JPS61265593A - Method for measuring radioactivity - Google Patents

Method for measuring radioactivity

Info

Publication number
JPS61265593A
JPS61265593A JP10619885A JP10619885A JPS61265593A JP S61265593 A JPS61265593 A JP S61265593A JP 10619885 A JP10619885 A JP 10619885A JP 10619885 A JP10619885 A JP 10619885A JP S61265593 A JPS61265593 A JP S61265593A
Authority
JP
Japan
Prior art keywords
measurement
alpha
container
reaction
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10619885A
Other languages
Japanese (ja)
Inventor
Akira Sano
明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP10619885A priority Critical patent/JPS61265593A/en
Publication of JPS61265593A publication Critical patent/JPS61265593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure radioactivity with high accuracy, by receiving a measuring specimen discharging alpha-rays in gas or liquid containing a light element having high probability generating (alpha, n) reaction and converting alpha-rays to neutron by (alpha, n) reaction when alpha-rays were discharged from a radiation source. CONSTITUTION:A specimen 11 is received in a container 12 and hermetically sealed by a lid 12A. In this state, measurement (first measurement) for counting a neutron is performed by using a <3>He neutron detector 19. The output of a preamplifier 23 is amplified by a main amplifier and measured by a counter through the peak analyser of a post-stage. After measurement, air in the container 12 is exhausted by an exhaust pipe 15. Next, gas containing a light element having high probability generating (alpha, n) reaction is injected in the container 12 by a suction pipe 14. In this state, BF3 gas is flowed even into the container 12 of the specimen 11 and the measurement (second measurement) for counting the neutron generated by (alpha, n) reaction between an alpha-ray radiation nuclide and each of elements B, F is performed. alpha-radioactive rays can be evaluated on the basis of the count value obtained by subtracting the first measured value from the second measured value.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、測定試料の形状に係わらすα放射能の測定を
精度よく行うことのできる、放射能測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a radioactivity measurement method that can accurately measure α radioactivity regardless of the shape of a measurement sample.

「従来の技術」 一般に物体のα放射能を測定する場合には、ガスフロー
型の比例計数管、シンチレーション検出器、半導体検出
器等の検出器が使用されている。
"Prior Art" Generally, when measuring the alpha radioactivity of an object, a detector such as a gas flow type proportional counter, a scintillation detector, or a semiconductor detector is used.

第2図は、−例として半導体検出器を使用した従来のα
放射能測定方法を表わしたものである。
FIG. 2 shows a conventional α using a semiconductor detector as an example.
This shows the radioactivity measurement method.

測定容器1は、真空用コネクタ2を通じて図示しない真
空ポンプに接続されており、線源3を収容した測定容器
1内はほぼ真空に保たれている。測定容器1内には線源
3に対向して検出器4が配置されている。線源3から放
出されたα線は真空中を進み、このうち半導体検出器4
に入射したものが検出される。検出信号は図示しない測
定回路系によって分析され、測定試料3におけるα線強
度等の必要なデータが求められる。
The measurement container 1 is connected to a vacuum pump (not shown) through a vacuum connector 2, and the inside of the measurement container 1 containing the radiation source 3 is maintained at a substantially vacuum state. A detector 4 is arranged within the measurement container 1 facing the radiation source 3 . The α rays emitted from the radiation source 3 travel in vacuum, and the semiconductor detector 4
What is incident on the object is detected. The detection signal is analyzed by a measurement circuit system (not shown), and necessary data such as the α-ray intensity in the measurement sample 3 is obtained.

ところで、α線は物質を透過する力が非常に弱く、線源
と検出器の間にわずか1枚の紙が存在してもこれにより
遮蔽されてしまい、測定が不可能となる。これは例えば
密度が数g/cc程度の物質に、5MeVのエネルギの
α線を入射させた場合に、数μmから数10μmの厚さ
しか透過することができない事実からも良くわかる。α
線は従って空気中でもその吸収が著しい。−例として、
α線のエネルギが同様に5MeVであるとした場合、空
気中でのその飛程はわずか3.5cmにしか過ぎない。
By the way, alpha rays have a very weak ability to penetrate materials, and even if there is only one piece of paper between the radiation source and the detector, the alpha rays will be blocked by this, making measurement impossible. This can be clearly seen from the fact that, for example, when alpha rays with an energy of 5 MeV are incident on a material with a density of several g/cc, they can only penetrate through a thickness of several micrometers to several tens of micrometers. α
Therefore, the absorption of the wire is significant even in the air. -For example,
If the energy of the alpha ray is similarly 5 MeV, its range in air is only 3.5 cm.

