JPS61266715A - Structure for icy sea - Google Patents

Structure for icy sea

Info

Publication number
JPS61266715A
JPS61266715A JP10395385A JP10395385A JPS61266715A JP S61266715 A JPS61266715 A JP S61266715A JP 10395385 A JP10395385 A JP 10395385A JP 10395385 A JP10395385 A JP 10395385A JP S61266715 A JPS61266715 A JP S61266715A
Authority
JP
Japan
Prior art keywords
columns
ice
sea
water
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10395385A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yashima
八島 信良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP10395385A priority Critical patent/JPS61266715A/en
Publication of JPS61266715A publication Critical patent/JPS61266715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the forces of waves by a method in which plural columns are set in a conical or truncated conical form as a whole, and the intervals, inclined angles, and radii of columns on the sea surface are set to meet specific formulas. CONSTITUTION:Horizontal parts 7 and skew parts 8 are fixed between plural columns 5 erected circularly at intervals on the seabed 9 to make up a body portion 12. Columns 6 are fixed to the upsides of the columns 5 to form a heat portion 13 on the body portion in such a way that the sea water surface W is positioned in the head portion 13. The interval (d), inclined angle (alpha), and radius (r) of the columns 6 are set to meet the following formulas (1), (2), and (3). d<=0.4(Eh<3>/12(1-nu<2>)rhoomega)<1/4>...(1), r(1-costheta)<=2.5<D...(2), sintheta>=tanalpha/2.145...(3), where E is the elasticity of sea water, h is thickness of ice, nu is Poisson's ratio of sea water, rhoomega is density of sea water, and D is diameter of column 6.

Description

【発明の詳細な説明】 (以下余白) 〔発明の技術分野〕 本発明は水海用構造物に関するものである。[Detailed description of the invention] (Margin below) [Technical field of invention] TECHNICAL FIELD The present invention relates to a structure for water and sea.

〔従来技術〕[Prior art]

北極海で使用する水海用構造物IAは、第11図に示す
ように、円錐台形の台3によってプラットホーム2を支
えた構造をしており、水攻条件は厳しいが氷荷重を減少
できる。また、波高は小さいため波力は氷荷重に比べて
小さい。
As shown in Fig. 11, the marine structure IA used in the Arctic Ocean has a structure in which a platform 2 is supported by a truncated cone-shaped stand 3, and although the waterflooding conditions are severe, the ice load can be reduced. Furthermore, since the wave height is small, the wave force is small compared to the ice load.

ただ、構造上、比較的浅い海域においてのみ経済的に成
立する。
However, due to its structure, it is economically viable only in relatively shallow waters.

他方、亜北極海で使用する水海用構造物IBは、第12
図に示すように、複数の柱4によってプラットホーム2
を支えた構造をしており、水攻条件はあまり厳しくない
が、柱4が鉛直であるため、氷荷重が大きくなる欠点が
ある。また、水深が大きく、波高も大きいため、波力も
氷荷重に比べて無視できない。
On the other hand, the underwater structure IB used in the subarctic ocean is the 12th
As shown in the figure, the platform 2 is supported by a plurality of columns 4.
Although the water-flooding conditions are not very severe, there is a drawback that the ice load is large because the pillars 4 are vertical. Furthermore, since the water depth is large and the wave height is large, wave force cannot be ignored compared to ice load.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は氷荷重及び波力の減少を図り、かつ構
造及び組立てが簡単であり、なお且つ使用材料の減少を
図ることを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to reduce ice loads and wave forces, to have a simple structure and assembly, and to reduce the amount of materials used.

〔発明の構成〕[Structure of the invention]

すなわち、本発明の水海用構造物は、複数の柱を全体と
して円錐形或いは円錐台形に配設し、かつ海水面におけ
る柱の間隔d、柱の傾斜角a、及び柱群の半径rが下記
の(i)、 (2)及び(3)式、つまり、 r(1−cos  θ)≦2.5 X D    ・−
・−(2)sin θ≧tan α/2.145   
    ・・・・・・(3)を同時に満足するようにな
したことを特徴とする。
That is, the structure for water and sea of the present invention has a plurality of columns arranged in a conical or truncated conical shape as a whole, and the distance d between the columns at sea level, the inclination angle a of the columns, and the radius r of the group of columns are The following formulas (i), (2) and (3), that is, r(1-cos θ)≦2.5 X D ・-
・-(2) sin θ≧tan α/2.145
......It is characterized by satisfying (3) at the same time.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(以下余白) 本発明にかかる水海用構造物10は、第1図に示すよう
に、支柱11によってプラットホーム2を支えている。
(The following is a blank space) The structure 10 for use in water and sea according to the present invention supports a platform 2 by support columns 11, as shown in FIG.

