JPS6126639B2 - - Google Patents

Info

Publication number
JPS6126639B2
JPS6126639B2 JP53121577A JP12157778A JPS6126639B2 JP S6126639 B2 JPS6126639 B2 JP S6126639B2 JP 53121577 A JP53121577 A JP 53121577A JP 12157778 A JP12157778 A JP 12157778A JP S6126639 B2 JPS6126639 B2 JP S6126639B2
Authority
JP
Japan
Prior art keywords
water
shared
load
system water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53121577A
Other languages
Japanese (ja)
Other versions
JPS5548694A (en
Inventor
Takahiro Sanada
Yasushi Imayama
Yoshe Takashima
Hiroshi Goto
Akio Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12157778A priority Critical patent/JPS5548694A/en
Publication of JPS5548694A publication Critical patent/JPS5548694A/en
Publication of JPS6126639B2 publication Critical patent/JPS6126639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 本発明は補機冷却装置に係り、特に原子力発電
所に用いられる系統水喪失事故時の系統水流出を
一部の系統だけにとどめるのに好適な構造の補機
冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an auxiliary equipment cooling system, and particularly to an auxiliary equipment cooling system used in a nuclear power plant having a structure suitable for limiting system water outflow in the event of a system water loss accident to only a part of the system. Regarding equipment.

この種補機冷却装置は、複数の系統から構成さ
れ、そのうちの1つの系統は他の系統から系統水
が供給されるようになつているのが一般的で(本
発明ではこの系統を共用系統と呼称する。)、この
共用系統の負荷は他の系統の負荷より耐震グレ−
ドが低く作られることが多い。したがつて、共用
系統の負荷の配管および機器が破断して系統水喪
失事故を発生することがあるということを想定
し、共用系統に系統水喪失事故が発生しても、他
の系統の機能保持が確保されるようにする配慮が
必要である。ところで、従来の補機冷却装置にお
いては、共同系統の系統水喪失事故の発生を、他
の系統の系統水源であるヘツドタンクの水位低下
から検出しており、また、共用系統の系統水喪失
事故発生時の分離しや断を共用系統の系統水供給
側に設けた1個のしや断弁を閉とすることによつ
て行うようにしてある。そのため、系統水喪失事
故発生検出までの時間遅れが大きく、また、しや
断弁が単一弁であるため、口径が大きいものとし
なければならず、動作速度が遅く、その上、ヘツ
ドタンクから共用系統の負荷までの流路抵抗が小
さく、系統水喪失事故発生から共用系統の分離し
や断までに流出する系統水が多くなるという問題
がある。このため、ヘツドタンクの容量を大きく
して、ヘツドタンクの水位が補機冷却水系の機能
が喪失するような水位まで下らないようにしなけ
ればならないという弊害があつた。
This type of auxiliary cooling system is generally composed of multiple systems, one of which is generally supplied with system water from another system (in the present invention, this system is referred to as a shared system). (referred to as
It is often made with a low C. Therefore, we assume that load piping and equipment in the shared system may break and cause a system water loss accident, and even if a system water loss accident occurs in the shared system, the functions of other systems will be affected. Consideration must be given to ensure retention. By the way, in conventional auxiliary equipment cooling systems, the occurrence of a system water loss accident in a shared system is detected from the drop in the water level of the head tank, which is the system water source for other systems. The time separation and disconnection is performed by closing one disconnection valve provided on the system water supply side of the shared system. As a result, there is a large time delay until the occurrence of a system water loss accident is detected, and since the sheath valve is a single valve, it must be large in diameter, operating at a slow speed. The problem is that the resistance of the flow path to the system load is low, and a large amount of system water flows out from the occurrence of a system water loss accident until the separation or disconnection of the shared system. For this reason, the capacity of the head tank must be increased to prevent the water level in the head tank from falling to a level that would cause the auxiliary cooling water system to lose its function.

本発明は上記に鑑みてなされたものであつてそ
の目的とするところは、系統水喪失事故が発生し
たとき流出する系統水量を少なくできる補機冷却
装置を提供することにある。
The present invention has been made in view of the above, and an object thereof is to provide an auxiliary equipment cooling system that can reduce the amount of system water that flows out when a system water loss accident occurs.

