JPS61266809A - Method of joining ceramic member - Google Patents

Method of joining ceramic member

Info

Publication number
JPS61266809A
JPS61266809A JP25452884A JP25452884A JPS61266809A JP S61266809 A JPS61266809 A JP S61266809A JP 25452884 A JP25452884 A JP 25452884A JP 25452884 A JP25452884 A JP 25452884A JP S61266809 A JPS61266809 A JP S61266809A
Authority
JP
Japan
Prior art keywords
ceramic
ceramic member
intermediate layer
joining
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25452884A
Other languages
Japanese (ja)
Inventor
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYATA GIKEN KK
Original Assignee
MIYATA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYATA GIKEN KK filed Critical MIYATA GIKEN KK
Priority to JP25452884A priority Critical patent/JPS61266809A/en
Publication of JPS61266809A publication Critical patent/JPS61266809A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セラミック、例えば、炭化ケイ素。[Detailed description of the invention] <Industrial application field> The invention relates to ceramics, such as silicon carbide.

窒化ケイ素等の炭化物、窒化物セラミック、ホー化チタ
ン、ホー化ジルコニウム等のホー化物セラミック、アル
ミナ、ジルコニア等の酸化物セラミック部材の接合方法
に関するものである。
The present invention relates to a method for joining carbides such as silicon nitride, nitride ceramics, horide ceramics such as titanium fordide and zirconium fordide, and oxide ceramic members such as alumina and zirconia.

〈従来の技術〉 異種材料の接合で最も大きな問題は、線膨張係数の違い
をいかにして解決するかである。特に脆くて全く伸びの
期待できないセラミック材料ではこの問題はより深刻に
なってくる。またこの問題を回避するためにネジ接合等
の機械的な接合を採用するにしても、これらのセラミン
クは非常に固いために加工が非常に難しい。
<Prior Art> The biggest problem in joining dissimilar materials is how to solve the difference in coefficient of linear expansion. This problem becomes particularly serious in the case of ceramic materials that are brittle and cannot be expected to stretch at all. Furthermore, even if mechanical joining such as screw joining is employed to avoid this problem, these ceramics are extremely hard and therefore very difficult to process.

また更に、セラミック材料、特に窒化物、ホー化物材料
では、金属材料とロー接できる様なロー材そのものが開
発されておらず一層やっかいである。
Furthermore, for ceramic materials, especially nitride and horide materials, brazing materials themselves that can be soldered to metal materials have not yet been developed, making it even more troublesome.

金属や他のセラミック部材に熱膨張の違いが問題に成ら
ずに簡単に取付は固定出来、しかも高温下でも、あるい
は激しい熱衝撃下でも、安定して使用できるような取付
は法があれば、これらのセラミックは、用途がよシ広が
ってくる。
If there is a method that allows for easy installation and fixation of metal or other ceramic components without causing problems due to differences in thermal expansion, and that can be used stably even under high temperatures or severe thermal shock, These ceramics are becoming increasingly versatile.

〈発明が解決しようとする問題点〉 本発明は2以上のような状況に鑑みてなされたものであ
り、熱膨張の違いやセラミックの難加工性を何ら問題に
することなく、金属や他のセラミンク部材に簡単に取付
け、とp外しが出来、しかも高温下でも、あるいは激し
い熱衝撃下でも、安定して使用できる。セラミック部材
を相手材に接合する新規な方法を提供せんとするもので
ある。
<Problems to be Solved by the Invention> The present invention has been made in view of two or more situations, and it can be applied to metals and other materials without making any difference in thermal expansion or difficulty in machining of ceramics a problem. It can be easily attached to and removed from ceramic members, and can be used stably even under high temperatures or severe thermal shock. It is an object of the present invention to provide a new method for joining a ceramic member to a mating member.

〈問題点を解決するだめの手段〉 本発明は、接合に際して。〈Failure to solve the problem〉 The present invention applies to joining.

