JPS6126577A - Manufacture of lightweight alumina burnt product - Google Patents
Manufacture of lightweight alumina burnt productInfo
- Publication number
- JPS6126577A JPS6126577A JP14914984A JP14914984A JPS6126577A JP S6126577 A JPS6126577 A JP S6126577A JP 14914984 A JP14914984 A JP 14914984A JP 14914984 A JP14914984 A JP 14914984A JP S6126577 A JPS6126577 A JP S6126577A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- lightweight
- mixed
- weight
- fired product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は軽量アルミナ質焼成品の製造法、特V(混合
アルミナ粉末を主原料として含有するウレタン発泡成型
物を、乾燥、高温焼成する多孔質アルミナ質焼成品の製
造法に関する。Detailed Description of the Invention (Field of Industrial Application) This invention relates to a method for producing a lightweight alumina fired product, and a method for manufacturing a lightweight alumina fired product (Special V), in which a urethane foam molded product containing mixed alumina powder as the main raw material is dried and fired at a high temperature. This article relates to a method for producing quality alumina fired products.
(従来の技術)
水酸化アルミニウムを1000〜1loo0c程度で仮
焼して得られるa−アルミナは仮焼アルミナと称せられ
、この仮焼アルミナは焼結性に優れているので、中心粒
径5ミクロン程度の仮焼アルミナ粉末を水と混合したア
ルミナスラリーに、発泡性ポリウレタン生成組成液を混
合した混合組成液をモールドに注入して反応発泡させ、
このウレタン発泡成型物を乾燥したのち高温焼成して軽
量7μミナ質成型品を得ることが知られている(例えば
特開昭57−71851号公報)。(Prior art) A-alumina obtained by calcining aluminum hydroxide at a temperature of about 1000 to 1 loo0c is called calcined alumina, and since this calcined alumina has excellent sinterability, it has a central particle size of 5 microns. A mixed composition liquid made by mixing a foamable polyurethane forming composition liquid into an alumina slurry made by mixing a certain amount of calcined alumina powder with water is poured into a mold, and the mixture is reacted and foamed.
It is known to dry this urethane foam molded product and then fire it at a high temperature to obtain a lightweight 7 μm molded product (for example, Japanese Patent Laid-Open No. 71851/1983).
一方、上記仮焼アルミナを更に融点2050°Cに近い
温度に加熱した焼結アルミナ、または電気炉で融点以上
の温度に加熱した¥4i、i@アルミナは、耐熱性、耐
薬品性、耐摩耗性、機械的強度、電気絶縁性などの優れ
た性質を有し、これらの優れた性質を利用して、無業製
品の高温焼成用の痺道具、例えば敷台、棚板、合板また
はセッター用の素材として広く使用されている。On the other hand, sintered alumina made by further heating the above calcined alumina to a temperature close to the melting point of 2050°C, or ¥4i, i@alumina heated to a temperature above the melting point in an electric furnace, has excellent heat resistance, chemical resistance, and wear resistance. It has excellent properties such as elasticity, mechanical strength, and electrical insulation, and by taking advantage of these excellent properties, it can be used as a tool for high-temperature firing of non-industrial products, such as bases, shelves, plywood, or setters. Widely used as a material.
(解決しようとする問題点)
上記仮焼アルミナを原料とした軽量アルミナ成型品は強
度が優れているが耐熱衝撃性が不十分であシ、急熱、急
冷などの苛酷な熱条件にさらされる窯道具の使用には不
向きである。(Problem to be solved) Lightweight alumina molded products made from the above calcined alumina have excellent strength, but have insufficient thermal shock resistance, and are exposed to severe thermal conditions such as rapid heating and cooling. Not suitable for use with kiln tools.
