JPS6126707A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS6126707A
JPS6126707A JP14442784A JP14442784A JPS6126707A JP S6126707 A JPS6126707 A JP S6126707A JP 14442784 A JP14442784 A JP 14442784A JP 14442784 A JP14442784 A JP 14442784A JP S6126707 A JPS6126707 A JP S6126707A
Authority
JP
Japan
Prior art keywords
metal
metallic
rod
metal powder
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14442784A
Other languages
Japanese (ja)
Inventor
Yukio Toda
戸田 幸生
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP14442784A priority Critical patent/JPS6126707A/en
Publication of JPS6126707A publication Critical patent/JPS6126707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce easily metallic powder which is pulverous and is quickly cooled to solidify at a high yield by passing quickly large electric current to a metallic wire rod to generate line explosion so that the metallic wire rod is made into fine metallic liquid drops and bringing the metallic liquid drops into contact with a cooling medium. CONSTITUTION:The metallic wire rod 4 is provided in a copper cylinder 1 which rotates at a high speed and is always thoroughly cooled by liquid or gas. Said rod is extended between two electrodes 2 and 3 provided at both ends in the axial center part of said cylinder. The rod 4 is subjected to line explosion by passing instantaneously the large current to the rod 4 via said electrodes 2, 3 while the cylinder 1 is rotated. The rod 4 is then made into the fine metallic liquid drops which scatter at a high speed, collide against the inside circumferential surface of the cylinder body 1 and are cooled quickly. The pulverous metallic powder having about <=25mum grain size is thus efficiently obtd. The above- mentioned method is effectively applicable particularly in the stage of producing the amorphous metallic powder.

Description

【発明の詳細な説明】 ■発明の技術分野 この発明は、金属粉末の製造方法に関し、更に詳しくは
急速凝固された微細な金属粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing metal powder, and more particularly to a method for producing rapidly solidified fine metal powder.

(ロ)従来技術と問題点 従来、金属粉末の製造方法として、アトマイズ法、スプ
レー法あるいはキャビテーション法などが提案され実施
されている。
(b) Prior Art and Problems Conventionally, atomization methods, spray methods, cavitation methods, and the like have been proposed and put into practice as methods for producing metal powder.

この種の従来の金属粉末の製造方法においては、予め溶
融状態にされた溶融金属に気体あるいは固体の運動量を
伝えてこれを微小な液滴として飛散させ、該液滴を飛行
中あるいは他の冷却媒体に接触させて冷却凝固させるこ
とによシ金属粉末とする方法が採られる。
In this type of conventional metal powder manufacturing method, the momentum of a gas or solid is transferred to a molten metal that has been brought into a molten state in advance to scatter it as minute droplets, and the droplets are cooled in flight or by other means. A method is adopted in which metal powder is made by contacting with a medium and cooling and solidifying it.

このような従来方法、による場合には、溶融金属は運動
する気体あるいは固体によシ液滴に分断され飛散される
わけであるが、該気体あるいは固体の速度にも限度があ
るために液滴の微細化の程度にも限度があシ、また、金
属液滴の飛行速度にも侯度がある。したがって、微細で
且つ急速凝固された均質な金属粉末を得ることが難しく
、得られる金属粉末の粒径構成は一般にFi25〜10
00μmの広範囲にわたるものであシ、特に、粒径25
μm以下の微細な急冷凝固された金属粉末を高収率で得
難いという難点を有している。
In such conventional methods, the molten metal is split into droplets and scattered by the moving gas or solid, but since there is a limit to the speed of the gas or solid, the droplets are There are limits to the degree of miniaturization of metal droplets, and there are also restrictions on the flight speed of metal droplets. Therefore, it is difficult to obtain a fine, rapidly solidified, homogeneous metal powder, and the particle size structure of the obtained metal powder is generally Fi25 to 10.
00 μm, especially particle size 25 μm.
It has the disadvantage that it is difficult to obtain fine rapidly solidified metal powder of micrometer or less in high yield.

eう発明の目的 この発明は、上記に鑑み、微細で且つ急冷凝固された金
属粉末を高収率゛で得ることを可能にする金属粉末の製
造方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a method for producing metal powder that makes it possible to obtain fine, rapidly solidified metal powder at a high yield.

に)発明の構成及び効果 この発明は、基本的には金属線材に急激に大電流を通ず
ることにより該金属線材に線爆現象を発生させ該金属線
材を微細な金属液滴の高速流として飛散させ、前記高速
金属液滴を冷却媒体−に接触させて急速凝固させること
よりなる金属粉末の製造方法に係る。
B) Structure and effect of the invention This invention basically involves suddenly passing a large current through a metal wire to generate a radiation explosion phenomenon in the metal wire and scattering the metal wire as a high-speed flow of fine metal droplets. The present invention relates to a method for producing metal powder, which comprises bringing the high-speed metal droplets into contact with a cooling medium to rapidly solidify them.