この支柱11は胴部12と頭部13とから成り、第2図
に示すように、胴部12はほぼ円筒状をなし、頭部13
はほぼ円錐台形をなしている。
This support 11 consists of a body 12 and a head 13. As shown in FIG.
is almost truncated conical.

前記胴部12は海底9に立設した複数の柱5、容性5の
間に固定した水平部材7及び傾斜部材8とから構成し、
また、頭部13は容性5の上に固定した柱6によって構
成している。
The body 12 is composed of a plurality of columns 5 erected on the seabed 9, a horizontal member 7 fixed between the vessels 5, and an inclined member 8,
Further, the head 13 is constituted by a column 6 fixed on the container 5.

そして、通常は頭部13の部分に海水面Wが位置するよ
うになしている。なお、頭部13は所望により円錐形状
としてもよい。
The sea level W is normally located at the head 13. Note that the head 13 may have a conical shape if desired.

上記柱5,6は中空状或いは中実状であり、m層成いは
コンクリート等との複合m製により形成する。
The pillars 5 and 6 are hollow or solid, and are formed of m layers or composite m with concrete or the like.

上記頭部13は所謂籠状であるから波力の影響が少なく
なる。
Since the head 13 is so-called cage-shaped, the influence of wave force is reduced.

他方、氷荷重の減少を図るには、海水面における柱の間
隔d、柱の傾斜角a、及び柱群の半径rが下記の(11
,(2)及び(3)式、つまり、 r(1−cos θ)≦2.5 X D    −・−
・・(2)sin θ≧tan α/2.145   
    ・・・・・・(3)を同時に満足することが必
要になる。
On the other hand, in order to reduce the ice load, the spacing d between the columns at sea level, the inclination angle a of the columns, and the radius r of the column group are determined as follows (11
, (2) and (3), that is, r(1-cos θ)≦2.5 X D −・−
...(2) sin θ≧tan α/2.145
...It is necessary to satisfy (3) at the same time.

ところで、縦軸に氷荷重、横軸に吃水面(海水面W)で
の柱6の間隔d(第4図参照)と氷板の特性長lとの比
d/Itを取ると、第5図に示すような曲線になるが、
かかる第5図から柱6の本数が減るにしたがって水荷重
増加することが判る。その原因は流氷の進行方向に対し
て水海用構造物10の左右の柱6に部分的に海氷の圧壊
モードが発生するためであり、この圧壊モードを無くす
ための最小性本数を求めれば、(以下余白) より経済的設計ができる。
By the way, if the vertical axis is the ice load and the horizontal axis is the ratio d/It of the distance d between the pillars 6 at the water level (sea level W) (see Figure 4) and the characteristic length l of the ice sheet, then the fifth The curve will look like the one shown in the figure.
It can be seen from FIG. 5 that as the number of columns 6 decreases, the water load increases. The reason for this is that a sea ice crushing mode occurs partially in the left and right pillars 6 of the water/marine structure 10 in the direction of drift ice movement, and the minimum number of pillars to eliminate this crushing mode can be found. , (blank below) allows for more economical design.

なお、海氷の弾性率をE (Ton/m) 、氷厚をh
(M)、海氷のポアソン比をν、および海水密度をρ。
In addition, the elastic modulus of sea ice is E (Ton/m), and the ice thickness is h.
(M), ν is the Poisson's ratio of sea ice, and ρ is the seawater density.

(Ton/M ’ )とすると氷板の特性長!(M)は
(4)式で表すことができる。
(Ton/M') is the characteristic length of the ice plate! (M) can be expressed by equation (4).

つまり、 で表される。In other words, It is expressed as

実験結果では、流氷の方向、海氷の厚さ及び強度により
圧壊モード■(第6図参照)及び圧壊モード■(第7図
参照)のどららが卓越するか分からないが過去の実験結
果によると、氷片の大きさ、つまり氷片の縦方向の長さ
j21、或いは横方向の長さ12は前述の氷板の特性長
の4割以下にはならないことが分かった。
From the experimental results, it is unclear whether crushing mode ■ (see Figure 6) or crushing mode ■ (see Figure 7) will prevail depending on the direction of the drift ice, the thickness and strength of the sea ice, but this is based on past experimental results. It was found that the size of the ice piece, that is, the length j21 of the ice piece in the vertical direction or the length 12 of the ice piece in the horizontal direction is not less than 40% of the characteristic length of the ice plate.