また、上記焼結アルミナ、電融アルミナを素材とする窯
道具などの焼成用部材は、そのほとんどがプレヌ法、鋳
込み法などで成形されているために、比重が2.6〜8
.2で大きく、形状の大きな成型品の場合は重量が大き
くて窯詰め作業に大きな労力を必要どして作業が容易で
ない。またこれらの焼成用部材は比重が大きいためその
熱容量も大きく、製品と共に加熱されるに必要な熱エネ
ルギーが大きく、エネルギー節減の点からも好ましくな
い。さらに焼結アルミナまたは電融アルミナは焼結性が
劣るので、上記仮焼アルミナを原料とする軽量アルミナ
成型品の製造法を準用して得た焼結アルミナまたは電融
アルミナのみの製品は曲げ強度、耐熱衝撃性が低下して
窯道具に使用することができない。Furthermore, since most of the firing parts such as kiln tools made of the above-mentioned sintered alumina and fused alumina are formed by the plenue method or casting method, their specific gravity is 2.6 to 8.
.. 2. If the molded product is large and has a large shape, it is heavy and requires a lot of labor to fill the kiln, making it difficult to work with. Further, since these firing members have a large specific gravity, their heat capacity is also large, and a large amount of thermal energy is required to heat them together with the product, which is not preferable from the point of view of energy saving. Furthermore, since sintered alumina or fused alumina has poor sinterability, products made only of sintered alumina or fused alumina obtained by applying the manufacturing method for lightweight alumina molded products using calcined alumina as a raw material have bending strength. , the thermal shock resistance deteriorates and it cannot be used for kiln tools.
(問題点を解決しようとする手段)
この発明は、電融アルミナ、焼結アルミナに少量の仮焼
アルミナを混合した混合アルミナ粉末を原料として軽量
アルミナ質成型品を製造する方法である。(Means for Solving the Problems) The present invention is a method for manufacturing lightweight alumina molded products using mixed alumina powder, which is a mixture of fused alumina, sintered alumina, and a small amount of calcined alumina, as a raw material.
すなわちこの発明は、中心粒径20〜400 ミクロン
の電融アルミナおよび/″!!たハ焼結アルミナ70〜
95重1%と、中心粒径5ミクロン以下の仮焼アルミナ
5〜30重量%との混合アルミナ粉末に、水または水お
よび活性水素含有化合物を加えてアルミナスフリーとし
、このアルミナスフリーに発泡性ポリウレタン生成組成
液を混合した混合組成液をモールドに注入して反応発泡
略せ、このウレタン発泡成型物を乾燥したのち高温で焼
成することを特徴とする軽量アルミナ質焼成品の製造法
である。That is, the present invention provides fused alumina with a center particle diameter of 20 to 400 microns and sintered alumina with a center particle diameter of 70 to 400 microns.
Water or water and an active hydrogen-containing compound are added to a mixed alumina powder of 1% by weight of 95% by weight and 5 to 30% by weight of calcined alumina with a center particle size of 5 microns or less to make it alumina-free, and this alumina-free is foamed. This method of producing a lightweight alumina fired product is characterized by injecting a mixed composition solution containing a polyurethane forming composition solution into a mold, omitting reaction foaming, drying the urethane foam molded product, and then firing it at a high temperature.
電融アルミナおよび焼結アルミナは焼成品の骨材となる
もの゛で、その中心粒径は20〜400ミクロン、好ま
しくは50〜250ミクロンであり、400ミクロンを
越えるとウレタン発泡成型物の乾燥時の収縮が大きく、
また焼成品の表面に粗大粒子が突出して表面の平滑性か
損なわれ、さらに焼成品の焼結性か低下して所望の強度
耐熱衝繋性が得られない。中心粒径が加ミクロン未満で
あると、強度が大きく表面平滑性が良いが、耐熱衝撃性
が低下ブる。Fused alumina and sintered alumina serve as aggregates for fired products, and their median particle size is 20 to 400 microns, preferably 50 to 250 microns. contraction is large,
Moreover, coarse particles protrude on the surface of the fired product, impairing the surface smoothness, and further reducing the sinterability of the fired product, making it impossible to obtain the desired strength and heat resistance. When the center particle size is less than 100 microns, the strength is high and the surface smoothness is good, but the thermal shock resistance is decreased.
