JPS61267019A - Light transmitting device - Google Patents

Light transmitting device

Info

Publication number
JPS61267019A
JPS61267019A JP10831185A JP10831185A JPS61267019A JP S61267019 A JPS61267019 A JP S61267019A JP 10831185 A JP10831185 A JP 10831185A JP 10831185 A JP10831185 A JP 10831185A JP S61267019 A JPS61267019 A JP S61267019A
Authority
JP
Japan
Prior art keywords
transmission body
light transmission
heat
outer peripheral
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10831185A
Other languages
Japanese (ja)
Inventor
Tadashi Takahashi
忠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10831185A priority Critical patent/JPS61267019A/en
Publication of JPS61267019A publication Critical patent/JPS61267019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To reduce heat lens operation due to the temperature rise of a transmission part until it is ignored by providing >=1 light transmission body, a means which insulates thermally the outer peripheral part including the peripheral flank of the light transmission body, and a means which cools one transmission surface of the transmission body. CONSTITUTION:The light transmission body 20 is a plane circular transmission body composed of an output mirror, etc., constituting one resonator of a solid laser device or gas laser device and the outer peripheral part including the peripheral flank is held by an annular heat insulator 21 which has specific thickness. A nonmetallic material having small heat conductivity such as ethylene tetrafluororesin and ceramic is used suitably for the heat insulator. The light transmission body 20 is provided with a cooling means, which blows cooling gas 22 to one transmission surface of the light transmission body 20 at a high speed. The outer peripheral part of the light transmission body 20 is insulated thermally, so no heat flows in a radial direction (r) and the heat distribution 24 in the radial directions (r) is uniform and linear. Consequently, heat lens operation is removed from the light transmission body 20.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光透過装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a light transmission device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第7図は従来の大出力ガスレーザ装置とそこで発生され
るレーザビームの伝搬の様子を模式的に示したものであ
る。同図において(1)は容器(図示せず)内に所定の
圧力にされて封入されたレーザ媒質で、たとえば炭酸ガ
スレーザの場合には、ヘリウム、窒素、炭酸ガスの混合
ガスである。レーザ媒質(1)を間にして同軸に対向配
置された高反射ミラー(2)と出力ミラー(3)とは共
振器を形成し、励起状態にあるレーザ媒質から指向性の
鋭いビーム状のレーザ光を発生させる働らきを持つ。発
生したレーザ光の一部分は、出力ミラー(3)を透過し
て共振器の外に取シ出される。出力ミラー(3)の基板
はレーザ光に対して透明な材料、たとえば波長10.6
μm(マイクロメータ)の炭酸ガスレーザ光に対しては
セレン化亜鉛(Zn8e)、ガリウム砒素(GaAs 
)などの材料で作られている。これらの材料はレーザ光
をわずかであるが吸収する性質を有しているため。
FIG. 7 schematically shows a conventional high-output gas laser device and how the laser beam generated therein propagates. In the figure, (1) is a laser medium sealed at a predetermined pressure in a container (not shown); for example, in the case of a carbon dioxide laser, it is a mixed gas of helium, nitrogen, and carbon dioxide. A high reflection mirror (2) and an output mirror (3) arranged coaxially and facing each other with the laser medium (1) in between form a resonator, and a laser beam with sharp directionality is emitted from the laser medium in an excited state. It has the function of generating light. A portion of the generated laser light is transmitted through the output mirror (3) and taken out of the resonator. The substrate of the output mirror (3) is made of a material that is transparent to the laser beam, for example, a wavelength of 10.6.
For micrometer (μm) carbon dioxide laser light, zinc selenide (Zn8e), gallium arsenide (GaAs)
) is made of materials such as This is because these materials have the property of absorbing a small amount of laser light.

レーザ光の透過による温度上昇を防止用に出力ミラー(
3)の外周面に冷却水、冷却ガスあるいはヒートシンク
等による冷却装置(4)が接触されている。
An output mirror (
A cooling device (4) such as cooling water, cooling gas, or a heat sink is in contact with the outer peripheral surface of the cooling device (4).