(以下余白) したがって、設計上は吃水面(海水面W)での柱間隔d
を、 以下にすれば、木片は柱間隔dの間を通りぬけることが
なく、従って、柱の傾斜角αにより氷板が曲げられて破
壊するため水力は小さくなる。
(Left below) Therefore, in the design, the column spacing d at the water level (sea level W)
If it is set as below, the piece of wood will not pass through the column spacing d, and therefore the ice plate will be bent and destroyed by the inclination angle α of the columns, so the hydraulic force will be small.

となる。becomes.

また、第4図に示すように、吃水面(海水面(以下余白
) W)における頭部13の半径をr、隣接する柱同志の拡
開度をθとすると、 d=r ・θ (ラジアン)=r−sin  θとなる
Furthermore, as shown in Fig. 4, if the radius of the head 13 at the water level (sea level (hereinafter referred to as blank space) W) is r, and the degree of expansion of adjacent columns is θ, then d=r ・θ (radians) )=r−sin θ.

したがって、柱間隔dは次ぎのように表すこともできる
Therefore, the column spacing d can also be expressed as follows.

すなわち、 dzr−θ (ラジアン)#r−sin θまた、第8
図で符合Bで示すような場合(ケース1)、垂直円柱に
氷板が衝突するのと同じ破壊状態となるため、氷板は圧
壊モードとなる。
That is, dzr-θ (radians) #r-sin θ Also, the 8th
In the case shown by the symbol B in the figure (case 1), the ice plate is in a crushing mode because the ice plate is in the same fracture state as when it collides with a vertical cylinder.

ただし、氷板の端部までの距離aの影響があるため、水
荷重は通常の圧壊水荷重より小さくなることが、水海模
型実験により確認されてい(以下余白) る(第10図参照)。
However, water-ocean model experiments have confirmed that due to the influence of the distance a to the edge of the ice sheet, the water load is smaller than the normal crushing water load (see the margin below) (see Figure 10). .

第10図によれば、a/Dが0〜2.35の範囲では水
力は小さいが、2.35以上になるとaが大きくなるほ
ど水力(F)l  )は大きくなることが判る。なお、
柱の直径りは20cmとしている。
According to FIG. 10, it can be seen that when a/D is in the range of 0 to 2.35, the hydraulic force is small, but when it exceeds 2.35, the hydraulic force (F)l) increases as a increases. In addition,
The diameter of the pillar is 20cm.

ここで、柱6の径をD、柱6の中心から氷板Aの端部ま
での距離をaとすると、a / D≦2゜5の条件下で
は水荷重は通常の水荷重の4割以下と小さくなることが
実験の結果から分っている。
Here, if the diameter of the column 6 is D, and the distance from the center of the column 6 to the end of the ice plate A is a, then under the condition of a / D ≦ 2゜5, the water load is 40% of the normal water load. It is known from the experimental results that the value becomes smaller as follows.

つまり、 a=r(1−cos θ)≦2.5 XD  −・−(
2)とすれば良い。
In other words, a=r(1-cos θ)≦2.5 XD −・−(
2) is sufficient.

他方、第8図で符合Cで示すような場合(ケース2)、
氷板Aの移動方向に対する実質的な柱側斜角βは、 β −jan  −’  H/  x (・・・”・(
5ンとなる。
On the other hand, in the case shown by the symbol C in Fig. 8 (case 2),
The substantial oblique angle β of the column side with respect to the moving direction of the ice plate A is β −jan −′ H/ x (...”・(
It will be 5.

ここで、頭部13の海水面Wでの半径をr、海水面Wか
ら頭部13の頂点Kまでの高さをHとすると、 Xl  =r ’ Sjn  θ ・・・・φ・・・・
(6)H=r−tan α ・・・・・・・・・(7)
であるから、 β=jan −’ (r °tan cr/ r °s
tn θ)−tan −’ (tanα/sin θ)
  −−−−−・+71ところで、氷板が曲げで破壊す
るためには、β≦65°の条件を満足させる必要がある
Here, if the radius of the head 13 at the sea level W is r, and the height from the sea level W to the apex K of the head 13 is H, then
(6) H=r-tan α ・・・・・・・・・(7)
Therefore, β=jan −' (r °tan cr/ r °s
tn θ)-tan −' (tanα/sin θ)
-------・+71 By the way, in order for the ice sheet to break due to bending, it is necessary to satisfy the condition of β≦65°.