仮焼アルミナは焼成品の結合材と力るもので、その中心
粒径は5ミクロン以下であり、5ミクロンを越えると結
合相とし7ての作用か十分に発揮されず、強度、耐熱衝
撃性が十分でない。Calcined alumina acts as a binder for fired products, and its center grain size is less than 5 microns.If it exceeds 5 microns, it becomes a binder phase and does not function adequately, resulting in poor strength and thermal shock resistance. is not enough.
寿お上記アルミナの中心粒径と杖、粒度累積曲線におけ
る中央累積値(50%)に相当する粒径をいう。The particle diameter corresponds to the median cumulative value (50%) in the particle size cumulative curve.
電融アルミナおよび/または焼結アルミナと仮焼アルミ
ナとの混合割合は、前者が70〜95重量%、後者が5
〜加重量%である。仮焼アルミナの混合割合が5重量%
未満であると焼結性が不十分で焼成品の強度が小さく、
(資)重量%を越えると焼結性が大きく、強度が大きく
なシ過ぎて耐熱衝撃性が低下し、焼成収縮率が大きくな
る。The mixing ratio of fused alumina and/or sintered alumina and calcined alumina is 70 to 95% by weight for the former and 5% by weight for the latter.
~ Weighted amount %. Mixing ratio of calcined alumina is 5% by weight
If it is less than that, the sinterability will be insufficient and the strength of the fired product will be low.
If it exceeds % by weight, the sintering properties will be too high, the strength will be too high, the thermal shock resistance will decrease, and the firing shrinkage will increase.
上記の混合アルミナ粉末には、焼結助剤として酸化マグ
ネシウム、酸化カルシウム、シリカのうちの1種または
2種以上の無機酸化物、またはこれらの無機酸化物を焼
成中に生ずる無機化合物を配合することができ、この場
合は焼成品の焼結性が向上して焼成温度を下けることが
でき、また焼成品の強度、耐熱衝撃性が向上される。上
記焼結助剤の配合割合は混合アルミナ粉末と焼結助剤と
の合計量に対して3重量%以下であることが好ましく、
これより多く混合した場合には耐熱性が低下また社損な
われることがある。The above mixed alumina powder is blended with one or more inorganic oxides of magnesium oxide, calcium oxide, and silica as a sintering aid, or an inorganic compound generated during firing of these inorganic oxides. In this case, the sinterability of the fired product is improved, the firing temperature can be lowered, and the strength and thermal shock resistance of the fired product are improved. The blending ratio of the sintering aid is preferably 3% by weight or less based on the total amount of the mixed alumina powder and the sintering aid,
If more than this is mixed, the heat resistance may be lowered or the structure may be damaged.
上記混合アルミナ粉末100重量部に対して水に〜60
重量部を混合してアルミナスラリーとする。~60 parts by weight of water for 100 parts by weight of the above mixed alumina powder
The weight parts are mixed to form an alumina slurry.
上記アルミナスフリーには、発泡性ポリウレタン生成組
成液中のポリイソシアネート化合物と反応する活性水素
含有化合物を混合してもよい。An active hydrogen-containing compound that reacts with the polyisocyanate compound in the foamable polyurethane forming composition liquid may be mixed with the alumina-free material.