上記の構成において、冷却媒体(4)が付加されな′い
場合についての作用を説明する。レーザ光の出力が小さ
く、出力ミラー(3)の温度上昇も小さいときには、同
図に示すように波面歪が小さい平行なビーム(6)とな
る。しかし、出力が増大すると出力ミラー(3)は破線
(5)で示すように膨張し、また、上記材料には温度上
昇に伴なって屈折率が高くなる性質があシ、これらが相
俟って凸レンズ作用を示すようになる。屈折率変化に基
ずくレンズ効果は熱レンズ効果とも呼ばれ、熱膨張によ
るレンズ作用よシも4桁レンズ作用が大きく、また、収
差が大きくなるため、上記のように出力した場合には不
さな集光スボッ)K集光させることが困難なビーム(7
) Kなる問題があった。この問題を解決するために、
冷却装置(4)が付加されているのであるが。
In the above configuration, the operation when the cooling medium (4) is not added will be explained. When the output of the laser beam is small and the temperature rise of the output mirror (3) is also small, the beam becomes a parallel beam (6) with small wavefront distortion, as shown in the figure. However, as the output increases, the output mirror (3) expands as shown by the broken line (5), and the above materials have the property of increasing their refractive index as the temperature rises, and these factors work together. It begins to exhibit convex lens action. The lens effect based on a change in refractive index is also called the thermal lens effect, and the lens effect is 4 orders of magnitude larger than the lens effect due to thermal expansion.Also, the aberration becomes large, so it is not suitable for outputting as described above. A beam that is difficult to focus (7)
) There was a problem called K. to solve this problem,
Although a cooling device (4) is added.

このような構成の出力ミラー(3)の熱分布を考察する
と次のようになる。すなわち、第8図に示すように、一
様な強度分布をもったレーザ光(9)が出力ミラー(3
)に入射し透過する場合を考えると、透過するレーザ光
の一部が出力ミラー(3)の内部で吸収され一様に発熱
がおこシ、上昇した熱は冷却媒体(4)によって取シ去
られる。このとき第9図に示すように厚み(Z)方向の
温度分布α1は直線的になる。
The heat distribution of the output mirror (3) having such a configuration is considered as follows. That is, as shown in FIG.
), a part of the transmitted laser light is absorbed inside the output mirror (3) and uniformly generates heat, and the increased heat is removed by the cooling medium (4). It will be done. At this time, as shown in FIG. 9, the temperature distribution α1 in the thickness (Z) direction becomes linear.

しかし、熱は出力ミラー(3)の中心から周辺に向って
放射状に伝わるので、径(r)方向の温度分布αυは第
10図の曲線(放物線)のようになる。したがって冷却
媒体(4)が付加されていても上記の問題は解決されな
いでいた。なお、上記の構成とは別に実開昭59−98
664号公報においても同技術に係わる提案がなされて
いるが、この技術でも透過面を強制冷却しているものの
出力ミラーの周辺を冷却している九め、上記の問題は依
然として残りてい九。
However, since heat is transmitted radially from the center of the output mirror (3) toward the periphery, the temperature distribution αυ in the radial (r) direction becomes like the curve (parabola) in FIG. 10. Therefore, even if the cooling medium (4) was added, the above problem remained unsolved. In addition, apart from the above configuration,
A similar technique has also been proposed in Publication No. 664, but even with this technique, although the transmission surface is forcibly cooled, the periphery of the output mirror is cooled, and the above-mentioned problem still remains.

〔発明の目的〕[Purpose of the invention]

本発明は透過部での温度上昇による熱レンズ作用を無視
できる程度にまで軽減した光透過装置を提供するととを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light transmitting device in which the thermal lens effect due to temperature rise in the transmitting portion is reduced to a negligible extent.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、少なくとも4以上の光透過
体と、光透過体の周側面を含む外周部を熱的に絶縁する
手段と、上記透過体の少なくと本一方の透過面を冷却す
る手段とを備えた構成にしたものである。
In order to achieve the above object, at least four or more light transmitting bodies, a means for thermally insulating the outer circumference including the peripheral side of the light transmitting bodies, and cooling at least one transmitting surface of the light transmitting bodies are provided. The device is configured to include means.

〔発明の実施例〕[Embodiments of the invention]

には同一符号を付しである。 are given the same reference numerals.

第1図において、翰はたとえば固体レーザ装置や、ガス
レーザ装置の共振器の一方を構成する出カミ2−等から
なる平面体状の円形の光透過体で。
In FIG. 1, the frame is a planar, circular light-transmitting body made of, for example, a solid-state laser device or an output mirror 2-, which constitutes one of the resonators of a gas laser device.

その周側面を含む外周部を所定の厚みを持つ環状の熱絶
縁体(2)で保持されている。熱絶縁体3υは四沸化エ
チレン樹脂、セラミックス等の熱伝導率の小さな非金属
材料が適している。上記光透過体(21には冷却手段が
設けら五ている。この冷却段は光透過体(イ)の一方の
透過面、たとえば出光側になる透過面に冷却ガスt22
1を高速に吹き付けるようにして構成されている。
The outer periphery including the peripheral side surface is held by an annular heat insulator (2) having a predetermined thickness. As the thermal insulator 3υ, a non-metallic material with low thermal conductivity such as tetrafluoroethylene resin or ceramics is suitable. The light transmitting body (21) is provided with a cooling means.This cooling stage is provided with a cooling gas t22 on one transmitting surface of the light transmitting body (a), for example, the transmitting surface on the light output side.
1 is configured to spray at high speed.