特徴は、複数の系統より成り、その内の1つの
系統は他の系統より系統水を共用系統負荷に供給
する共用系統となつている装置において、前記供
給の為の流路のすくなくとも途中を、前記途中よ
りも上流側の流路径よりも小径な互いに並列配置
の複数の小径流路にと構成し、前記各複数の小径
流路に系統水喪失事故発生検出装置と閉動動作を
連動自在に組み合わせたしや断弁を設けたことに
あり、この特徴を有することにより、しや断動作
が早くなる小径しや断弁の採用を可能とし、その
採用によつて系統水喪失事故発生後に迅速に供給
水流路を全しや断させ、系統外への系統水流出流
量をすくなくできる。
The feature is that in a device that is a shared system that is composed of a plurality of systems, one of which supplies system water to a shared system load from another system, at least part of the flow path for said supply, A plurality of small-diameter flow channels are arranged in parallel with each other and have a diameter smaller than that of the flow channel on the upstream side of the middle, and a system water loss accident occurrence detection device and a closing operation can be freely linked to each of the plurality of small-diameter flow channels. This feature makes it possible to use a small-diameter shut-off valve that quickly shuts down the drain, and by adopting this feature, it can be used quickly after a system water loss accident occurs. By completely cutting off the supply water flow path, it is possible to reduce the amount of system water flowing out of the system.

以下本発明を第1図、第2図に示した実施例を
用いて詳細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 1 and 2.

第1図は本発明の補機冷却装置の一実施例を示
す系統図である。第1図において、1は共用系統
負荷、2はA系統負荷で、A系統負荷2にはA系
統ポンプ3によりヘツドタンク4内の系統水が熱
交換器5、逆止弁6を通つて供給されるようにな
つている。ところで、本発明においては、A系統
30からの系統水を入口流量計7、緊急しや断弁
8,9を通して共用系統負荷1に供給し、共用系
統負荷1からの系統水は出口流量計10を通して
A系統に戻すようにしている。そして共用系統に
系統水喪失事故が発生したときは、入口流量計7
で計測される系統水流量より出口流量計10で計
測される系統水流量が小さくなるので、図示を省
略してあるが、入口流量計7の出力と出口流量計
10の出力とを出口流量計10の出力の方が小さ
いときに出力を送出する比較器に入力し、この比
較器の出力によつてしや断弁8,9を閉じるよう
にしている。これは、しや断弁8,9を、例え
ば、電磁弁とすることによつて容易に実現するこ
とができる。
FIG. 1 is a system diagram showing one embodiment of the auxiliary cooling device of the present invention. In FIG. 1, 1 is a shared system load, 2 is an A system load, and the A system load 2 is supplied with system water in a head tank 4 by an A system pump 3 through a heat exchanger 5 and a check valve 6. It is becoming more and more common. By the way, in the present invention, the system water from the A system 30 is supplied to the shared system load 1 through the inlet flow meter 7 and the emergency shutoff valves 8 and 9, and the system water from the shared system load 1 is supplied through the outlet flow meter 10. I am trying to return it to the A system through the system. When a system water loss accident occurs in the shared system, the inlet flow meter 7
Since the system water flow rate measured by the outlet flow meter 10 is smaller than the system water flow rate measured by the outlet flow meter 10, the output of the inlet flow meter 7 and the output of the outlet flow meter 10 are connected to When the output of 10 is smaller, the output is inputted to a comparator which sends out the output, and the output of this comparator closes the shutter valves 8 and 9. This can be easily realized by using the shield valves 8 and 9 as electromagnetic valves, for example.