上記活性水素含有化合物としては、例えばポリプロピレ
ンゲpコーp、ポリエチレングリコール等のポリエーテ
ル類、ポリイソシアネ−ト等のポリエステル類、および
これらの混合物であり、さらにトリエタノールアミン、
グリセリン醇の分子量が比較的小さい化合物、これらの
種々の混合物を用いることができる。また上記アルミナ
スラリーに混合されて反応発泡される発泡性ボリウレク
ン生成組成液の他の成分であるポリイソシアネート化合
物としては、通常の各種ポリイソシアネート化合物が用
いられ、例えばトリレンジイソシアネート(TD工)、
液状ジフェニルメタン−4゜4゛−ジイソシアネート(
MDI)、粗製MDI等のポリイソシアネート、および
上記ポリイソシアネート化合物と上記活性水素含有化合
物とを反応させて得られた末端に遊離インシアネート基
を有するウレタンプレポリマーが用いられる。更にポリ
ウレタン業界において通常使用される触媒、界面活性剤
、また社窯業界において通常使用される解膠剤、バイン
ダー等を、上記発泡反応およびアルミナスラリーの調製
の助剤として適宜に配合することができる。Examples of the active hydrogen-containing compound include polypropylene glycol, polyethers such as polyethylene glycol, polyesters such as polyisocyanate, and mixtures thereof, and triethanolamine,
Compounds having a relatively low molecular weight in glycerin solution and various mixtures thereof can be used. Further, as the polyisocyanate compound which is another component of the foamable polyurecne forming composition liquid which is mixed with the alumina slurry and foamed by reaction, various usual polyisocyanate compounds are used, such as tolylene diisocyanate (TD Engineering),
Liquid diphenylmethane-4゜4゛-diisocyanate (
MDI), polyisocyanates such as crude MDI, and urethane prepolymers having free incyanate groups at the ends obtained by reacting the polyisocyanate compound with the active hydrogen-containing compound are used. Furthermore, catalysts and surfactants commonly used in the polyurethane industry, as well as deflocculants and binders commonly used in the company kiln industry, can be appropriately blended as auxiliaries for the above-mentioned foaming reaction and preparation of the alumina slurry. .
上記アμミナヌラ!J−100重量部に対して発泡性ポ
リウレタン生成組成液5〜(資)重量部を混合した混合
組成液をモールドに注入して反応発泡させ、発泡終了後
、樹脂化を完了させて硬化する。上記の発泡反応は、ア
ルミナスラリー中の水または活性水素含有化合物と、発
泡性ポリウレタン生成組成液中のイソシア不−F基との
反応によシ発生ずる炭酸ガスの発泡によるものであるが
、上記発泡性ポリウレタン生成組成液に予め低沸点化合
物、例えはトリクロルフルオロメタンを添加することに
よる発泡でもよい。Amu minanura above! A mixed composition prepared by mixing 5 to (1) parts by weight of the foamable polyurethane forming composition to 100 parts by weight of J-100 is poured into a mold and reacted and foamed. After the foaming is completed, resin formation is completed and hardened. The above-mentioned foaming reaction is due to the foaming of carbon dioxide gas generated by the reaction between the water or active hydrogen-containing compound in the alumina slurry and the isocyanate-F group in the foamable polyurethane forming composition liquid. Foaming may be carried out by adding a low boiling point compound, for example trichlorofluoromethane, to the foamable polyurethane forming composition in advance.
次いで、モールド内で硬化したウレタン発泡成型物をモ
ールドより取出したのち、室温まだは熱風で乾燥し、こ
の乾燥物を1500〜1800 ℃の高温で焼成する。Next, the urethane foam molded product cured in the mold is taken out from the mold, and then dried with hot air while still at room temperature, and this dried product is fired at a high temperature of 1500 to 1800°C.
この焼成工程では、200〜300’Cにおいてポリウ
レタンが熱分解を始めて飛散されるので、約400°C
1で徐々に昇温さゼる。混合アルミナ粉末に上詰焼結助
剤を添ハ1した場合には、焼成温度は1501’)’C
で所定の特性をイJう゛る焼成品を得ることができる。In this firing process, polyurethane begins to thermally decompose at 200 to 300'C and is scattered, so at approximately 400°C
At step 1, the temperature will gradually rise. When a top sintering aid is added to the mixed alumina powder, the firing temperature is 1501')'C.
It is possible to obtain a fired product with predetermined characteristics.
純度が高く、も1片か比較的粗い混合アルミナ粉末の場
合には、焼成温度は約1800’Cである3、上記の焼
成条件い、混合アルミナ粉末の配合割合、および焼成品
の使用目的に応じて変化させることdもちろんである。In the case of mixed alumina powder with high purity and relatively coarse pieces, the firing temperature is approximately 1800'C. Of course, it can be changed accordingly.