したがって、 stn θ≧tan α/2.145      ・・
・・・・(3)となる。
Therefore, stn θ≧tan α/2.145...
...(3).

ここに、 E=300000  kg/cm2 h、=150cm ν=0.33 ρω””1.037/m3 D=3000m α=45゛ r=1500  an とすると、 =’ J9.193 X103=1.74X103am
よって、 θ≦27.65  。
Here, E=300000 kg/cm2 h,=150cm ν=0.33 ρω""1.037/m3 D=3000m α=45゛r=1500 an, then =' J9.193 X103=1.74X103am
Therefore, θ≦27.65.

(以下余白) ■ (1−cos  θ) ≦2.5  X300/1
500=0.5cos  θ≦1 −0.5  =0.
5θ≦ 60  ” ■  θ≧sin  ’ (tan45°/2.145
)  =27.78したがって、θは28度近くでほぼ
満足することになる。但し、ここでは■、■、■を満足
する詳細計算を省く。
(Left below) ■ (1-cos θ) ≦2.5 X300/1
500=0.5 cos θ≦1 −0.5 =0.
5θ≦60” ■ θ≧sin’ (tan45°/2.145
) = 27.78 Therefore, θ is almost satisfied when it is close to 28 degrees. However, detailed calculations that satisfy ■, ■, and ■ are omitted here.

よって、柱6は約12本とするのが好ましいことになる
Therefore, it is preferable that the number of pillars 6 is about 12.

ところで、本発明の場合、押し寄せた氷板Aは頭部13
の傾斜した柱6に乗り上げて木片に破砕されることにな
り、第12図に示す従来の構造物IBに比べて氷荷重が
減少することになる。また、頭部13は所謂籠形である
から波力も無視できる。
By the way, in the case of the present invention, the pushed ice plate A
This results in the ice load being reduced compared to the conventional structure IB shown in FIG. Further, since the head 13 is so-called cage-shaped, the wave force can be ignored.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明は複数の柱を全体として円錐形或
いは円錐台形に配設し、かつ海水面における柱の間隔d
、柱の傾斜角a、及び柱群の半径rが下記の(1)、 
(2)及び(3)式、つまり、 r(1−cos θ)≦2.5XD    ・−・−(
2)sin θ≧tan α/2.145      
 ・・・・・・(3)を同時に満足するようになしたの
で、氷荷重及び波力の減少を図ることができる。また構
造及び組立てが簡単であり、なお且つ使用材料の減少を
図ることができる。
As described above, the present invention arranges a plurality of columns in a conical or truncated conical shape as a whole, and the distance between the columns at sea level is d.
, the inclination angle a of the pillars, and the radius r of the pillar group are as follows (1),
Equations (2) and (3), that is, r(1-cos θ)≦2.5XD ・−・−(
2) sin θ≧tan α/2.145
Since (3) is satisfied at the same time, it is possible to reduce ice load and wave force. Furthermore, the structure and assembly are simple, and the amount of materials used can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる水海用構造物の概略側面図、第
2図は本発明にかかる水海用構造物の斜視図、第3図は
氷板の破砕状態を示す斜視図、第4図は本発明にかかる
水海用構造物の吃水面での断面図、第5図は氷荷重及び
吃水面における柱間隔dと氷板の特性長lとの比の関係
(以下余白) を示す図、第6図及び第7図は各圧壊モードを示す図、
第8図及び第9図は流氷が構造物に及ぼす影響を算出す
るための説明図、第10図は水力に与える水幅の影響を
示す図、第11図及び第12図は従来の水海用構造物の
側面図である。 2・・・プラットホーム、5.6・・・柱、7・・・水
平部材、8・・・傾斜部材、9・・・海底、10・・・
水海用構造物、11・・・支柱、12・・・胴部、13
・・・頭部。
FIG. 1 is a schematic side view of a structure for water and sea according to the present invention, FIG. 2 is a perspective view of a structure for water and sea according to the present invention, and FIG. Figure 4 is a cross-sectional view of the structure for water and sea according to the present invention at the water level, and Figure 5 shows the ice load and the relationship between the column spacing d at the water level and the ratio of the characteristic length l of the ice plate (the following is a blank space). Figures 6 and 7 are diagrams showing each crushing mode,
Figures 8 and 9 are explanatory diagrams for calculating the influence of drift ice on structures, Figure 10 is a diagram showing the influence of water width on hydraulic power, and Figures 11 and 12 are diagrams for calculating the influence of drift ice on structures. FIG. 2... Platform, 5.6... Pillar, 7... Horizontal member, 8... Inclined member, 9... Seabed, 10...
Structure for water and sea, 11... Support, 12... Body, 13
···head.

