JPS61266303A - Stationary oxygen generator - Google Patents

Stationary oxygen generator

Info

Publication number
JPS61266303A
JPS61266303A JP10614785A JP10614785A JPS61266303A JP S61266303 A JPS61266303 A JP S61266303A JP 10614785 A JP10614785 A JP 10614785A JP 10614785 A JP10614785 A JP 10614785A JP S61266303 A JPS61266303 A JP S61266303A
Authority
JP
Japan
Prior art keywords
oxygen generator
reaction
water
stationary
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10614785A
Other languages
Japanese (ja)
Inventor
Michimasa Oguri
小栗 道正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10614785A priority Critical patent/JPS61266303A/en
Publication of JPS61266303A publication Critical patent/JPS61266303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To generate O2 having high purity by the thermal decomposition or catalytic reaction of a H2O2 derivative. CONSTITUTION:A H2O2 deriv. 2 and water 1 are charged to a reaction vessel 3 provided with a heat generating body 4 capable of generating heat with 2-25Cal/cm<2> energy density at the bottom of the vessel. The vessel 3 is inserted into a charging hole 10 of a stationary O2 generator 0 and water, absorbent, adsorbent, or coolant are inserted to between >=2 stages of laminated plates in the vertical direction so as to remain >=2cm<2> sectional area of void to adjust the pressure drop to <=50kPa. Thus, a purifying filter 9 having <=0.1m height per overall transfer unit basing on gas is provided. Thereafter, the heater 4 is electrified through a plug 8, thermistor 7, and a switch 6 to cause thermal decomposition or catalytic reaction generating O2, which is discharged from an outlet 11.

Description

【発明の詳細な説明】 この発明は過酸化水素誘導体の熱分解反応又は触媒反応
により純粋な酸素を発生せしめる据置型酸素発生器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stationary oxygen generator that generates pure oxygen by thermal decomposition reaction or catalytic reaction of hydrogen peroxide derivatives.

産業上の利用分野 テニス・マラソン・エアロビック等のスポーツ後の健康
・体力・美容等の増進、勉強・仕事・二日酔い・車酔い
等の疲労・活力等の回復、鉱山・ホテル等の避難用、心
臓・呼吸疾患者等の常備用と広範である。
Industrial applications: Improving health, physical strength, beauty, etc. after sports such as tennis, marathons, aerobics, etc., recovering fatigue and vitality from studying, working, hangovers, car sickness, etc., evacuation from mines, hotels, etc. It is widely used and regularly used by people with heart and respiratory diseases.

従来の技術 深冷法・高圧ボンベ法・電気分解法・電気濃縮法・化学
反応法等多いが、小形・軽量・簡便・安価という開直か
ら過酸化水素誘導体等による化学的方法が注目されてい
る。
There are many conventional techniques such as cryogenic method, high-pressure cylinder method, electrolysis method, electroconcentration method, chemical reaction method, etc., but chemical methods using hydrogen peroxide derivatives etc. are attracting attention because they are compact, lightweight, simple, and inexpensive. There is.

考案が解決しようとしている問題点 過酸化水素誘導体の分解反応では触媒として用いたマン
ガン化合物のような有害物質を排出したり、酸素ガスの
精製が不充分であったりして未だ完全とは言えない。
Problems that the invention is trying to solve: The decomposition reaction of hydrogen peroxide derivatives is still far from perfect, as it emits harmful substances such as manganese compounds used as catalysts, and oxygen gas is insufficiently purified. .