(1)接合部に炭素質材料からなる中間層をインサート
する。
(1) Insert an intermediate layer made of carbonaceous material into the joint.

(2)上記セラミック部材と炭素質中間層は、冶金的接
合、接着によって一体化させる。
(2) The ceramic member and the carbonaceous intermediate layer are integrated by metallurgical bonding or adhesion.

(3)相手材との接合は、炭素質中間層に溝切り。(3) For joining with the mating material, cut a groove in the carbonaceous intermediate layer.

穴明け、ネジ切りおよびその他の機械的な接合に必要な
機械的な除去加工を施して、この炭素質中間層の部分で
機械的に接合することをその特徴とするものである。
The feature is that the carbonaceous intermediate layer is mechanically joined by drilling, threading, and other mechanical removal processes necessary for mechanical joining.

〈作 用〉 炭素質中間層をインザートり、セラミック部材とは冶金
的接合、接着によって一体化し、相手材とはこの中間層
に加工したネジ、溝等を介して機械的に接合するのは次
のような理由に因る。
<Function> The carbonaceous intermediate layer is inserted, integrated with the ceramic member by metallurgical bonding or adhesion, and mechanically joined to the other material through screws, grooves, etc. machined into this intermediate layer. This is due to reasons such as.

(イ)線膨張係数の違いがある接合では2機械的な接合
が最も好ましい。
(a) 2-mechanical bonding is the most preferable for bonding where there are differences in linear expansion coefficients.

(ロ)機械的な接合には当然溝切り、穴明け、ネジ切り
等の機械的な除去加工は不可欠で有り、セラミック材料
は非常に固いために、これは加工困難であるが、炭素質
材料は機械加工性が優れているので、あらゆる形状に自
在に加工でき、この種の加工には極めて適している。
(b) For mechanical joining, mechanical removal processes such as grooving, drilling, and threading are of course indispensable, and since ceramic materials are extremely hard, this is difficult to process, but carbonaceous materials Because it has excellent machinability, it can be freely processed into any shape, making it extremely suitable for this type of processing.

(ハ)従ってこの炭素質材料をセラミンク側に冶金的接
合によυ一体化し、この炭素質部分に機械的接合に必要
な機械加工を行なえば、上記した加工の問題は全く問題
にならなくなる。
(c) Therefore, if this carbonaceous material is integrated with the ceramic side by metallurgical bonding and the machining necessary for mechanical bonding is performed on this carbonaceous portion, the above-mentioned processing problem will not be a problem at all.

に)しかも炭素質材料は低膨張域から中膨張域まである
程度の範囲に渡って、線膨張係数の調整が可能であり、
窒化ケイ素、炭化ケイ素等の窒化物。
) Moreover, the linear expansion coefficient of carbonaceous materials can be adjusted over a certain range from low expansion range to medium expansion range,
Nitrides such as silicon nitride and silicon carbide.

ホー化チタン、ホー化ジルコニウム等のホー化物。Horides such as titanium foride and zirconium foride.

アルミナ、ジノリフエア等の酸化物の線膨張係数の範囲
までは製造条件を調整して調整が可能であるために、か
なりな種類のセラミックに対して両者の線膨張係数を合
わせてを融着一体化できその線膨張係数の違いに因るト
ラブルは全く解消できる。
Since it is possible to adjust the range of linear expansion coefficients of oxides such as alumina and dinolymphair by adjusting the manufacturing conditions, it is possible to fuse and integrate the linear expansion coefficients of both for many types of ceramics. Troubles caused by differences in linear expansion coefficient can be completely eliminated.

(ホ)(イ)〜に)により、炭素質材料は上記セラミッ
ク材料の接合面の全ゆる形状の変化に自在に加工でき、
全く隙間なく密着させることができると共に。
With (e) and (b) to), the carbonaceous material can be freely processed to change the shape of the bonding surface of the ceramic material.
It can be attached closely with no gaps at all.