本発明では、金属線材は衝撃的に流れる大電流によシ爆
発的に溶融されるとともに微細な液滴となって高速で飛
散し、冷却媒体によって急速に凝固される。したがって
、本発明による場合には粒径25μm以下の微細な金属
粉末を容易に得ることができ、特に高速な液滴流が形成
されることによシ液滴の急速冷却が効果的になされるた
めに非晶質金属粉末を得る方法として採用する場合にお
いてその効果が顕著である。
In the present invention, the metal wire is explosively melted by a large current flowing in an impulsive manner, and is scattered at high speed as fine droplets, which are rapidly solidified by a cooling medium. Therefore, according to the present invention, fine metal powder with a particle size of 25 μm or less can be easily obtained, and in particular, rapid cooling of the droplets is effectively achieved by forming a high-speed droplet flow. Therefore, the effect is remarkable when it is employed as a method for obtaining amorphous metal powder.

ここで、冷却媒体としては、固体金属、水等の液体ある
いは冷却されたアルゴンガス、窒素ガス等の気体が使用
される。
Here, as the cooling medium, a solid metal, a liquid such as water, or a cooled gas such as argon gas or nitrogen gas is used.

(実施例−1) 高速で回転する内径80顛φの低温の銅製円筒1の軸芯
部両端に設けられた電極2.3間に、線径1.6 vx
φ、長さ80m、、組成NiB1mBty、Fate 
 Crg&tzBto  %  N15sZray  
、  Co1.s#na、冨S!tsBttの金属線材
4を架設しく第1図参照)、円筒1を回転させて、第2
図に示す如き電気回路のスイッチ5を作動させて前記金
属線4に瞬時に大電流を通し金属線を線爆した。この線
爆現象によ多金属線材は、微細な金属液滴となって高速
で飛散し、周囲で高速回転させている銅製円筒1の内周
面に衝突して急冷され、微細な金属粉末が得られた。望
ましくは、円筒は液体または気体によシ常に、十分冷却
させているものを使用する。
(Example-1) A wire with a diameter of 1.6 vx was placed between electrodes 2.3 provided at both ends of the shaft core of a low-temperature copper cylinder 1 with an inner diameter of 80 mm that rotates at high speed.
φ, length 80m, composition NiB1mBty, Fate
Crg&tzBto% N15sZray
, Co1. s#na, Tomi S! tsBtt metal wire 4 (see Fig. 1), rotate the cylinder 1, and
A switch 5 of the electric circuit as shown in the figure was activated to instantaneously pass a large current through the metal wire 4, causing the metal wire to become a bomb. Due to this wire explosion phenomenon, the polymetallic wire becomes fine metal droplets and scatters at high speed, collides with the inner peripheral surface of the copper cylinder 1 that is rotating at high speed around it, and is rapidly cooled, forming fine metal powder. Obtained. Preferably, the cylinder is kept sufficiently cooled by liquid or gas.

なお、本実施例では、回路のコンデンサ6の容量を80
μF1充電電圧を13KVとした。
In addition, in this embodiment, the capacitance of the capacitor 6 of the circuit is set to 80
μF1 charging voltage was set to 13 KV.

N i 、 、 、is B l 、の金属線から得ら
れた金属粉末の粒度構成を第4図に示す。
The particle size structure of the metal powder obtained from the metal wires N i , , is B l is shown in FIG.

(実施例−2) 高速回転する円筒体11の内周溝7に入口9から出口1
0に流れる水8を満たし該円筒状水層の内径を6011
1Iφとし、前記実施例−1における如くして線径1.
6鰭φ、長さ80I111組成N1yssLsBty 
s Coas、5Fnn、zltsBtt 5Niss
Zrsy %FatmCr 2s4tmBtoの金属線
材44を線爆して金属粉末を得た。本実施例−2におい
ては、線爆現象によシ高速で飛散される微細な金属液滴
は円筒体内周の水層によシ急冷され、得られた金属粉末
は擬球形状であシその金属組織は非晶質金属組織を呈し
ていた。第5図にhγ6Cr!5t12J・金属線の粒
度構成を示す。
(Example-2) From the inlet 9 to the outlet 1 in the inner circumferential groove 7 of the cylindrical body 11 rotating at high speed
0 is filled with flowing water 8, and the inner diameter of the cylindrical water layer is 6011.
1Iφ, and the wire diameter was 1.1Iφ as in Example-1.
6 fins φ, length 80I111 composition N1yssLsBty
sCoas, 5Fnn, zltsBtt 5Niss
A metal wire 44 of Zrsy % FatmCr 2s4tmBto was wire bombed to obtain metal powder. In this Example-2, the fine metal droplets scattered at high speed by the radiation bombing phenomenon are rapidly cooled by the water layer around the cylindrical body, and the obtained metal powder has a pseudospherical shape. The metal structure exhibited an amorphous metal structure. Figure 5 shows hγ6Cr! The grain size structure of 5t12J metal wire is shown.