問題を解決するための手段 触媒無添加の場合には、過炭酸ナトリウムの熱分解反応
のため温度を55±5℃に設定すると冬季・夏季の温度
変化に影響されず、酸素の発生が迅速且つ安定する。触
媒添加の場合には、特に有害でない鉄・ニッケル・銀の
硫酸塩と活性炭を20:5:2:1の割合で混合して、
浸析・乾燥させるか又は単にこれらを同圧で混合して触
媒とすることにより排出物汚染の問題はなくなる。ガス
中の不純物については、ガス精製フィルターを多段階に
積層することにより小型・軽量高性能な精製フィルター
とすることができる。
Means to Solve the Problem If no catalyst is added, setting the temperature to 55±5℃ for the thermal decomposition reaction of sodium percarbonate will not be affected by temperature changes in winter or summer, and oxygen will be generated quickly and Stabilize. When adding a catalyst, mix iron, nickel, and silver sulfates, which are not particularly harmful, and activated carbon in a ratio of 20:5:2:1.
By leaching and drying or simply mixing them at the same pressure to form a catalyst, the problem of exhaust pollution is eliminated. Regarding impurities in gas, by stacking gas purification filters in multiple stages, it is possible to create a small, lightweight, and high-performance purification filter.

作用 過炭酸ナトリウムの分解過程には熱分解法と触媒法があ
る。動力学的には両者ともに触媒反応と同様な反応機構
によって説明できるが温度、圧力、濃度の条件設定によ
り特異的反応を示す。すなはち、飽和濃度より高濃度で
は圧力依存性のある酸素の脱離過程を律速とし、又低濃
度では温度依存性のある表面反応過程を律速とする。
Effect There are two methods for decomposing sodium percarbonate: thermal decomposition method and catalytic method. Kinetically, both can be explained by a reaction mechanism similar to a catalytic reaction, but specific reactions occur depending on the conditions of temperature, pressure, and concentration. That is, at a concentration higher than the saturation concentration, the rate-determining process is the pressure-dependent oxygen desorption process, and at lower concentrations, the rate-determining process is the temperature-dependent surface reaction process.

所定流量をうるための条件は次のようである。The conditions for obtaining a predetermined flow rate are as follows.

所定流量と温度の関係:「(反応速度(1/win))
=k(反応速度係数)・C(濃度)、但しに=に、(頻
度因子) x exp(−ΔE(活性化エネルギー)/
R(ガス定数= 2KCal/mole) ・T(絶対
温度))所定流量(反応速度)を一定とすると、反応速
度式より既知濃度に対する反応速度係数が求まり、さら
に、アーレニウスの式から温度が算定できる。
Relationship between predetermined flow rate and temperature: “(reaction rate (1/win))”
= k (reaction rate coefficient)・C (concentration), however, = (frequency factor) x exp (-ΔE (activation energy) /
R (gas constant = 2KCal/mole) ・T (absolute temperature)) If the predetermined flow rate (reaction rate) is kept constant, the reaction rate coefficient for a known concentration can be found from the reaction rate equation, and the temperature can also be calculated from the Arrhenius equation. .

無用収支: 発熱体及び反応熱の熱量は発生器の熱量、
放散熱(0,4Cal/5in)及び蒸気熱量と平衡状
態になる。
Useless balance: The calorific value of the heating element and reaction heat is the calorific value of the generator,
It is in equilibrium with the dissipated heat (0.4 Cal/5 in) and the amount of steam heat.

ガス中の不純物: アルカリ成分と発生期の酸素である
が延べ塔高を0.5mにして吸水性ポリマーを充填する
ことにより殆ど完全に除去でき且つ1度充填すれば長期
間使用できる。
Impurities in the gas: Alkaline components and nascent oxygen can be almost completely removed by setting the total height of the column to 0.5 m and filling it with a water-absorbing polymer, and it can be used for a long period of time once filled.

断熱; 反応器の周囲を多段式フィルターで積層するこ
とにより、総括伝熱係数を1OKcal/n+”・hr
・℃程度にでき、側壁温度は室温となる。
Heat insulation: By stacking multi-stage filters around the reactor, the overall heat transfer coefficient is reduced to 1OKcal/n+”・hr
・The temperature of the side wall is room temperature.

表1に実験及び文献から求めた各種条件における頻度因
子及び活性化エネルギーを示す。
Table 1 shows the frequency factor and activation energy under various conditions determined from experiments and literature.