測定容器1内が真空に保たれるのはこの理由による。This is the reason why the inside of the measurement container 1 is kept in a vacuum.

α線はこのように透過力が非常に弱いので、検出器によ
って測定される線源は複雑な形状であったり、検出器か
ら遠く離れて配置されることができない。第2図で測定
容器内に収容された線源3は、例えば第3図に示すよう
にディスク型あるいは平板状の物体3Aであって、かつ
その表面(半導体検出器4等の検出器に対向する面)に
α線放出核種6が付着していることが必要であった。す
なわち線源から放出されるα線は、途中で邪魔されず半
導体検出器4等の検出器に入射される必要があった。
Because alpha radiation has such a very weak penetrating power, the radiation source to be measured by the detector cannot have a complex shape or be located far from the detector. The radiation source 3 housed in the measurement container in FIG. 2 is, for example, a disc-shaped or flat-plate object 3A as shown in FIG. It was necessary that the α-ray emitting nuclide 6 be attached to the surface). That is, the alpha rays emitted from the radiation source had to be incident on a detector such as the semiconductor detector 4 without being disturbed on the way.

「発明が解決しようとする問題点」 第4図は、α放射能の測定に適さない線源の例を示した
ものである。この物体3Bは口の小さな円筒形の金属製
容器であり、その内面にα線放出核種6が付着している
。このような形状ではα線は容器外にほとんど出ること
ができず、このままではその測定を行うことができない
。そこでこのように複雑な形状の線源については、これ
を切断し、α線放出核種6が検出器に直接対向するよう
にして測定することが従来から行われていた。このため
、線源の形状が複雑になるほど、これを切断するための
作業が困難となり、また切断片が多くなって、測定回数
がそれだけ増加するという問題があった。
"Problems to be Solved by the Invention" FIG. 4 shows an example of a radiation source that is not suitable for measuring alpha radioactivity. This object 3B is a cylindrical metal container with a small opening, and an α-ray emitting nuclide 6 is attached to its inner surface. With such a shape, almost no alpha rays can escape from the container, making it impossible to measure them as is. Therefore, conventionally, a radiation source having such a complicated shape has been cut and measured so that the α-ray emitting nuclide 6 directly faces the detector. For this reason, as the shape of the radiation source becomes more complex, the work to cut it becomes more difficult, and the number of cut pieces increases, leading to a corresponding increase in the number of measurements.

本発明はこのような事情に鑑み、線源となる物体を破壊
することなく、複雑な形状の物体でも精度よくα放射能
の測定を行うことのできる放射能測定方法を提供するこ
とをその目的とする。
In view of these circumstances, an object of the present invention is to provide a radioactivity measurement method that can accurately measure α radioactivity even in objects with complex shapes without destroying the object that serves as a radiation source. shall be.

「問題点を解決するための手段」 本発明では、(α、n)反応を起こす確率の高い軽元素
を含んだ気体または液体中にα線を放出する測定試料を
収容し、線源からα線が放出されたときこれを(α、n
)反応で中性子に変換させる。このようにして生じた中
性子の数を測定すれば、線源のα放射能が間接的に測定
できることになる。ただし、線源によっては(α、n)
反応とは別個に中性子の放出を行っている可能性がある
"Means for Solving the Problems" In the present invention, a measurement sample that emits α rays is housed in a gas or liquid containing light elements that have a high probability of causing an (α, n) reaction, and α rays are emitted from the radiation source. When the line is emitted, we define this as (α, n
) converted into neutrons in a reaction. By measuring the number of neutrons generated in this way, the alpha radioactivity of the source can be indirectly measured. However, depending on the radiation source (α, n)
It is possible that neutrons are emitted separately from the reaction.

そこでα放射能の測定を正確に行うためには、(α、n
)反応を起こす確率の高い軽元素を含んだ気体または液
体中に測定試料を収容しない状態で中性子の測定も行い
、測定結果の差を求めてα放射能の補正を行うことが有
効である。
Therefore, in order to accurately measure α radioactivity, (α, n
) It is effective to measure neutrons without placing the measurement sample in a gas or liquid that contains light elements that have a high probability of causing a reaction, and then calculate the difference in the measurement results and correct for α radioactivity.