冶金的接合、接着により両者を完全に一体化させ。The two are completely integrated by metallurgical bonding and adhesion.

熱膨張特性も一体的な構造にすることができる。Thermal expansion characteristics can also be integrated into the structure.

高温下でも、激しい熱衝撃下でも、線膨張係数の違いを
問題にすることなく、安定して使用できる。
It can be used stably even under high temperatures or severe thermal shocks without causing problems due to differences in linear expansion coefficients.

ま念、炭素材料は熱伝導性が良いので、セラミック部分
の熱は、これにすみやかに吸収され、セラミック部分の
耐熱衝撃性は向上する。
Since the carbon material has good thermal conductivity, the heat of the ceramic part is quickly absorbed by it, improving the thermal shock resistance of the ceramic part.

もう一方の相手材とは、当然材質に応じて、線膨張係数
の差異が生じてくるが9両者は機械的な接合で物理的に
縁のきれた状態に有るので、この部分の伸び縮みの変化
にも十分対応でき、境界部に熱応力は発生しない。
Naturally, there will be a difference in the coefficient of linear expansion with the other mating material depending on the material, but since the two are mechanically joined and have a physical edge, there is no expansion or contraction in this part. It can fully respond to changes and does not generate thermal stress at the boundary.

〈実施例〉 次に本発明の実施例を図面によって具体的に説明する。<Example> Next, embodiments of the present invention will be specifically described with reference to the drawings.

第1〜3図は本発明の代表的な実施例を示したものであ
る。
1 to 3 show typical embodiments of the present invention.

第1図は窒化ケイ素部材と耐熱鋼部材を接合したときの
ものである。
FIG. 1 shows a silicon nitride member and a heat-resistant steel member joined together.

(11は窒化ケイ素部材、(2)は耐熱鋼部材(HKJ
)。
(11 is a silicon nitride member, (2) is a heat-resistant steel member (HKJ
).

(3)は炭素質中間層(黒鉛、線膨張係数4.5 X 
10”’ )。
(3) is a carbonaceous intermediate layer (graphite, linear expansion coefficient 4.5
10'').

(4)は融着金属層、(5)は炭素質中間層に螺刻しな
ネジ穴、(6)は(2)と(3)をネジ接合するだめの
ボルトである。
(4) is a fused metal layer, (5) is a threaded screw hole in the carbonaceous intermediate layer, and (6) is a bolt for screwing (2) and (3) together.

接合に際して、まずセラミック(1)と黒鉛(3)がロ
ー材を用いて融着接合される。
At the time of joining, ceramic (1) and graphite (3) are first fused and joined using a brazing material.

ロー接作業は、境界部にシリコンウェハーの様な板状あ
るいは粉末状のSiあるいはSi合金(Si−Ti、 
5i−V合金等)を挾み、減圧下(10−’ Torr
 )で、 1330℃以上に5分間加熱して行われる。
In brazing work, the boundary part is made of plate-like or powdered Si or Si alloy (Si-Ti, Si-Ti,
5i-V alloy, etc.) and heated under reduced pressure (10-' Torr
) and heated to 1330°C or higher for 5 minutes.

黒鉛中間層(3)のもう一方の面には、耐熱鋼(2)と
ネジ接合するだめのネジ穴が融着前あるいは融着後機械
加工される。黒鉛は柔らかいために、加工は非常に容易
である。
On the other side of the graphite intermediate layer (3), a screw hole for screw connection with the heat-resistant steel (2) is machined before or after fusion. Because graphite is soft, it is very easy to process.

黒鉛(3)と耐熱鋼(2)はボルト(6)をつかって締
結される。
Graphite (3) and heat-resistant steel (2) are fastened together using bolts (6).