表1 触媒     水   ΔE    kn種類量(g)
  種類量(g)  (kcal/M)  (win’
)KMno、 、02  純水200  9.6   
2.5x t06//   、Q4  //  // 
  //    4J  //”   、2   〃〃
5.4    g、3〃本法 1   〃 〃  10
4” //   2//  //   g     5   
//〃  5  〃 〃  7   8  〃−−水道
水/l   11   2XlO”NazCO+(sa
t) tt  tt   13   5X10’〃  
   純水〃16   2.5xlO”HtOtinN
atCO+(sat) 〃〃tXio”表1は、1〜3
17m1nの酸素を発生させるために、飽和・不飽和状
態の熱分解反応及び本法触媒反応が利用可能であること
を示す。なお小型・軽量・簡便という開直から、飽和状
態の分解反応を利用することが合理的である。
Table 1 Catalyst Water ΔE kn type amount (g)
Type amount (g) (kcal/M) (win'
) KMno, , 02 Pure water 200 9.6
2.5x t06// , Q4 // //
// 4J //”, 2 〃〃
5.4 g, 3 This Act 1 〃 〃 10
4” // 2// // g 5
//〃 5 〃 〃 7 8 〃--Tap water/l 11 2XlO”NazCO+(sa
t) tt tt 13 5X10'〃
Pure water〃16 2.5xlO”HtOtinN
atCO+(sat) 〃〃tXio” Table 1 shows 1 to 3
This shows that saturated/unsaturated thermal decomposition reactions and the catalytic reaction of this method can be used to generate 17 m1n of oxygen. Note that it is reasonable to use a decomposition reaction in a saturated state from the standpoint of being small, lightweight, and simple.

表2に加圧状態での過炭酸ナトリウムIQOg及び水1
00.200gを用いた熱分解反応による酸素発生量及
び温度の経時変化を示す。
Table 2 shows sodium percarbonate IQOg and water 1 under pressure.
2 shows the amount of oxygen generated and changes in temperature over time due to a thermal decomposition reaction using 00.200 g.

表2 添加水Cg’)     100         2
00加圧(1[Pa)      50       
  0t(sin) T(”C) F(1/5in) 
t(win) T(”C) F(1/5in)0160
016G 、33  25  .5   .72  39  .5
.5  35  .9   1   55  .8、g
   so   1.5   2    sg   t
l    652    3   70  1.81.
3  75  2    3.3  71  21.7
  78  2.2   3.7  74  2.31
.9  81  1.5   4   80  2.5
4.6   lll5  1.5   4.6  84
 2.35.3  87  1.3   4.8  8
6  27   88  1    5.9  88 
 1.39.1  88  1    7   89 
 19.7  87  .8   8   90  .
810  87  .5   8.5  90  .5
表2は、熱分解反応の反応収率が飽和・不飽和状態とも
に85%前後であること及び加圧状態にすると酸素発生
量が安定化することを示す。
Table 2 Added water Cg') 100 2
00 Pressure (1 [Pa) 50
0t(sin) T(”C) F(1/5in)
t(win) T(”C) F(1/5in)0160
016G, 33 25. 5. 72 39. 5
.. 5 35. 9 1 55. 8, g
so 1.5 2 sg t
l 652 3 70 1.81.
3 75 2 3.3 71 21.7
78 2.2 3.7 74 2.31
.. 9 81 1.5 4 80 2.5
4.6 lll5 1.5 4.6 84
2.35.3 87 1.3 4.8 8
6 27 88 1 5.9 88
1.39.1 88 1 7 89
19.7 87. 8 8 90.
810 87. 5 8.5 90. 5
Table 2 shows that the reaction yield of the thermal decomposition reaction is around 85% in both saturated and unsaturated states, and that the amount of oxygen generated is stabilized when the pressure is applied.

表3に加圧状態での過炭酸ナトリウム100g、水10
0.200g及び本坊触媒1.5gを用いた触媒反応に
おける酸素発生量の時間変化を示す。
Table 3 shows 100 g of sodium percarbonate and 10 g of water under pressure.
2 shows the time change in the amount of oxygen generated in a catalytic reaction using 0.200 g and 1.5 g of Honbo catalyst.