(実施例)
゛ 中心粒径か異なる電融アルミナ贅ブζは焼結アル
ミナと、中心粒伊がRなる仮焼アルミナとの混合アルミ
ナ粉末に水を混合してアルミナスラリーとし、このアル
ミナスフリーに各種()発泡性ポリウレタン生成組成液
を混合した混合組成液をモール、 ドに注入して常温で
反応発泡させ、このウレタン発泡成型物を80℃、I2
詩1’l(+乾燥したのち、6〜7時間かけて400°
Cに昇温し、次いで15〜18時間焼成して軽カニアル
ミナ質焼成品を得た。下記第1表にアルミナスラリーの
配合量、発泡性ポリウレタン生成組成液、第2表に軽量
アルミナ質焼成品の物性価を示した。(Example) ゛ Electro-fused alumina powder ζ with different center grain sizes is made by mixing water with mixed alumina powder of sintered alumina and calcined alumina with center grain size R, and making this alumina slurry. A mixture of various () foamable polyurethane producing compositions was poured into a mold, reacted and foamed at room temperature, and the urethane foam molded product was heated at 80°C and I2
Poetry 1'l (+ After drying, heat at 400° for 6 to 7 hours.
C. and then fired for 15 to 18 hours to obtain a light crab alumina fired product. Table 1 below shows the blending amount of the alumina slurry, the foamable polyurethane forming composition, and Table 2 shows the physical properties of the lightweight alumina fired product.
第 2 表 (物性値)
第1表中、ウレタン組成液U1は、トリエタノルアミノ
8N九部、ポリプロピレングリコール(平均分子量70
00 ) 7重量部、粗製MD111重量部および少量
の界面活性剤(商品名H,EtX−607、東しシリコ
ーン社製)からなり、トリエタノールアミンはアルミナ
スフリーに予め混合したものである。R2は、エチレン
グリコールを開始剤とするエチレンオキシド−プロピレ
ンオキシド共重合体(平均分子μ5000、エチレンオ
キシド含有率70ル4量%)1モルと、TD工3モルと
を混合し。Table 2 (Physical property values) In Table 1, urethane composition liquid U1 contains 9 parts of triethanolamino 8N, polypropylene glycol (average molecular weight 70
00) 7 parts by weight, 111 parts by weight of crude MD, and a small amount of surfactant (trade name H, EtX-607, manufactured by Toshi Silicone Co., Ltd.), and triethanolamine was mixed in advance without alumina. R2 was prepared by mixing 1 mole of an ethylene oxide-propylene oxide copolymer (average molecular μ5000, ethylene oxide content 70% by weight) using ethylene glycol as an initiator and 3 moles of TD.
て120°C13時間反応させて得た親水性ウレタンプ
レポリマー(N00価7.2重量%、NC010Hモル
比6.8)である。UIAは、上記U1において界面活
性剤を配合しなかったものである。This is a hydrophilic urethane prepolymer (N00 value 7.2% by weight, NC010H molar ratio 6.8) obtained by reacting at 120° C. for 13 hours. UIA is the above-mentioned U1 in which no surfactant was blended.
第2表中の嵩比重、気孔率はJ工5−R2205による
測定値である。曲は強度は、輻1011m+、厚み10
ff、長さ60ffに切シ出した試料をスパン50闘の
3点曲げ法で万能試験機により測定した。耐熱衝撃性は
、上記試料を300℃の電気炉中に投入して1時間保持
したのち、電気炉よシ取り出してすばやく15°Cの水
中に投入し、乾燥したのち曲げ強度を測定し、電気炉に
投入前の曲げ強度に対する曲げ強度保持率(96)をも
って示した。乾燥収縮率は、ウレタン発泡成型物の80
°C,12時間乾燥した前後の寸法の収縮率を示し、ま
た焼成収縮率は、高温焼成の前後の寸法の収縮率を示し
た。The bulk specific gravity and porosity in Table 2 are measured values using J-K5-R2205. The strength of the song is 1011m+, thickness 10
A sample cut to a length of 60 ff was measured using a universal testing machine using a three-point bending method with a span of 50 mm. Thermal shock resistance was determined by placing the above sample in an electric furnace at 300°C and holding it for 1 hour, then taking it out of the electric furnace and quickly placing it in water at 15°C, drying it, measuring the bending strength, and It is expressed as a bending strength retention rate (96) with respect to the bending strength before being put into the furnace. The drying shrinkage rate is 80 for the urethane foam molded product.