(α、n)反応を起こす確率の高い軽元素としては、例
えばべIJ IJウム、ホウ素、酸素、フッ素ネオンが
代表的である。これらは気体あるいは液体の状態で容器
内に入れられ、この容器中の線源によって(α、n)反
応を行うこととなる。
Typical examples of light elements with a high probability of causing a (α, n) reaction include aluminum, boron, oxygen, and fluorine neon. These are placed in a container in a gas or liquid state, and the (α, n) reaction is carried out by the radiation source in this container.

「実施例」 以下実施例につき本発明の詳細な説明する。"Example" The present invention will be described in detail with reference to Examples below.

測定装置の概要 第1図は本発明の放射能測定方法を適用した測定装置の
一例を表わしたものである。この装置の中央には、測定
試料(線源)11を収容する容器12が配置されており
、この周囲にはこれを包囲する形に測定部13が配置さ
れている。容器12の蓋12Aには吸気パイプ14と排
気パイプ15が取り付けられており、容器12内への気
体の取り込みと排出が行われるようになっている。蓋1
2Aの下面は容器本体12Bの縁とシール部材16によ
って密着するようになっており、外部から自由に空気が
流入したり容器12内の気体が自由に流出できないよう
になっている。
Outline of Measuring Apparatus FIG. 1 shows an example of a measuring apparatus to which the radioactivity measuring method of the present invention is applied. A container 12 containing a measurement sample (radiation source) 11 is arranged in the center of this apparatus, and a measurement section 13 is arranged around the container 12 to surround it. An intake pipe 14 and an exhaust pipe 15 are attached to the lid 12A of the container 12, so that gas is taken into and discharged from the container 12. Lid 1
The lower surface of the container 2A is brought into close contact with the edge of the container body 12B by a sealing member 16, so that air cannot freely flow in from the outside and gas within the container 12 cannot freely flow out.

測定部13には、肉厚が15cm程度のポリエチレンの
円筒17が配置されている。ポリエチレンは中性子の減
速材として用いられている。円筒17には、その中心軸
から等しい距離の位置に等間隔に、10〜20個の貫通
孔18が穿設されており、これらの中には3 He中性
子検出器19が1つずつ差し込まれている。各3 He
中性子検出器19の上端はコネクタボックス21に取り
付けられている。これら検出器19の出力信号はまとめ
られ、信号ケーブル22として前置増幅器23の信号入
力端に接続されている。前置増幅器23の信号出力側に
は、図示しないメインアンプへ信号を伝達するための信
号ケーブル24が接続されている。
A polyethylene cylinder 17 with a wall thickness of about 15 cm is arranged in the measuring section 13. Polyethylene is used as a neutron moderator. The cylinder 17 has 10 to 20 through holes 18 equally spaced at equal distances from its central axis, and one 3 He neutron detector 19 is inserted into each of these through holes 18. ing. 3 He each
The upper end of the neutron detector 19 is attached to a connector box 21. The output signals of these detectors 19 are combined and connected as a signal cable 22 to a signal input of a preamplifier 23. A signal cable 24 is connected to the signal output side of the preamplifier 23 for transmitting a signal to a main amplifier (not shown).

容器12の内部は直径20cm、高さ25cm程度の筒
状の空間となっている。この実施例ではここに底面の直
径がlQcm程度のステンレス製円筒容器を測定試料1
1として収容した。この円筒容器の内壁には、α線放出
核種が付着している。
The inside of the container 12 is a cylindrical space with a diameter of about 20 cm and a height of about 25 cm. In this example, a stainless steel cylindrical container with a bottom diameter of about 1Qcm is used as the measurement sample 1.
It was accommodated as 1. An α-ray emitting nuclide is attached to the inner wall of this cylindrical container.

このような形状の測定試料11は、従来測定が困難であ
ったことは既に説明した通りである。
As already explained, it has been difficult to measure the measurement sample 11 having such a shape in the past.

測定方法 α放射線の測定は次の順序で行われる。Measuring method Measurements of alpha radiation are carried out in the following order:

(1)測定試料11を容器12内に収容したら蓋12A
でこれを密封する。このとき容器12内はその周囲の空
気で満たされている。
(1) When the measurement sample 11 is placed in the container 12, the lid 12A
Seal this with. At this time, the inside of the container 12 is filled with surrounding air.

(2)この状態で’He中性子検出器8を用いて中性子
計数の測定を行う。前置増幅器23の出力はメインアン
プで増幅され、後段の波高分析器を経てカウンタで計数
が行われる。測定時間の設定にはタイマーが用いられる
。このようにして行われた測定を第1の測定と呼ぶこと
にする。
(2) In this state, neutron counts are measured using the 'He neutron detector 8. The output of the preamplifier 23 is amplified by the main amplifier, passes through a pulse height analyzer in the subsequent stage, and is counted by a counter. A timer is used to set the measurement time. The measurement performed in this manner will be referred to as the first measurement.