表3 水(g)      100        200加
圧(KPa)     50         0本性
触媒(g)1   5      1   5t   
 F    Ft    F    F(minXl/
m1nXl/5in) (sinX]/5inX1/5
in)o    o    oo    o    。
Table 3 Water (g) 100 200 Pressure (KPa) 50 0 Main catalyst (g) 1 5 1 5t
F Ft F F (minXl/
m1nXl/5in) (sinX]/5inX1/5
in) o o o o o.

、5  .6  .9  .8  .3  .51  
1.3  1.8  2  1.2  1.51.6 
 1.5   2  3  1.5  1.82  1
.8   2  4  1.8   24  1.7 
 2.2 4.8   2  2.55.3  1.6
   2  7  1.:(t7   1  .5  
10   1  .610  .5  .3  12 
 .4  .2表3は、加圧・飽和状態の触媒反応によ
り滝川が安定化することを示す。
,5. 6. 9. 8. 3. 51
1.3 1.8 2 1.2 1.51.6
1.5 2 3 1.5 1.82 1
.. 8 2 4 1.8 24 1.7
2.2 4.8 2 2.55.3 1.6
2 7 1. :(t7 1.5
10 1. 610. 5. 3 12
.. 4. Table 2 shows that Takigawa is stabilized by the catalytic reaction under pressure and saturation.

表4に過炭酸ナトリウム100g、水100gを用いて
、500Wヒーターを使用した熱分解反応及び過炭酸ナ
トリウムtoog、水100g、本坊触媒5gを用いた
触媒反応における熱量収支を示す。
Table 4 shows the calorific value balance in a thermal decomposition reaction using 100 g of sodium percarbonate and 100 g of water using a 500 W heater, and in a catalytic reaction using too much sodium percarbonate, 100 g of water, and 5 g of Honbo catalyst.

前提条件 反応熱:、I8x酸素(1)Kcal = 18Kca
l伝熱量;500WX2”/4.2X6QX 10(I
Ilin)=lOKCa1反応器熱量:(反応器温度−
室温)x、2KCal/’1:放散熱;(反応温度−室
温)x6.4x 10−’Kcal/akin蒸気熱:
伝熱晴+反応熱−(反応器熱ti1+放散熱)表4 本坊触媒(g)       0   0   5水C
g)         100  200  100人
出人出人出 発生熱!’a(Kcal)   28   38   
1g反応器熱戦(Eal)    15   29  
 9放散熱(KCat)      2    3  
 3蒸気熱(Kcal)      11    6 
  6表4で注意すべきことは、添加水量を減少(20
Ogから1oog)させると蒸気熱(蒸気)の割合が増
加(16から39%)することである。このことは蒸気
の増加と共にそれに含まれる不純物も増加すると考えら
れるからである。この為には加圧して蒸気を減少させる
か発生ガスの精製をより充実させるかしなければならな
い。
Precondition reaction heat:, I8x oxygen (1) Kcal = 18Kca
l Heat transfer amount; 500W x 2”/4.2 x 6QX 10 (I
Ilin) = lOKCa1 Reactor heat capacity: (Reactor temperature -
room temperature) x, 2Kcal/'1: dissipated heat; (reaction temperature - room temperature) x6.4x 10-'Kcal/akin steam heat:
Heat transfer + reaction heat - (reactor heat ti1 + radiation heat) Table 4 Honbo catalyst (g) 0 0 5 water C
g) 100 200 100 people out and out fever! 'a (Kcal) 28 38
1g reactor hot battle (Eal) 15 29
9 Dissipated heat (KCat) 2 3
3 Steam heat (Kcal) 11 6
6 What should be noted in Table 4 is that the amount of water added should be reduced (20
0g to 10og), the proportion of steam heat (steam) increases (from 16 to 39%). This is because it is thought that as the amount of steam increases, the amount of impurities contained in it also increases. For this purpose, it is necessary to reduce the amount of steam by pressurizing or to further purify the generated gas.