中間層の黒鉛は一般的に酸化に弱く、消耗しやすいが、
必要に応じて適宜、炭化物、窒化物、酸化物セラミック
を混合複合化させたりあるいは窒化ケイ素、炭化ケイ素
を被覆すれば、かなりな高温まで使用できる。
Graphite in the middle layer is generally weak to oxidation and easily consumed, but
If necessary, if a carbide, nitride, or oxide ceramic is mixed and composited or coated with silicon nitride or silicon carbide, it can be used up to a considerably high temperature.

第2図は、第1図とは逆に、黒鉛に雄ネジを加工して相
手材(金属)にネジ込んで接合したものである。
In FIG. 2, contrary to FIG. 1, male threads are machined into graphite and screwed into a mating material (metal) to join them.

第3図は、黒鉛にアリ溝を加工して、相手材をはめこん
で接合したものである。
In Figure 3, dovetail grooves are machined into graphite, and the mating material is inserted and joined.

黒鉛は柔らかいので、このような溝も容易に加工できる
Since graphite is soft, such grooves can be easily formed.

(1)はセラミック部材、(3)は黒鉛中間層、(4)
はアリ溝である。
(1) is a ceramic member, (3) is a graphite intermediate layer, (4)
is a dovetail groove.

尚、炭素質中間層と相手材を機械的に接合する。Note that the carbonaceous intermediate layer and the mating material are mechanically joined.

手段として、上側に挙げたネジ接合、はめこんで接合す
る嵌着等の他に2通常の締結、挿着等この種の接合に通
常一般的に取られている機械的な接合、固定手段は全て
使用できる。
In addition to the above-mentioned screw joints and fittings that connect by fitting, there are two mechanical joints and fixing methods that are commonly used for this type of joint, such as regular fastening and insertion. All can be used.

尚1本発明の冶金的接合とは、上側に示したロー接に限
定されるものではなく、固体金属を使用した拡散接合(
たとえばTiのような活性金属を使った)も包含するも
のである。
Note that the metallurgical bonding of the present invention is not limited to the brazing welding shown above, but also includes diffusion bonding using solid metals (
For example, using an active metal such as Ti) is also included.

ロー材としては、上側に挙げた合金の他に、Ti。In addition to the alloys listed above, Ti is used as the brazing material.

V族元素の合金あるいは、これら相互の合金を使用でき
る。なかでも特にこれらSi(:Ti、V族元素の合金
が濡れ性に最も優れている(接触角零度)。
Alloys of group V elements or mutual alloys of these elements can be used. Among these, alloys of Si(:Ti, group V elements) have the best wettability (contact angle of zero).

このStとTi、 V族元素の合金は、炭素質材料に 
  □も完全な濡れ性を有するので、−回の操作でセラ
ミックと炭素を同時に接合できる。
This alloy of St, Ti, and group V elements can be used as a carbonaceous material.
Since □ also has perfect wettability, ceramic and carbon can be bonded simultaneously in - operations.

また本発明の炭素質材料とは、黒鉛、無定形炭素、およ
びこれらに他の酸化物、窒化物、炭化物。
Further, the carbonaceous materials of the present invention include graphite, amorphous carbon, and other oxides, nitrides, and carbides thereof.

ホー化物セラミック材料が混合複合化された炭素材料一
般を指すものである。
This refers to carbon materials in general that are a composite of mixed horide ceramic materials.

また、これらの炭素材料の線膨張係数は、概ね1〜10
 X 10”の範囲で変化させることができるので9本
発明の対象とするセラミンク部材は概ね上記した範囲の
線膨張係数を有するものになる。
In addition, the linear expansion coefficient of these carbon materials is approximately 1 to 10.
Since the coefficient of linear expansion can be varied within the range of X 10'', the ceramic member to which the present invention is applied generally has a coefficient of linear expansion within the above-mentioned range.