(3)第1の測定が終了したら、排気パイプ15を用い
て容器12内の空気を抜きとる。
(3) After the first measurement is completed, the air inside the container 12 is removed using the exhaust pipe 15.

(4)次に吸気パイプ14を用いて、(α、n)反応を
起こす確率の高い軽元素を含んだ気体を容器12内に注
入する。
(4) Next, using the intake pipe 14, a gas containing a light element with a high probability of causing the (α, n) reaction is injected into the container 12.

ところで測定試料11にU(ウラン)、Pu(プルトニ
ウム〉等のα線放出核種が付着している場合には、次の
第1表に示すようなエネルギのα線が放出されている。
By the way, when an α-ray emitting nuclide such as U (uranium) or Pu (plutonium) is attached to the measurement sample 11, α-rays with energies shown in Table 1 below are emitted.

α線のエネルギは核種の種類によっても異なるが、はぼ
5MeVのα線を放出していることがわかる。
The energy of α-rays varies depending on the type of nuclide, but it can be seen that α-rays of approximately 5 MeV are emitted.

第1表 このようなぼぼ5MeVのエネルギのα線が核種に当た
ったときの中性子を放出する確率、すなわち(α、n)
中性子放出率の高い核種は次の第2表に示す通りである
Table 1: Probability of emitting a neutron when such an α ray with an energy of approximately 5 MeV hits a nuclide, i.e. (α, n)
Nuclides with high neutron emission rates are shown in Table 2 below.

(以下余白) 第2表 この実施例では、(α、n)中性子放出率の高いB(ホ
ウ素)を含む化合物としてBF3(三フッ化ホウ素)ガ
スを容器12内に注入した。容器12内のBF3 ガス
は排気パイプ15および吸気パイプ14によって図示し
ないガス供給源との間を循環する。この状態で測定試料
11の容器内にもBF3 ガスが流入し、α線放出核種
とBSF(フッ素)の各元素の間で(α、n)反応が生
じ中性子が放出される。
(Margin below) Table 2 In this example, BF3 (boron trifluoride) gas was injected into the container 12 as a compound containing B (boron) with a high (α, n) neutron emission rate. The BF3 gas in the container 12 is circulated through an exhaust pipe 15 and an intake pipe 14 to a gas supply source (not shown). In this state, BF3 gas also flows into the container of the measurement sample 11, and an (α, n) reaction occurs between the α-ray emitting nuclide and each element of BSF (fluorine), and neutrons are emitted.

(5)この状態で’He中性子検出器8を用いて中性子
計数の測定が行われる。測定時間等は第1の測定と同一
である。このようにして行われた測定を第2の測定と呼
ぶことにする。
(5) In this state, neutron counting is performed using the 'He neutron detector 8. The measurement time etc. are the same as the first measurement. The measurement performed in this manner will be referred to as the second measurement.

(6)第2の測定によって得られた中性子計数から第1
の測定のそれを減算する。この減算後の計数値はα線の
強度に比例する。従ってこれによりα放射能を評価する
ことができる。
(6) From the neutron counts obtained in the second measurement, the first
Subtract that of the measurement of. The count value after this subtraction is proportional to the intensity of the alpha rays. Therefore, alpha radioactivity can be evaluated using this method.

この実施例の装置では、測定試料11の周囲に配置され
ている全3 He中性子検出器8による中性子の検出効
率が4%である。測定試料11の内壁に1mciのα線
放出核種が付着しているものとすれば、5 Me V程
度のα線を放出することになる。その半分が(α、n)
反応を起こすものとすれば、1秒当りの中性子の計数値
は次の式により求められる。
In the apparatus of this example, the neutron detection efficiency of all 3 He neutron detectors 8 placed around the measurement sample 11 is 4%. If 1 mci of α-ray emitting nuclide is attached to the inner wall of the measurement sample 11, approximately 5 Me V of α-rays will be emitted. Half of it is (α, n)
Assuming that a reaction occurs, the number of neutrons counted per second is determined by the following formula.

=4.ま ただしここで数値3.7X10−’は1秒当りのα線放
出率であり、他の数値5.48X10−6は(α、n)
中性子放出率である。
=4. Also, here the value 3.7X10-' is the α-ray emission rate per second, and the other value 5.48X10-6 is (α, n)
is the neutron emission rate.