発生ガスの不純物として水蒸気、アルカリ、原子状酸素
、過酸化水素飛沫が考えられる。不純物の中で特に間麗
となる成分は口腔内の粘膜を刺激する過酸化水素飛沫で
ある。これはゲル状ポリアクリル酸塩等の架橋ポリマー
により吸収できる。又原子状酸素についてはその寿命が
非常に短い(〜μ5ec)ことから問題ない。さらにア
ルカリについては、蒸気中に1%以内であり室温ガスに
することにより1100PP以内に抑えられる。
Possible impurities in the generated gas include water vapor, alkali, atomic oxygen, and hydrogen peroxide droplets. Among the impurities, a particularly disturbing ingredient is hydrogen peroxide droplets that irritate the mucous membranes in the oral cavity. This can be absorbed by crosslinked polymers such as gelled polyacrylates. Furthermore, atomic oxygen has a very short lifetime (~μ5 ec), so there is no problem. Furthermore, the alkali content in the steam is within 1% and can be suppressed to within 1100PP by using room temperature gas.

発生ガス(質量速度;、3g−0t/min a C1
l!、温度、40℃、圧力; 120KPa、湿度;、
4g−11!O/g−Ot1.003g−11tOf/
g−Ox)をゲル状ポリアクリル酸ナトリウム(水10
0gにポリアクリル酸ナトリウム20gを添加)の充填
層(厚み;50cm、充填密度:、2g/cmつに通す
と発生ガスの処理時間は次のようになる。
Generated gas (mass velocity; 3g-0t/min a C1
l! , temperature, 40℃, pressure; 120KPa, humidity;
4g-11! O/g-Ot1.003g-11tOf/
g-Ox) in gelatinous sodium polyacrylate (water 10
When the gas is passed through a packed bed (thickness: 50 cm, packing density: 2 g/cm) of 20 g of sodium polyacrylate added to 0 g of sodium polyacrylate, the processing time for the generated gas is as follows.

表5にゲル状ポリアクリル酸ナトリウムの充填層と吸収
層における過酸化水素の平衡関係を示す。
Table 5 shows the equilibrium relationship between hydrogen peroxide in the gelled sodium polyacrylate packed layer and the absorption layer.

表5 fl’ g−11tOt/g−Ot  X g−■tO
t/g−Polemer、0001     .01 .0002     .02 .0004     .03 .00065    .04 .001      .05 .0014     .06 .00167    .07 .00213    .08 .0026     .09 .003     .096 ガス基準総括(H.T、U):(1,42/aXRQ)
’=3C+n但し、a= 10cm”/cm’、Re(
レイノルズ数)=60表5の数値を加工して、第1図に
充填層(II’ (H.02−glot−g))及び吸
収層(X(IbOt−g/ポリマー−g))の諸数値を
、第2図に平衡曲線と操作線を、第3図に破過曲線を示
す。
Table 5 fl' g-11tOt/g-Ot X g-■tO
t/g-Polemer, 0001. 01. 0002. 02. 0004. 03. 00065. 04. 001. 05. 0014. 06. 00167. 07. 00213. 08. 0026. 09. 003. 096 Gas standard summary (H.T, U): (1,42/aXRQ)
'=3C+nHowever, a=10cm''/cm', Re(
Reynolds number) = 60 By processing the numerical values in Table 5, the details of the packed bed (II' (H.02-glot-g)) and absorption layer (X (IbOt-g/polymer-g)) are shown in Figure 1. The numerical values are shown, the equilibrium curve and operating line are shown in Figure 2, and the breakthrough curve is shown in Figure 3.

計算:吸収面におけろ飽和度(f)は第3図の破過曲線
の左側の面積からj=、7となる。
Calculation: The degree of saturation (f) on the absorption surface is j=7 from the area to the left of the breakthrough curve in FIG.