The dimensional shrinkage ratio before and after drying at 12 hours at °C is shown, and the firing shrinkage ratio is the dimensional shrinkage ratio before and after high-temperature firing.
第1表、第2表にみられるように、電融アルミナの中心
粒径が大きい比1は、曲は強度、耐熱衝撃性が低く、乾
燥収縮率が大きく、電融アルミナの中心粒径が小さい比
zFi、曲げ強度が大きくなるが耐熱衝撃性が低くなる
。焼結アルミナの中心粒径が大きい比3は、比lよシさ
らに曲は強度、耐熱衝撃性が低く、また乾燥収縮率も大
きい。仮焼アルミナの中心粒径が大きい比4け、曲げ強
度、耐熱衝撃性が低い。電融アルミナに対する仮焼アル
ミナの混合割合が大きい比5は、曲は強度は大きくなる
が耐熱衝撃性が不十分であシ、また焼成収縮率が大きい
。電融アルミナのみを使用した比6は、曲げ強度か小さ
く耐熱衝撃性も不十分である。仮焼アルミナのみを使用
した比7は、耐熱衝撃性が小さく、また焼成収縮率が大
きい。As shown in Tables 1 and 2, if the central particle size of fused alumina is large, the bending strength and thermal shock resistance are low, and the drying shrinkage rate is large; The smaller the ratio zFi, the higher the bending strength, but the lower the thermal shock resistance. Ratio 3, in which the central grain size of sintered alumina is large, has lower bending strength and thermal shock resistance than ratio 1, and also has a large drying shrinkage rate. The larger the central grain size of calcined alumina, the lower the bending strength and thermal shock resistance. Ratio 5, in which the mixing ratio of calcined alumina to fused alumina is large, increases the bending strength, but the thermal shock resistance is insufficient and the firing shrinkage rate is large. Ratio 6, which uses only fused alumina, has low bending strength and insufficient thermal shock resistance. Ratio 7, which uses only calcined alumina, has low thermal shock resistance and high firing shrinkage.
(発明の効果)
この発明の方法によシ得られた軽量アルミナ質焼成品は
、比重1.3〜25、気孔率(資)〜7oΦの軽量多孔
質であり、かつ強度、耐熱衝撃性に優れるとともに、多
孔質であっても乾燥収縮率、焼成収縮率が小さい。従っ
て窯道具と1〜て好適である。(Effect of the invention) The lightweight alumina fired product obtained by the method of the present invention is lightweight and porous with a specific gravity of 1.3 to 25 and a porosity of ~7oΦ, and has excellent strength and thermal shock resistance. In addition to being excellent, the drying shrinkage rate and firing shrinkage rate are small even though it is porous. Therefore, it is suitable as a kiln tool.