具体的には、窒化ケイ素、サイアロン、窒化アルミ等の
窒化物、炭化ケイ素等の炭化物、ホー化チタン、ホー化
ジルコニウム等のホー化物、  7/L=ミナ、ジルコ
ニア等の酸化物がこの対象となる。
Specifically, this applies to nitrides such as silicon nitride, sialon, and aluminum nitride, carbides such as silicon carbide, horides such as titanium horide and zirconium horide, and oxides such as 7/L = mina and zirconia. Become.

しかして接合に際して、炭素材料とセラミンク材料の間
の線膨張係数の違いはできるだけ少ないことが望ましい
ので、相手のセラミック材料の線膨張係数にうまく合う
ように、炭素材料の組成。
However, when bonding, it is desirable that the difference in linear expansion coefficient between the carbon material and the ceramic material be as small as possible, so the composition of the carbon material should be adjusted to match the linear expansion coefficient of the mating ceramic material.

製造条件を決める必要がある。許容される線膨張係数の
差は、使用条件にもよるが、炭素材料はセラミック材料
に比較して9弾性率が著しく小さいので相対的に線膨張
係数の違いによる熱応力は小さく、多少の差(3〜4 
X IF6程度)は許容できる。
Manufacturing conditions need to be determined. The allowable difference in coefficient of linear expansion depends on the conditions of use, but carbon materials have a significantly lower modulus of elasticity than ceramic materials, so the thermal stress caused by the difference in coefficient of linear expansion is relatively small, so there may be some difference. (3~4
X IF6) is acceptable.

〈発明の効果〉 (1)  接合部に熱応力が発生しない。<Effect of the invention> (1) No thermal stress occurs at the joint.

(2)  接合コストが安価である。(2) The joining cost is low.

(3)取付け、取外しが簡単である。(3) Easy to install and remove.

(4)  大形のものも接合できる。(4) Large items can also be joined.

(5)  線膨張係数の異なるものでも可能である。(5) It is also possible to use materials with different linear expansion coefficients.

(6)  セラミック部分の耐熱衝撃性が向上する。(6) The thermal shock resistance of the ceramic part is improved.

(7)  セラミック部分の材料の節約に成る(不必要
な部分は炭素材料に替えてやる)。
(7) Materials for ceramic parts can be saved (unnecessary parts are replaced with carbon materials).

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は1本発明の代表的な実施例を示したもので
ある。 第1図は、窒化ケイ素からなる部材と耐熱鋼部材を接合
したときのものである。 第2図は、黒鉛中間層に雄ネジを形成して接合した例で
ある。 第4図は、黒鉛中間層にアリ溝を形成して相手材をはめ
こんだ例である。 (1)・・・・・セラミンク部材  (2)・・・・・
・相手材13)・・−炭素質中間層 図面の1)書(内S(、:変更なし) 才1 図 昭和59年特許願第254528号 2、発明の名称 セラミック部材の接合方法 3、補正をする者 事件との関係 特許出願人 住所 山口県下関市艮府中土居本町9−104、代理人
1 to 3 show a typical embodiment of the present invention. FIG. 1 shows a member made of silicon nitride and a heat-resistant steel member joined together. FIG. 2 shows an example in which a male screw is formed in the graphite intermediate layer and joined. FIG. 4 shows an example in which a dovetail groove is formed in the graphite intermediate layer and a mating material is fitted into the dovetail groove. (1)・・・Ceramink member (2)・・・・・・
・Mating material 13)... - Document 1) of the drawing of the carbonaceous intermediate layer (S (,: no change) Figure 1 Figure Patent Application No. 254528 of 1982 2, Title of invention Method for joining ceramic members 3, Amendment Relationship with the case of a person who does the following: Patent applicant address: 9-104 Afu Nakadoi Honmachi, Shimonoseki City, Yamaguchi Prefecture, Agent:

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック部材を接合するに際し、該セラミック
部材と相手材の間に炭素質材料からなる中間層をインサ
ートし該セラミック部材と該中間層は冶金的接合、接着
により一体化すると共に相手材との接合は、該中間層に
溝切り、穴明け、ネジ切りおよびその他の機械的接合に
必要な機械的な除去加工を行なつて、相手材と機械的に
接合することを特徴とするセラミック部材の接合方法。
(1) When joining ceramic members, an intermediate layer made of a carbonaceous material is inserted between the ceramic member and the mating material, and the ceramic member and the intermediate layer are integrated by metallurgical bonding or adhesion, and the mating material and the ceramic member are integrated. The ceramic member is mechanically joined to a mating material by performing grooving, drilling, threading, and other mechanical removal processes necessary for mechanical joining on the intermediate layer. joining method.
(2)上記セラミック部材が窒化ケイ素、炭化ケイ素、
窒化アルミ、サイアロン、ホー化チタン、ホー化ジルコ
ニウム、アルミナ、ジルコニアであることを特徴とする
特許請求の範囲第1項に記載の方法。
(2) The ceramic member is silicon nitride, silicon carbide,
The method according to claim 1, characterized in that the material is aluminum nitride, sialon, titanium fordide, zirconium fordide, alumina, or zirconia.
(3)上記セラミック部材と炭素質中間層のロー材にS
i、Si合金、Ti、V族元素の合金、あるいは、これ
らの合金を使用することを特徴とする特許請求の範囲第
1項および第2項に記載の方法。
(3) S on the brazing material of the ceramic member and the carbonaceous intermediate layer.
3. The method according to claims 1 and 2, characterized in that an alloy of Si, Ti, a group V element, or an alloy thereof is used.
JP25452884A 1984-12-02 1984-12-02 Method of joining ceramic member Pending JPS61266809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25452884A JPS61266809A (en) 1984-12-02 1984-12-02 Method of joining ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25452884A JPS61266809A (en) 1984-12-02 1984-12-02 Method of joining ceramic member

Publications (1)

Publication Number Publication Date
JPS61266809A true JPS61266809A (en) 1986-11-26

Family

ID=17266290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25452884A Pending JPS61266809A (en) 1984-12-02 1984-12-02 Method of joining ceramic member

Country Status (1)

Country Link
JP (1) JPS61266809A (en)

Similar Documents

Publication Publication Date Title
SE8505621D0 (en) A PROCESS FOR FORMING UNUSUALLY STRONG JOINTS BETWEEN METALS AND CERAMICS BY BRAZING AT TEMPERATURES THAT DOES NOT EXCEED 750? 59C
JPH0217509B2 (en)
EP1135348B1 (en) Method for joining ceramic to metal
EP0232603A1 (en) A method of bonding members having different coefficients of thermal expansion
EP0323207A1 (en) Joined metal-ceramic assembly method of preparing the same
US5083884A (en) Metal ceramic composite body
JPH0788262B2 (en) Method for joining silicon nitride and metal
JPS61266809A (en) Method of joining ceramic member
JP2777707B2 (en) Joint
DeLeeuw Effects of Joining Pressure and Deformation on the Strength and Microstructure of Diffusion‐Bonded Silicon Carbide
JP3119906B2 (en) Joint of carbon material and metal
JPS6121984A (en) Method of bonding silicon nitride, carbide base ceramic member and different kind member
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPS61109906A (en) Method of mechanically joining low expansible ceramic memberand member of different kind
JP2572803B2 (en) Metal / ceramic joints
JPH0328391B2 (en)
JPH0159998B2 (en)
JPS59190510A (en) Clamping tool made of ceramic
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JP3223843B2 (en) Throwaway small diameter boring bar
JPS6131368A (en) Method of bonding ceramic and metal
JPS61201677A (en) Method of bonding ceramic and metal
JPS61146424A (en) Jointing of ceramics and metal
JPS60255679A (en) Bonded body of ceramic and metal
JPS6163576A (en) Method of bonding ceramic to metal