吸収面の高さくZ)は吸収面におけるす1.O,量(S
 dll/(+1−IIo))とロ1.T、U1ノ積で
、Z=、03x6=、+8とす(、。
The height of the absorption surface (Z) is the height of the absorption surface. O, amount (S
dll/(+1-IIo)) and b1. The product of T and U1 is Z=, 03x6=, +8 (,.

充填層(,5…)の飽和度(F)は、F= (,5−,
7x、+8)/。
The saturation degree (F) of the packed bed (,5...) is F= (,5-,
7x, +8)/.

5=、75となる。5=, 75.

ゲル状ポリマーに吸着したIItOw咀は、20 X 
、 75 X 、 096 = 1 、4g1ltOt
/cm’となる。
The IItOw particles adsorbed on the gel-like polymer were 20×
, 75 X, 096 = 1, 4g1ltOt
/cm'.

発生ガスの持ち込むITtO,射はい3x、05x、0
3−。
ITtO brought in by generated gas, firing 3x, 05x, 0
3-.

00045g−11,Ot/hr−am″となる。00045g-11, Ot/hr-am''.

したがって破過時間は1.8/、0O045=67hr
となり、67時間(200回)毎に精製フィルターの吸
収剤を取り替えろことになる。
Therefore, the breakthrough time is 1.8/, 0O045=67hr
Therefore, the absorbent in the purification filter should be replaced every 67 hours (200 times).

実施例1 熱分解法による据置型酸素発生器(0):反応容器(3
)(鉄、アルミ、808等金属に電熱体(4)及びその
端子(5)を底部に設は防水・絶縁施工)に過炭酸ナト
リウム(2) 100〜200gと水(1)100〜2
00gを添加して、これを木蓋(0)の投入口(10)
に挿入して、本器底部の端子(5)に装着させる、他方
精製フィルター(9)の充填層にゲル状ポリマー120
gを同心円状に仕切られた各フィルターに充填する(1
回の充填で200回連続使用)。しかして、通電(6,
7,8)1分内に酸素出口(11)より酸素ガスを発生
する。発生終了後は反応容器(3)を取り出して溶液(
1,2)を廃棄・洗浄する。
Example 1 Stationary oxygen generator using pyrolysis method (0): Reaction vessel (3
) (The electric heating element (4) and its terminal (5) are installed on the bottom of metal such as iron, aluminum, 808, etc. with waterproof/insulated construction), 100-200 g of sodium percarbonate (2) and 100-200 g of water (1).
Add 00g and insert it into the inlet (10) of the wooden lid (0).
The gel-like polymer 120 is inserted into the packing layer of the other purification filter (9) and attached to the terminal (5) at the bottom of the device.
Fill each concentrically partitioned filter with (1
Can be used continuously for 200 times with one filling.) However, energization (6,
7, 8) Generate oxygen gas from the oxygen outlet (11) within 1 minute. After the generation is complete, take out the reaction container (3) and pour the solution (
Discard and wash 1 and 2).

触媒反応による据置型酸素発生器(O);事前に過炭酸
ナトリウム(2)200g及び溶解紙又は糸等出開封可
能とした隔絶紙(+3)で包んだ末法触媒(12)5g
を充填したカートリッジ型反応容器(3)(防水・断熱
加工紙、PP等樹脂)を原料投入口(lO)より木蓋(
0)に挿入して、水200g添加すると、実施例1と同
様の精製フィルター(9)を通過した純粋酸素が直ちに
酸素出口(11)より発生する。発生終了後はカートリ
ッジ型反応容器(3)を取り出して、しばらく放置して
溶液を固化させた後廃棄する。
Stationary oxygen generator (O) using catalytic reaction; 200 g of sodium percarbonate (2) and 5 g of powdered catalyst (12) wrapped in advance with dissolving paper or isolation paper (+3) that can be opened to release threads, etc.
The cartridge-type reaction vessel (3) filled with
0) and added 200 g of water, pure oxygen having passed through the same purification filter (9) as in Example 1 is immediately generated from the oxygen outlet (11). After the generation is completed, the cartridge type reaction container (3) is taken out and left for a while to solidify the solution, and then discarded.