Claims (1)
よび/または焼結アルミナ70〜95重量%と、中心粒
径5ミクロン以下の仮焼アルミナ5〜30重量%との混
合アルミナ粉末に、水または水および活性水素含有化合
物を加えてアルミナスラリーとし、このアルミナスラリ
ーに発泡性ポリウレタン生成組成液を混合した混合組成
液をモールドに注入して反応発泡させ、このウレタン発
泡成型物を乾燥したのち高温で焼成することを特徴とす
る軽量アルミナ質焼成品の製造法。 〔2〕混合アルミナ粉末に、焼結助剤として酸化マグネ
シウム、酸化カルシウム、シリカのうちの1種または2
種以上の無機酸化物、またはこれらの無機酸化物を焼成
中に生ずる無機化合物を配合する特許請求の範囲第1項
記載の軽量アルミナ質焼成品の製造法。 〔3〕軽量アルミナ質焼成品の比重が1.3〜2.5、
気孔率が30〜70%である特許請求の範囲第1項また
は第2項記載の軽量アルミナ質焼成品の製造法。[Scope of Claims] [1] 70 to 95% by weight of fused alumina and/or sintered alumina with a center particle size of 20 to 400 microns, and 5 to 30% by weight of calcined alumina with a center particle size of 5 microns or less. Water or water and an active hydrogen-containing compound are added to the mixed alumina powder to form an alumina slurry, and the mixed composition liquid prepared by mixing the alumina slurry with a foamable polyurethane forming composition liquid is poured into a mold to cause reaction foaming, and this urethane foam molding is performed. A method for producing lightweight alumina fired products, which is characterized by drying the material and then firing it at a high temperature. [2] Add one or two of magnesium oxide, calcium oxide, and silica to the mixed alumina powder as a sintering aid.
2. The method for producing a lightweight alumina fired product according to claim 1, which comprises blending one or more inorganic oxides or an inorganic compound generated during firing of these inorganic oxides. [3] The specific gravity of the lightweight alumina fired product is 1.3 to 2.5,
The method for producing a lightweight alumina fired product according to claim 1 or 2, wherein the porosity is 30 to 70%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14914984A JPS6126577A (en) | 1984-07-17 | 1984-07-17 | Manufacture of lightweight alumina burnt product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14914984A JPS6126577A (en) | 1984-07-17 | 1984-07-17 | Manufacture of lightweight alumina burnt product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6126577A true JPS6126577A (en) | 1986-02-05 |
JPH0148235B2 JPH0148235B2 (en) | 1989-10-18 |
Family
ID=15468846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14914984A Granted JPS6126577A (en) | 1984-07-17 | 1984-07-17 | Manufacture of lightweight alumina burnt product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126577A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249693A (en) * | 2008-04-07 | 2009-10-29 | Seiko Epson Corp | Method for producing foamed metal sintered compact, and foamed metal sintered compact |
-
1984
- 1984-07-17 JP JP14914984A patent/JPS6126577A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249693A (en) * | 2008-04-07 | 2009-10-29 | Seiko Epson Corp | Method for producing foamed metal sintered compact, and foamed metal sintered compact |
Also Published As
Publication number | Publication date |
---|---|
JPH0148235B2 (en) | 1989-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101757069B1 (en) | Alumina composite ceramic composition and method of manufacturing the same | |
US4810681A (en) | Method of manufacturing dense cordierite | |
EP0081061B1 (en) | Low thermal expansion modified cordierites | |
US4472332A (en) | Process for the production of porous ceramic molded articles | |
Prabhakaran et al. | Gel casting of alumina using boehmite as a binder | |
JPS6126577A (en) | Manufacture of lightweight alumina burnt product | |
US5749960A (en) | Formulation for producing heat insulating material and method for producing the same | |
JPS6374981A (en) | Manufacture of aluminum titanate base porous body | |
JPS6327306B2 (en) | ||
JPS62187171A (en) | Manufacture of aluminum nitride sintered body | |
JPS6335593B2 (en) | ||
US2429872A (en) | Lutings | |
JPS60200874A (en) | Manufacture of ceramic foam | |
JPS638069B2 (en) | ||
US3393079A (en) | Porous ceramic oxides and method | |
JPH05262557A (en) | Production of ceramic sintered production | |
JPS6120508B2 (en) | ||
JPS59190250A (en) | Manufacture of ceramic porous body | |
JPS6374978A (en) | Ceramic composite body | |
JPH06100359A (en) | Production of ceramic sintering auxiliary and production of mullite ceramic using the same | |
JP2876521B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS6154752B2 (en) | ||
JPH0249266B2 (en) | ||
JPS6141872B2 (en) | ||
JPS6345183A (en) | Lightweight aluminum titanate base burnt product and manufacture |