Claims (1)

【特許請求の範囲】 複数の柱を全体として円錐形或いは円錐台形に配設し、
かつ海水面における柱の間隔d、柱の傾斜角a、及び柱
群の半径rが下記の(1)、(2)及び(3)式、 つまり、 d≦0.4^4√{(Eh^3)/[12(1−ν^2
)_ρ_ω]}・・・・・・(1)r(1−cosθ)
≦2.5×D・・・・・・(2)sinθ≧tanα/
2.145・・・・・・(3)を同時に満足するように
なしたことを特徴とする水海用構造物。
[Claims] A plurality of columns are arranged in a conical or truncated conical shape as a whole,
And the spacing d between the columns at sea level, the inclination angle a of the columns, and the radius r of the column group are expressed by the following formulas (1), (2), and (3), that is, d≦0.4^4√{(Eh ^3)/[12(1-ν^2
)_ρ_ω]}...(1) r(1-cosθ)
≦2.5×D・・・・・・(2) sinθ≧tanα/
2.145... A structure for water and sea, characterized by satisfying (3) at the same time.
JP10395385A 1985-05-17 1985-05-17 Structure for icy sea Pending JPS61266715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10395385A JPS61266715A (en) 1985-05-17 1985-05-17 Structure for icy sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10395385A JPS61266715A (en) 1985-05-17 1985-05-17 Structure for icy sea

Publications (1)

Publication Number Publication Date
JPS61266715A true JPS61266715A (en) 1986-11-26

Family

ID=14367777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10395385A Pending JPS61266715A (en) 1985-05-17 1985-05-17 Structure for icy sea

Country Status (1)

Country Link
JP (1) JPS61266715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778459A (en) * 2019-11-19 2020-02-11 天津大学 Arc-shaped anti-icing wind power foundation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520831A (en) * 1978-07-31 1980-02-14 Mitsui Eng & Shipbuild Co Ltd Structure for icy water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520831A (en) * 1978-07-31 1980-02-14 Mitsui Eng & Shipbuild Co Ltd Structure for icy water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778459A (en) * 2019-11-19 2020-02-11 天津大学 Arc-shaped anti-icing wind power foundation

Similar Documents

Publication Publication Date Title
US6206614B1 (en) Floating offshore drilling/producing structure
US4434741A (en) Arctic barge drilling unit
EP0991566B1 (en) Deep draft semi-submersible offshore structure
US4457250A (en) Floating-type offshore structure
JPS61266715A (en) Structure for icy sea
KR20220148155A (en) Spiral Anchor Group Installation System
AU686061B2 (en) Floating caisson for offshore drilling
JP2547932B2 (en) Mooring columns for floating piers and floating structures
JPS60156809A (en) Float type mooring shore apparatus
JPS62116390A (en) Semisubmersible type ocean structure
JPH0452328B2 (en)
CA1162442A (en) Arctic barge drilling unit
JP3053599U (en) Flexible connecting float and hexagonal float
US20120285361A1 (en) Semisubmersible with five-sided columns
RU2725458C1 (en) Method of ice cover destruction in shallow water
Bruun North sea offshore structures
JPH0714403Y2 (en) Floating pier structure
JP4367997B2 (en) Long-period shaking control method for moored ships in a port
RU2034738C1 (en) Semi-submerged base for sea structure
JPH05278677A (en) Large-scale floating body structure
SU1129283A1 (en) Method of constructing an ice hydraulic structure
JPS62261588A (en) Lower hull type semi-submerged style marine structure
JPS589629A (en) Fish bank utilizing used ship
KR102283569B1 (en) Semi-submersible structure
JPS61242213A (en) Marine structure for icy sea area