発明の効果 過炭酸ナトリウム200g、水2QOgを用いた熱分解
法及び触媒法(末法触媒(5g))による性能:流量;
1゜5±、51/min、発生時間:8分、立ち上り時
間;30秒、酸素ガス純度、PH9、HtOp数PPm
、水蒸気分圧80mmHg、ガス温度:室温
Effects of the invention Performance by thermal decomposition method using 200 g of sodium percarbonate and 2 QOg of water and catalytic method (powder catalyst (5 g)): Flow rate;
1°5±, 51/min, generation time: 8 minutes, rise time: 30 seconds, oxygen gas purity, PH9, HtOp number PPm
, water vapor partial pressure 80mmHg, gas temperature: room temperature

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はゲル状ポリアクリル酸ナトリウムを吸収剤
としたときの過酸化水素の処理時間を算定するために表
4に基づく平衡関係より求めた吸収面の諸特性に関する
ものである。但し、x;吸収層の過酸化水素濃度、Il
、充填層の過酸化水素濃度、A:酸素ガス速度、各添字
<B:破過点、E;破過終了点、0:平衡点〉である。 第4.5.6.7図はそれぞれ熱分解法による電気式据
置型酸素発生器の断面図、平面図、反応容器の断面図、
A−^矢視図を示す。第8.9.1o、U図はそれぞれ
触媒式据置型酸素発生器の断面図、平面図、反応容器の
断面図、11−B矢視図を示す。 符号の説明 l;水、2:過炭酸ナトリウム、3:反応
容器、4:電熱体、5;端子、6;スイッチ、7:サー
ミスター、8;プラグ、9:精製フィルター、lo;原
料投入口、11:酸素出口、12;末法触媒、13.隔
絶紙第 69
Figures 1 to 3 relate to various characteristics of the absorption surface determined from the equilibrium relationship based on Table 4 in order to calculate the treatment time for hydrogen peroxide when gelatinous sodium polyacrylate is used as the absorbent. However, x: hydrogen peroxide concentration in the absorption layer, Il
, hydrogen peroxide concentration in the packed bed, A: oxygen gas velocity, subscripts <B: breakthrough point, E: breakthrough end point, 0: equilibrium point>. Figures 4.5.6.7 are a cross-sectional view, a plan view, a cross-sectional view of a reaction vessel, and a top view of an electric stationary oxygen generator using a pyrolysis method, respectively.
A-^ arrow view is shown. Figures 8.9.1o and U respectively show a cross-sectional view, a plan view, a cross-sectional view of the reaction vessel, and a view taken along arrow 11-B of the catalytic stationary oxygen generator. Explanation of symbols l: water, 2: sodium percarbonate, 3: reaction vessel, 4: electric heating element, 5: terminal, 6: switch, 7: thermistor, 8: plug, 9: purification filter, lo: raw material inlet , 11: oxygen outlet, 12; final catalyst, 13. Separate Paper No. 69

Claims (4)

