から差込んだロッドの色と炉口から出
るガスの色を見る従来の目視判定法によって終点判定を
行なう転炉操業を19回行なった結果得られた粗銅のS
重量%を第3図に示す。Example 2 Copper plating with 0u grade 5523% by weight was applied to each heat) 2] 0 Soil 1
The present invention detects the point in time when the amount of boiler evaporation starts to decrease rapidly during the copper making period, and the end point is when the amount of decrease in evaporation amount reaches 4.7 tons per hour from that point. The converter operation was performed 25 times using the end point determination method. Figure 2 shows the weight percent of S in the blister copper obtained in each heat. In addition, there is a conventional visual judgment method in which copper plating with the same surface quality as above is charged with 210 soil of each heat, and the worker observes the color of the rod inserted through the weak opening and the color of the gas coming out of the furnace mouth. S of blister copper obtained as a result of 19 converter operations in which the end point was determined by
The weight percentages are shown in FIG.
本発明の終点判定法によって粗銅のS含有量が低くなり
、且つそのバラツキも大幅に減少していることが明らか
である。It is clear that the end point determination method of the present invention lowers the S content of blister copper, and also significantly reduces its variation.
第1図は銅転炉操業の造銅期のボイラー蒸発量と浴のS
濃度との関係を代表的に示す図である。
第2図は本発明の終点判定法を実施して得られた粗銅中
の8%を示す図であり、第3図は従来の終点判定法を実
施して得られた粗銅中の8%を示す図である。
代理人 弁理土中村勝成゛・、”、″(、’、’)”−
r’、I/第1図
送風時間(8)Figure 1 shows the amount of boiler evaporation and S of the bath during the copper production stage of copper converter operation.
FIG. 3 is a diagram representatively showing the relationship with concentration. Figure 2 is a diagram showing 8% of blister copper obtained by implementing the end point determination method of the present invention, and Figure 3 is a diagram showing 8% of blister copper obtained by implementing the conventional end point determination method. FIG. Agent: Patent Attorney Katsunari Donakamura ゛・,”,”(,',')”−
r', I/Figure 1 Air blowing time (8)
Claims (1)
り蒸発量を計測し、造銅期末期の蒸発量が急激に減少し
始める時点を検出し、その時点から時間当り蒸発量の減
少幅が予め設定した値に達したときをもって終了とする
ことを特徴とする銅転炉操業の終点判定法。(1) During copper converter operation, measure the evaporation amount per hour of the converter waste heat boiler, detect the point at which the evaporation amount starts to decrease rapidly at the end of the copper production stage, and from that point on, the evaporation amount per hour decreases. A method for determining the end point of copper converter operation, characterized in that the operation ends when the width reaches a preset value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14538384A JPS6126736A (en) | 1984-07-13 | 1984-07-13 | Method for judging end of operation of copper converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14538384A JPS6126736A (en) | 1984-07-13 | 1984-07-13 | Method for judging end of operation of copper converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6126736A true JPS6126736A (en) | 1986-02-06 |
JPS6140735B2 JPS6140735B2 (en) | 1986-09-10 |
Family
ID=15383971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14538384A Granted JPS6126736A (en) | 1984-07-13 | 1984-07-13 | Method for judging end of operation of copper converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126736A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6475631A (en) * | 1987-09-17 | 1989-03-22 | Mitsubishi Metal Corp | Method for refining copper in refining furnace |
-
1984
- 1984-07-13 JP JP14538384A patent/JPS6126736A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6475631A (en) * | 1987-09-17 | 1989-03-22 | Mitsubishi Metal Corp | Method for refining copper in refining furnace |
Also Published As
Publication number | Publication date |
---|---|
JPS6140735B2 (en) | 1986-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5950133B2 (en) | Hot metal pretreatment method | |
CN110607415A (en) | Method for measuring slag discharge amount of converter by using low-silicon aluminum killed steel | |
JPS6126736A (en) | Method for judging end of operation of copper converter | |
CN110904300A (en) | Efficient dephosphorization and furnace protection method for converter slag melting point control model | |
US3236630A (en) | Oxygen steelmaking | |
US3719469A (en) | Control for basic oxygen steelmaking furnace | |
KR20000045516A (en) | Method and device for predicting concentration of carbon in molten metal in electric furnace work | |
JPS5856729B2 (en) | Blowing control method for pure oxygen top-blown converter | |
JP2002060824A (en) | Blowing method into converter | |
KR100328062B1 (en) | Refining process extra low carbon steel | |
JPH036312A (en) | Method for controlling blowing in converter | |
CN1286399A (en) | Method for quickly measuring oxides in steel | |
CN112522475B (en) | Method for improving desulfurization efficiency in converter | |
JP7211553B1 (en) | Method for operating converter and method for producing molten steel | |
KR20000043436A (en) | Method for measuring height of molten ingot steel in blast furnace | |
JPS6274016A (en) | Method for controlling blowing for converter | |
JPH07118723A (en) | Converter refining method | |
CN118028562A (en) | Method for determining oxygen blowing amount of bottom powder injection converter in TSO stage based on flue gas | |
JPH07242928A (en) | Method for estimating carbon concentration in molten steel through rh type vacuum vessel | |
RU2026360C1 (en) | Device for determining the instant of metal discharge from converter | |
JPWO2020195598A1 (en) | Blow control method and smelt control device for converter type dephosphorization smelting furnace | |
JPH01230709A (en) | Method for controlling blowing in converter | |
JPS5831362B2 (en) | Slag reuse steel manufacturing method | |
SU1463768A1 (en) | Method of monitoring the flow of outgoing gases | |
SU1715860A1 (en) | Method of converter process control |