なお、本発明においては金属線材に印加される電気エネ
ルギーは該金属線材に線爆現象を発生させるに充分なも
のであればよいが、好ましくは該金属線材の単1位体積
当シの消費エネルギーとして次の条件を満足するように
することが望ましい。
In addition, in the present invention, the electric energy applied to the metal wire may be sufficient to cause a radiation explosion phenomenon in the metal wire, but it is preferable that the electric energy applied to the metal wire be equal to the energy consumption per unit volume of the metal wire. It is desirable that the following conditions be satisfied.

ここで、C:コンデンサーの容量(Farad)V:充
電電圧(Vo、1t) S:金属線材の断面積(酊り 1:金属線材の長さく朋) G:金属線材の質量 Cマ:線材の融点における定積比熱 θ2:線材の融点 θ3:線材の沸点 また、飛散する液滴を速今かに冷却凝固させるためには
、液体あるいは固体等の冷却媒体を金属線材゛の近くに
位置させておくことがのぞましく、上記実施例における
如く円筒状の冷却媒体を用いる場合には該円筒の内周半
径Rと金属線材の直径dとの関係をR=15〜25dと
することが望ましい。
Here, C: Capacity of the capacitor (Farad) V: Charging voltage (Vo, 1t) S: Cross-sectional area of the metal wire (difficulty 1: length of the metal wire) G: Mass of the metal wire C: Mass of the wire Specific heat at constant volume at the melting point θ2: Melting point of the wire θ3: Boiling point of the wire Also, in order to quickly cool and solidify the flying droplets, a cooling medium such as a liquid or solid should be placed near the metal wire. When using a cylindrical cooling medium as in the above embodiment, it is desirable that the relationship between the inner circumferential radius R of the cylinder and the diameter d of the metal wire be R = 15 to 25 d. .

以上の通シで、本発明の金属粉末製造方法による場合に
は、粒径25μm以下の微細な金属粉末を収率よく得る
ことができ、特に微細な非晶質金属粉末の実用的な製造
方法として工業的価値が大きい。
As described above, when using the metal powder manufacturing method of the present invention, fine metal powder with a particle size of 25 μm or less can be obtained with a high yield, and is a particularly practical method for manufacturing fine amorphous metal powder. It has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は本発明
方法の実施に利用される電気回路の例を示す回路図、第
3図は本発明の別の実施例を示す断面図、第4図、第5
図は実施例で得られた金属粉末の粒度構成を示す。 図中=1・・・円筒体  2・・・電極  3・・・電
極4.44・・・金属線材  5・・・スイッチ6・・
・コンデンサー  7・・・内周溝  8・・・水層第
1図 第2図 (%)1犀 ocDOす〜 (%)1)
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing an example of an electric circuit used to carry out the method of the present invention, and FIG. 3 is a cross-sectional view showing another embodiment of the present invention. Figure, Figure 4, Figure 5
The figure shows the particle size structure of the metal powder obtained in the example. In the figure = 1... Cylindrical body 2... Electrode 3... Electrode 4.44... Metal wire 5... Switch 6...
・Condenser 7... Inner circumferential groove 8... Water layer Figure 1 Figure 2 (%) 1 ocDO~ (%) 1)

Claims (1)

【特許請求の範囲】 1)金属線材に急激に大電流を通ずることにより線爆現
象を発生させて該金属線材を微細な金属液滴の高速流と
して溶融飛散さること、前記金属液滴の高速流を冷却媒
体に接触させて急速凝固せることよりなる金属粉末の製
造方法。 2)前記冷却媒体が移動する固体金属体である特許請求
の範囲第1項記載の金属粉末の製造方法。 3)前記冷却媒体が水である特許請求の範囲第1項記載
の金属粉末の製造方法。 4)前記冷却媒体が冷却された気体である特許請求の範
囲第1項記載の金属粉末の製造方法。 5)前記金属線材が非晶質金属形成能を有する組成でな
る金属材料からなり前記金属粉末が非晶質金属粉末であ
る前記特許請求の範囲第1項ないし第4項記載の金属粉
末の製造方法。
[Scope of Claims] 1) Generating a wire bomb phenomenon by rapidly passing a large current through a metal wire so that the metal wire is melted and scattered as a high-speed flow of fine metal droplets; A method for producing metal powder, comprising rapid solidification of a stream by contacting it with a cooling medium. 2) The method for producing metal powder according to claim 1, wherein the cooling medium is a moving solid metal body. 3) The method for producing metal powder according to claim 1, wherein the cooling medium is water. 4) The method for producing metal powder according to claim 1, wherein the cooling medium is a cooled gas. 5) Manufacturing the metal powder according to any one of claims 1 to 4, wherein the metal wire is made of a metal material having a composition capable of forming an amorphous metal, and the metal powder is an amorphous metal powder. Method.
JP14442784A 1984-07-13 1984-07-13 Production of metallic powder Pending JPS6126707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14442784A JPS6126707A (en) 1984-07-13 1984-07-13 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14442784A JPS6126707A (en) 1984-07-13 1984-07-13 Production of metallic powder