上記構成の作用について説明する。光透過体(至)に対
し、たとえば一様な強度分布をもったレーザ光(9)が
入射し透過する場合を考えると、レーザ光(9)の一部
が透過する際、光透過体HK吸収される。
The operation of the above configuration will be explained. For example, if we consider the case where a laser beam (9) with a uniform intensity distribution is incident on and transmitted through the light transmitting body (to), when a part of the laser beam (9) passes through the light transmitting body (HK), Absorbed.

ここで、冷却ガス(2)がレーザ光(9)の反対の出光
面だけを冷却しているって、厚み(Z)方向の温度分布
(ハ)は第2図に示すように出光面に傾斜し來分布とな
る。一方、径(r)においては一様に面冷却され。
Here, since the cooling gas (2) cools only the light emitting surface opposite to the laser beam (9), the temperature distribution (c) in the thickness (Z) direction is as shown in Figure 2. The distribution becomes sloping. On the other hand, the diameter (r) is uniformly surface cooled.

また、光透過体(イ)の外周部は熱的に絶縁されている
ノテ、径(r)方向への熱の流れ現象は発生しなくなシ
、このため、径(r)、方向の熱分布04)は第3図に
示すように一様な直線状の分布を示すようになる。
In addition, since the outer periphery of the light transmitting body (a) is thermally insulated, the phenomenon of heat flow in the radial (r) direction does not occur. Distribution 04) shows a uniform linear distribution as shown in FIG.

このことによ多、光透過体@には熱レンズ作用が生じな
くなる。
Due to this, no thermal lens effect occurs in the light transmitting body.

上記実施例と同様の効果を奏する !4図乃至第6図5子発明の他の実施例をそれぞれ示し
たもので、第4図に示すものは熱絶縁体■υで保持され
た出力ミラー(ハ)と出力窓(イ)とを近接して同軸に
配置し、対向によって形成された僅かな間隙@1で冷却
ガス(社)を高速に流すように構成したものである。第
5図は第4図の構成における一方の出力ミラーに代えて
凸レンズ(至)にして構成し九ものである。また、第6
図は両方を一組のレンズ(ハ)、(至)に置き換え、複
合レンズの構成要素として使用した例で、単レンズに比
較して球面収差を小さくできる利点を有する。
The same effect as in the above embodiment is achieved! Figures 4 to 6 show other embodiments of the invention, and the one shown in Figure 4 includes an output mirror (C) and an output window (A) held by a thermal insulator ■υ. They are arranged close to each other coaxially and are configured to allow cooling gas to flow at high speed through a small gap @1 formed by facing each other. FIG. 5 shows a configuration in which one of the output mirrors in the configuration of FIG. 4 is replaced with a convex lens. Also, the 6th
The figure shows an example in which both lenses are replaced with a pair of lenses (c) and (to) and used as components of a compound lens, which has the advantage of reducing spherical aberration compared to a single lens.

なお、上記各実施例では一枚または二枚の光学部品につ
いて述べたがとれに限定されず三枚以上の単品種または
異なった品種の光学部品を種々組合せて実施してもよい
ととは明らかである。ところでレーザ媒質を数気圧以上
の圧力にして動作させるガスレーザにおいては、出力ミ
ラーあるいは出力窓は動作させるガス圧力と大気圧との
差圧による力に耐えなければならなくなるが、このよう
な場合は上記のように三枚以上光学部材を組合せ。
Although each of the above embodiments describes one or two optical components, it is clear that the present invention is not limited to one type of optical component, and that three or more optical components of a single type or different types of optical components may be used in various combinations. It is. By the way, in a gas laser that operates with the laser medium at a pressure of several atmospheres or more, the output mirror or output window must withstand the force due to the differential pressure between the operating gas pressure and atmospheric pressure. Combining three or more optical members like this.

冷却ガスの圧力を変え1枚ずつに加わる差圧を小さくす
るようにすればより高出力のガスレーザ装置を実現する
ことができる。
By changing the pressure of the cooling gas and reducing the differential pressure applied to each sheet, a higher output gas laser device can be realized.

〔発明の効果〕〔Effect of the invention〕

光学部品の径方向、すなわち、ビーム断面上で。 in the radial direction of the optical component, i.e. on the beam cross section.