なお、しや断弁8,9は共用系統の負荷1の系
統水供給側に並列に設けてあり、これにより、し
や断弁8,9は単一弁の場合より口径が小さいも
のとすることができ、動作速度の速いものを使用
できる。また、系統水喪失事故発生の検出を入口
流量計7と出口流量計10を用いて行なつている
から、検出遅れを、ヘツドタンク4の水位低下か
ら検出する従来の方式のものに比較て非常に小さ
くできる。したがつて、系統水喪失事故発生時の
系統水流出量を小さくでき、ヘツドタンク4の容
量を大きくしなくとも、補機冷却水系の機能を保
持することができる。
In addition, the sheath valves 8 and 9 are provided in parallel on the system water supply side of the load 1 of the shared system, and as a result, the diameter of the sheath valves 8 and 9 is smaller than that in the case of a single valve. You can use one with fast operation speed. Furthermore, since the occurrence of a system water loss accident is detected using the inlet flow meter 7 and the outlet flow meter 10, the detection delay is significantly reduced compared to the conventional method that detects from the drop in the water level of the head tank 4. Can be made smaller. Therefore, the amount of system water flowing out when a system water loss accident occurs can be reduced, and the function of the auxiliary cooling water system can be maintained without increasing the capacity of the head tank 4.

また、入口流量計7の検出素子をオリフイスと
すれば、それだけ流路抵抗が大きくなるので、系
統水の流出速度を小さくすることができる。ま
た、逆止弁6はA系統負荷2内の系統水が共用系
統負荷1に流れ込むのを防止する上に有効であ
る。
Moreover, if the detection element of the inlet flowmeter 7 is an orifice, the flow path resistance increases accordingly, and the outflow speed of the system water can be reduced. Further, the check valve 6 is effective in preventing system water in the A system load 2 from flowing into the shared system load 1.

第2図は本発明の他の実施例を示す系統図で、
第2図においては、補機冷却装置がA系統30、
B系統31および共用系統32よりなるものを例
示してある。そして、共用系統32にはA系統3
0、B系統31のいずれからも系統水を供給でき
るようになつている。第2図において、1は共用
系統負荷、2はA系統負荷、11はB系統負荷
で、A系統負荷2にはA系統ポンプ3によりA系
統ヘツドタンク4内の系統水がA系統熱交換器
5、A系統逆止弁6を通つて供給され、B系統負
荷11にはB系統ポンプ12によりB系統ヘツド
タンク13内の系統水がB系統熱交換器14、B
系統逆止弁15を通つて供給される。16はA系
統出口弁、17はA系統入口弁、18はB系統出
口弁、19はB系統入口弁で、A系統30、B系
統31の系統水は、それぞれ出口弁16,18を
通つて共用系統負荷1に供給され、入口弁17,
19を通つてA系統30、B系統31に戻る。
FIG. 2 is a system diagram showing another embodiment of the present invention,
In Fig. 2, the auxiliary cooling system is A system 30,
An example consisting of a B system 31 and a shared system 32 is shown. And the A system 3 is in the shared system 32.
System water can be supplied from either the 0 or B system 31. In Fig. 2, 1 is the shared system load, 2 is the A system load, and 11 is the B system load. , through the A system check valve 6, and the system water in the B system head tank 13 is supplied to the B system load 11 by the B system pump 12.
It is supplied through the system check valve 15. 16 is an A system outlet valve, 17 is an A system inlet valve, 18 is a B system outlet valve, 19 is a B system inlet valve, and the system water of the A system 30 and B system 31 is passed through the outlet valves 16 and 18, respectively. is supplied to the shared system load 1, and the inlet valve 17,
19 and return to the A system 30 and B system 31.

ところで、出口弁16と18との間には分離弁
20が設けてあり、分離弁20の前後からそれぞ
れ入口流量計21,22、緊急しや断弁23と2
4,25と26を通つて共用系統負荷1に系統水
が供給され、負荷1からの系統水は出口流量計2
7,28を通つてA系統30またはB系統31に
戻るようになつている。
By the way, a separation valve 20 is provided between the outlet valves 16 and 18, and inlet flowmeters 21 and 22 and emergency shutoff valves 23 and 2 are connected to the front and back of the separation valve 20, respectively.
System water is supplied to the shared system load 1 through 4, 25 and 26, and the system water from load 1 is supplied to the outlet flow meter 2.
7, 28 and return to the A line 30 or the B line 31.