Publications (1)

Publication Number Publication Date
JPS6126707A true JPS6126707A (en) 1986-02-06

Family

ID=15361936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14442784A Pending JPS6126707A (en) 1984-07-13 1984-07-13 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS6126707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188879A (en) * 1989-01-17 1990-07-24 Mitsubishi Heavy Ind Ltd Picture processor
JPH06187131A (en) * 1992-09-30 1994-07-08 Internatl Business Mach Corp <Ibm> Control method of computer device, apparatus for constitution of device control, arithmetic and logic unit and binary counter
JP2012144792A (en) * 2011-01-13 2012-08-02 Nagaoka Univ Of Technology Method and apparatus for producing alloy particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529615A (en) * 1975-07-15 1977-01-25 Toyo Soda Mfg Co Ltd Method of dephosphorization and decarburization of ferro alloy
JPS5554508A (en) * 1978-10-17 1980-04-21 Toyota Motor Corp Production of metal powder
JPS5822309A (en) * 1981-07-30 1983-02-09 Toshiba Corp Manufacture of amorphous alloy powder and apparatus therefor
JPS5834105A (en) * 1981-08-21 1983-02-28 Mitsubishi Heavy Ind Ltd Production of fine metallic particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529615A (en) * 1975-07-15 1977-01-25 Toyo Soda Mfg Co Ltd Method of dephosphorization and decarburization of ferro alloy
JPS5554508A (en) * 1978-10-17 1980-04-21 Toyota Motor Corp Production of metal powder
JPS5822309A (en) * 1981-07-30 1983-02-09 Toshiba Corp Manufacture of amorphous alloy powder and apparatus therefor
JPS5834105A (en) * 1981-08-21 1983-02-28 Mitsubishi Heavy Ind Ltd Production of fine metallic particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188879A (en) * 1989-01-17 1990-07-24 Mitsubishi Heavy Ind Ltd Picture processor
JPH06187131A (en) * 1992-09-30 1994-07-08 Internatl Business Mach Corp <Ibm> Control method of computer device, apparatus for constitution of device control, arithmetic and logic unit and binary counter
JP2012144792A (en) * 2011-01-13 2012-08-02 Nagaoka Univ Of Technology Method and apparatus for producing alloy particle

Similar Documents

Publication Publication Date Title
US4163637A (en) Method and apparatus for producing small hollow spheres
US4613076A (en) Apparatus and method for forming fine liquid metal droplets
ES2006423A4 (en) HYDROMETALLURGICAL PROCEDURE FOR PRODUCING FINALLY DIVIDED COPPER POWDERS AND COPPER ALLOYS.
Goudar et al. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer
US3461943A (en) Process for making filamentary materials
US4482375A (en) Laser melt spin atomized metal powder and process
JPH06228612A (en) Method and device for producing small metal spheres nearly equal in diameter
CN207464202U (en) A kind of powder preparing unit
JPS6126707A (en) Production of metallic powder
US4355057A (en) Formation of alloy powders through solid particle quenching
US3770212A (en) Method of comminuting materials preferably conducting materials, and an apparatus for accomplishing the same
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
Suslov et al. Formation of monodisperse refractory metal particles by impulse discharge
Fuqian et al. Study of rapidly solidified atomization technique and production of metal alloy powders
RU2048277C1 (en) Method for obtaining fine powders of inorganic substances
JPS58153709A (en) Manufacturing device for fine metallic particle
WO2002043905A2 (en) A method and apparatus for the production of metal powder granules by electric discharge
Raman et al. Rapidly solidified powder produced by a new atomization process
JPH05287335A (en) Production of au microbead
JPS62164804A (en) Production of pulverized metallic powder
JP3027785B2 (en) Method of manufacturing magnetic material from machining powder generated by electric discharge machining
Roberts et al. Titanium alloy powders made by the rotating electrode process
JPH02145710A (en) Manufacture of metal fine powder
JPS63145703A (en) Apparatus for producing powder
JPS59190304A (en) Manufacture of fine sphere of amorphous metal