温度勾配が無視できる程度に小さくなシ、これにより、
レンズ作用が解消された。これによシ、指向性すなわち
、集光性の高いビームが得られるようになり1例えばレ
ーザ加工にあっては切断幅が微小になシ、また。ばシの
少ない良好な切断加工が安定に行えるようになるほか、
他の溶接加工4穴あけ等の加工をよシ良好にするなどの
実用的な効果を奏することができた。
The temperature gradient is so small that it can be ignored.
Lens effect has been eliminated. This makes it possible to obtain a beam with high directivity, that is, a beam with high convergence.1 For example, in laser processing, the cutting width can be minute. In addition to being able to stably perform good cutting with less burrs,
It was possible to achieve practical effects such as making other welding processes such as 4-hole drilling much better.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図および
第3図は上記実施例における光透過体の熱分布図、第4
図乃至第6図は本発明の他の実施例を示す断面図、第7
図は従来例を説明するための模式図、第8図は従来例に
おけるレーザ光の透過状態を示す断面図、第9図および
第10図は従来例における出力ミラーの熱分布図である
。 ・(イ)・・・光透過体    t2η・・・熱絶縁体
(ハ)・・・冷却ガス 代理人 弁理士  則 近 憲 佑 (ほか1名) 第1図 第2図  第3図 第4図  第5E  第6図 第8図 第9図  第1O図
FIG. 1 is a sectional view showing one embodiment of the present invention, FIGS. 2 and 3 are heat distribution diagrams of the light transmitting body in the above embodiment, and FIG.
6 to 6 are sectional views showing other embodiments of the present invention, and FIG.
The figure is a schematic diagram for explaining the conventional example, FIG. 8 is a sectional view showing the transmission state of laser light in the conventional example, and FIGS. 9 and 10 are heat distribution diagrams of the output mirror in the conventional example.・(A)...Light transmitting body t2η...Thermal insulator (C)...Cooling gas agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Fig. 5E Fig. 6 Fig. 8 Fig. 9 Fig. 1O Fig.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一以上の光透過体と、上記光透過体の周側面
を含む外周部を熱的に絶縁する手段と、上記光透過体の
少なくとも一方の透過面を冷却する手段とを備えたこと
を特徴とする光透過装置。
It is characterized by comprising at least one or more light transmitting bodies, means for thermally insulating the outer peripheral portion including the circumferential side of the light transmitting bodies, and means for cooling at least one transmitting surface of the light transmitting bodies. Light transmission device.
JP10831185A 1985-05-22 1985-05-22 Light transmitting device Pending JPS61267019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10831185A JPS61267019A (en) 1985-05-22 1985-05-22 Light transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10831185A JPS61267019A (en) 1985-05-22 1985-05-22 Light transmitting device

Publications (1)

Publication Number Publication Date
JPS61267019A true JPS61267019A (en) 1986-11-26

Family

ID=14481492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10831185A Pending JPS61267019A (en) 1985-05-22 1985-05-22 Light transmitting device

Country Status (1)

Country Link
JP (1) JPS61267019A (en)

Similar Documents

Publication Publication Date Title
US5050179A (en) External cavity semiconductor laser
US5410559A (en) Diode pumped laser with strong thermal lens crystal
US3824487A (en) Unstable ring laser resonators
US11988909B2 (en) Faraday rotators, optical isolators, driver laser arrangements and EUV radiation generation apparatus
JP2009534712A (en) Suppression of surface heating effects in nonlinear crystals for high power frequency conversion of laser light
US9640935B2 (en) Radially polarized thin disk laser
US3609585A (en) High-power laser including means for providing power output
US20160285225A1 (en) Radial polarization thin-disk laser
JPS61267019A (en) Light transmitting device
US5020880A (en) Low distortion window for use with high energy lasers
KR20180010372A (en) Laser processing head
JP2005152972A (en) Laser beam machining apparatus
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
JPS60205420A (en) Semiconductor laser pen
JP2012078474A (en) Etalon filter
JP2000101175A (en) Solid-state passive q-switch block, solid-state q-switch laser oscillator, and solid-state laser device
US3366892A (en) Solid state laser mode selection means
TW201817104A (en) Resonator mirror for an optical resonator of a laser apparatus, and laser apparatus
Kudryashov et al. Deformable mirrors for high-power lasers
US20230387667A1 (en) Amplifier arrangement
JPH1078530A (en) Optical coupling device
JPS59152793A (en) Microphone
CN116986805A (en) Cutting device of glass tube for prefilled syringe
JPS61224475A (en) Resonance-transmission system of laser beam
JP5969193B2 (en) Etalon filter