【特許請求の範囲】[Claims] (1)過酸化水素誘導体の熱分解反応又は触媒反応(硫
酸鉄・活性炭等)による据置型酸素発生器。
(1) A stationary oxygen generator using a thermal decomposition reaction or catalytic reaction (iron sulfate, activated carbon, etc.) of a hydrogen peroxide derivative.
(2)酸素発生器の反応容器には、エネルギー密度2〜
25Cal/cm^2の発熱体を設け、耐熱・防錆・防
水を施した特許請求の範囲第1項記載の据置型酸素発生
器。
(2) The reaction vessel of the oxygen generator has an energy density of 2~
A stationary oxygen generator according to claim 1, which is provided with a heating element of 25 Cal/cm^2 and is heat-resistant, rust-proof, and waterproof.
(3)酸素発生器は上蓋とその容器から構成され、上蓋
には原料投入口、酸素出口及びこれらと逆方向にその垂
直方向の空隙断面積が2cm^2以上となるように2段
以上の積層板を設け、容器には上蓋の空隙に装着したと
き空隙断面積が1cm^2以上になるように2段以上の
積層板を設けた特許請求の範囲第1項記載の据置型酸素
発生器。
(3) The oxygen generator consists of an upper lid and its container, and the upper lid has a raw material inlet, an oxygen outlet, and two or more stages opposite these so that the vertical gap cross-sectional area is 2 cm^2 or more. The stationary oxygen generator according to claim 1, wherein a laminate is provided, and the container is provided with two or more laminates so that the cross-sectional area of the gap is 1 cm^2 or more when installed in the gap of the upper lid. .
(4)積層板の空隙に水、吸収剤、吸着剤又は冷却剤を
挿入して、圧力損失を50KPa以下にし且つガス基準
総括(H.T.U)を0.1m以下にした特許請求の範
囲第1項記載の据置型酸素発生器。
(4) A patent claim in which water, an absorbent, an adsorbent, or a coolant is inserted into the voids of the laminate to reduce the pressure loss to 50 KPa or less and the gas standard summary (H.T.U.) to 0.1 m or less. A stationary oxygen generator according to scope 1.
JP10614785A 1985-05-20 1985-05-20 Stationary oxygen generator Pending JPS61266303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10614785A JPS61266303A (en) 1985-05-20 1985-05-20 Stationary oxygen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10614785A JPS61266303A (en) 1985-05-20 1985-05-20 Stationary oxygen generator

Publications (1)

Publication Number Publication Date
JPS61266303A true JPS61266303A (en) 1986-11-26

Family

ID=14426236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10614785A Pending JPS61266303A (en) 1985-05-20 1985-05-20 Stationary oxygen generator

Country Status (1)

Country Link
JP (1) JPS61266303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050100028A (en) * 2004-04-13 2005-10-18 주식회사 씨앤케이 Oxygen generator
CN102989070A (en) * 2012-12-24 2013-03-27 李鹏程 Oxygen generation type driving fatigue eliminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050100028A (en) * 2004-04-13 2005-10-18 주식회사 씨앤케이 Oxygen generator
CN102989070A (en) * 2012-12-24 2013-03-27 李鹏程 Oxygen generation type driving fatigue eliminator

Similar Documents

Publication Publication Date Title
TW513382B (en) Purification of gases
CN103362544B (en) The oxygen candle oxygen system of emergency refuge space
CN104492375B (en) A kind of adsorbent for reclaiming CO from industrial tail gas and its preparation method and application
US3814799A (en) Purifying gases containing mercury or mercury and oxygen as impurities
JP2009286683A (en) Method for producing and storing ozone using adsorbent
CN106882808B (en) The purification process and purification system of chlorine silicide
NL8601692A (en) NITROGEN PURIFIER AND METHOD FOR PURIFYING THE SAME
CN104591090A (en) Method for preparing chlorine gas through catalytic oxidation by using hydrogen chloride
JPS61227903A (en) Disposable oxygen generator
JPS61266303A (en) Stationary oxygen generator
JP5847181B2 (en) Method and apparatus for generating gas
JP2006015334A (en) Adsorbent and manufacturing method therefor
CN114007677A (en) Portable system for oxygen generation
CN101703920B (en) Method for preparing NO2 adsorption reducing material
JPS61236602A (en) Small oxygen generator
JPS60209249A (en) Purifying agent for industrial gaseous raw material and method for preparation and use thereof
JP4918255B2 (en) Nitrogen gas generator
JP2732262B2 (en) How to purify arsine
CN102269011A (en) Integral air purifying and refrigerating device for refuge chamber or escape capsule of coal mine
RU2206397C1 (en) Water cleaning filter
CN201260772Y (en) Constant temperature heating ozone catalysis decomposer
FI84935B (en) FOERFARANDE OCH ANORDNING FOER ATT UPPVAERMA GAS.
US5733508A (en) Oxygen generator
US1311175A (en) Herbert h
US2435796A (en) Isotope separation process