共用系統負荷1への系統水の供給は、通常、A
系統30またはB系統31のいずれか一方のポン
プにより行われるが、特に負荷が増大するプラン
ト運転モ−ド時においては、A系統30およびB
系統31の両方のポンプによつて行われ、この場
合は分離弁2が閉じられる。そして、共用系統負
荷1に系統水喪失事故が発生すると、それが出口
流量計27,28で計測される合計系統水流量が
入口流量計21,22で計測される合計系統水流
量より少なくなることより検出され、この検出出
力によつて、しや断弁23〜26が閉じられる。
なお、この場合、上記の検出出力によつてポンプ
3,12もトリツプさせる。このように、系統水
喪失事故の発生を流量計21,22,27,28
を用いて行つているので、検出遅れが短かく、ま
た、系統水供給のしや断をそれぞれ複数個の並列
に設けたしや断弁23と24および25と26と
で行つているので、弁の閉動作速度を速くするこ
とができ、第1図と同様、系統水の流出量を小さ
くすることができる。
The system water supply to the shared system load 1 is usually A
This is carried out by the pumps in either the system 30 or the B system 31, but especially during plant operation mode where the load increases, the pumps in the A system 30 and the B system
This is done by both pumps of line 31, in which case isolation valve 2 is closed. When a system water loss accident occurs in the shared system load 1, the total system water flow rate measured by the outlet flow meters 27 and 28 becomes smaller than the total system water flow rate measured by the inlet flow meters 21 and 22. This detection output closes the shutter valves 23 to 26.
In this case, the pumps 3 and 12 are also tripped by the above detection output. In this way, the occurrence of a system water loss accident can be detected using flowmeters 21, 22, 27, 28.
Since the detection delay is short, and since the system water supply is cut off using a plurality of cutoff valves 23 and 24 and 25 and 26, which are installed in parallel, The closing speed of the valve can be increased, and as in FIG. 1, the amount of system water flowing out can be reduced.

したがつて、ヘツドタンク3,12の容量を小
さくできる。
Therefore, the capacity of the head tanks 3, 12 can be reduced.

なお、逆止弁6,15が設けてあるので、共用
系統負荷1に通ずる流路は、流路抵抗の大きい熱
交換器5,14からの流路のみとなり、ヘツドタ
ンク4,13の水頭および補機冷却水系が原子力
発電所の建屋全域に亘つて布設されていることに
よる水頭のため系統水喪失事故の系統水流出量の
増大するのが抑制される。この場合、入口流量計
21,22の検出素子をオリフイスにしておくと
さらに効果がある。
In addition, since the check valves 6 and 15 are provided, the flow path leading to the shared system load 1 is only the flow path from the heat exchangers 5 and 14, which have large flow path resistance, and the water heads of the head tanks 4 and 13 and the Due to the water head caused by the machine cooling water system being installed throughout the entire building of the nuclear power plant, an increase in the amount of system water outflow in the event of a system water loss accident is suppressed. In this case, it is more effective to use orifices as the detection elements of the inlet flowmeters 21 and 22.

以上説明したように、本発明によれば、系統水
喪失事故発生時の系統水の流出量を低減でき、ヘ
ツドタンクの容量を小さくできるという顕著な効
果がある。
As explained above, according to the present invention, it is possible to reduce the amount of system water flowing out when a system water loss accident occurs, and the capacity of the head tank can be reduced, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の補機冷却装置の一実施例を示
す系統図、第2図は本発明の他の実施例を示す系
統図である。 1……共用系統負荷、2……A系統負荷、3,
12……ポンプ、4,13……ヘツドタンク、
5,14……熱交換器、6,15……逆止弁、
7,21,22……入口流量計、8,9,23〜
26……緊急しや断弁、10,27,28……出
口流量計、11……B系統負荷、16,18……
出口弁、17,19……入口弁、20……分離
弁。
FIG. 1 is a system diagram showing one embodiment of the auxiliary cooling device of the present invention, and FIG. 2 is a system diagram showing another embodiment of the present invention. 1...Shared system load, 2...A system load, 3,
12...Pump, 4,13...Head tank,
5, 14... Heat exchanger, 6, 15... Check valve,
7, 21, 22...Inlet flow meter, 8, 9, 23~
26... Emergency shutoff valve, 10, 27, 28... Outlet flow meter, 11... B system load, 16, 18...
Outlet valve, 17, 19... Inlet valve, 20... Separation valve.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の系統より成り、その内の1つの系統は
他の系統より系統水を共用系統負荷に供給する共
用系統となつている装置において、前記供給の為
の流路のすくなくとも途中を、前記途中よりも上
流側の流路径よりも小径な互いに並列配置の複数
の小径流路にて構成し、前記各複数の小径流路に
系統水喪失事故発生検出装置と閉動動作を連動自
在に組み合わせたしや断弁を設けたことを特徴と
した補機冷却装置。
1. In a device that is a shared system consisting of a plurality of systems, one of which supplies system water from other systems to a shared system load, at least part of the flow path for said supply is It is composed of a plurality of small-diameter flow channels arranged in parallel with each other, each having a diameter smaller than that of the flow channel on the upstream side, and a system water loss accident occurrence detection device and a closing operation are freely interlocked in combination with each of the plurality of small-diameter flow channels. An auxiliary equipment cooling system characterized by the provision of a shutoff valve.
JP12157778A 1978-10-04 1978-10-04 Device for cooling auxiliary machine Granted JPS5548694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12157778A JPS5548694A (en) 1978-10-04 1978-10-04 Device for cooling auxiliary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12157778A JPS5548694A (en) 1978-10-04 1978-10-04 Device for cooling auxiliary machine

Publications (2)

Publication Number Publication Date
JPS5548694A JPS5548694A (en) 1980-04-07
JPS6126639B2 true JPS6126639B2 (en) 1986-06-21

Family

ID=14814674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12157778A Granted JPS5548694A (en) 1978-10-04 1978-10-04 Device for cooling auxiliary machine

Country Status (1)

Country Link
JP (1) JPS5548694A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210630A (en) * 1985-03-15 1986-09-18 Toshiba Corp Manufacture of positioning mark
US5575837A (en) * 1993-04-28 1996-11-19 Fujimi Incorporated Polishing composition
US5804090A (en) * 1995-03-20 1998-09-08 Nissan Motor Co., Ltd. Process for etching semiconductors using a hydrazine and metal hydroxide-containing etching solution

Also Published As

Publication number Publication date
JPS5548694A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
JPS6126639B2 (en)
JP5010974B2 (en) Water hammer control device
US6705339B2 (en) Surge check unit for a liquid distribution system
US5257537A (en) Self actuating throttle valve
CN211449743U (en) Water distributor capable of being closed quickly
KR20090059791A (en) Device for circulating stagnation water of waterpipe edge for a waterworks system
CN205838697U (en) A kind of soft brush treatment system
CN104806552A (en) Condensate pump circuit long in service life and capable of preventing pipeline erosion
CN216241151U (en) Anti-blocking material pumping system
CN110735926B (en) Sealing system
CN214536132U (en) Dry quenching boiler water supply recirculation system
US6363957B1 (en) End user requirement supply using segmentation
No et al. Study on the validity of safety depressurization system design
JP2013151891A (en) Influx type power generation control system
JP2642552B2 (en) Operation control method of cooling seawater system
JPS5850088Y2 (en) Fluid supply device using a pure fluid control element with no moving parts
Helmy et al. Analysis of thermal hydraulic behavior of KONVOI PWR during a design extension condition
JPS61116693A (en) Cooling facility for auxiliary machinery
Chieng et al. Assessment of irrigation flow control valve performance
JPH0113079B2 (en)
JPS6139112Y2 (en)
BR102019001820A2 (en) FLOW CONTROL ADAPTER FOR TAPS AND SHOWERS
JPH0275999A (en) Compressed air device for atomic power plant
JPH0646174B2 (en) Sodium sampling system
Rener Los Angeles Experience With Water Hammer