この式より1秒当り約4個の中性子が計数可能なことが
わかる。これは十分有意に計数可能な量である。測定時
間を100秒に設定すれば、この測定試料について約4
00個の中性子計数値が(与られることになる。
From this equation, it can be seen that approximately 4 neutrons can be counted per second. This is a sufficiently significant quantity to count. If the measurement time is set to 100 seconds, approximately 4
00 neutron counts will be given.

「発明の変形可能性」 以上気体中で(α、n)反応を生じさせる例について説
明したが、液体中で同様の反応を生じさせ、間接的にα
放射線を測定することも可能である。
"Possibility of modification of the invention" Above, we have explained an example in which the (α, n) reaction occurs in a gas, but a similar reaction can be caused in a liquid and indirectly α
It is also possible to measure radiation.

「発明の効果」 以上説明したように本発明によれば測定試料を破壊する
ことなくα放射線の測定が可能なので、測定対象が限定
されず、また迅速な測定が可能となる。
"Effects of the Invention" As explained above, according to the present invention, alpha radiation can be measured without destroying the measurement sample, so the measurement target is not limited and rapid measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で使用される測定装置の端面
図、第2図は従来の測定方法で使用された装置の構成図
、第3図は従来非破壊で測定可能とされた測定試料の一
例を示す斜視図、第4図は従来測定の困難だった測定試
料の一例を示す斜視図である。 ε  α線放出核種、 11  測定試料。 出 願 人   日本原子力事業株式会社代 理 人 
  弁理士   山内梅雄第1図
Fig. 1 is an end view of a measuring device used in an embodiment of the present invention, Fig. 2 is a configuration diagram of a device used in a conventional measuring method, and Fig. 3 is a conventional measuring device capable of non-destructive measurement. A perspective view showing an example of a measurement sample. FIG. 4 is a perspective view showing an example of a measurement sample that has been difficult to measure in the past. ε α-ray emitting nuclide, 11 Measurement sample. Applicant: Japan Atomic Energy Corporation, Agent
Patent attorney Umeo Yamauchi Figure 1

Claims (1)

【特許請求の範囲】 1、(α、n)反応を起こす確率の高い軽元素を含んだ
気体または液体中にα線を放出する測定試料を収容し、
(α、n)反応の結果として生じた中性子の数を測定す
ることによつて前記測定試料のα放射能を測定する放射
能測定方法。 2、(α、n)反応を起こす確率の高い軽元素を含んだ
気体または液体中に測定試料を収容しない状態で測定試
料から放出される中性子の数を測定し、この計数を前記
気体または液体中に測定試料を収容した状態での測定試
料の測定結果から減算し、α放射能の補正後の測定結果
とすることを特徴とする特許請求の範囲第1項記載の放
射能測定方法。 3、測定試料を収容する容器に、ベリリウム、ホウ素、
酸素、フッ素、ネオンの各元素のうちの少なくとも1種
類が気体あるいは液体の状態で存在していることを特徴
とする特許請求の範囲第1項記載の放射能測定方法。
[Claims] 1. A measurement sample that emits α rays is housed in a gas or liquid containing a light element that has a high probability of causing a (α, n) reaction;
(α, n) A radioactivity measurement method for measuring the α radioactivity of the measurement sample by measuring the number of neutrons produced as a result of the reaction. 2. (α, n) Measure the number of neutrons emitted from the measurement sample in a state where the measurement sample is not contained in a gas or liquid containing a light element that has a high probability of causing a reaction, and calculate the number of neutrons emitted from the measurement sample. 2. The radioactivity measuring method according to claim 1, wherein the measurement result is subtracted from the measurement result of the measurement sample in a state where the measurement sample is accommodated, to obtain the measurement result after correction of α radioactivity. 3. Add beryllium, boron,
2. The method for measuring radioactivity according to claim 1, wherein at least one of the elements oxygen, fluorine, and neon is present in a gas or liquid state.
JP10619885A 1985-05-20 1985-05-20 Method for measuring radioactivity Pending JPS61265593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10619885A JPS61265593A (en) 1985-05-20 1985-05-20 Method for measuring radioactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10619885A JPS61265593A (en) 1985-05-20 1985-05-20 Method for measuring radioactivity

Publications (1)

Publication Number Publication Date
JPS61265593A true JPS61265593A (en) 1986-11-25

Family

ID=14427474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10619885A Pending JPS61265593A (en) 1985-05-20 1985-05-20 Method for measuring radioactivity

Country Status (1)

Country Link
JP (1) JPS61265593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038531A1 (en) * 1997-02-26 1998-09-03 British Nuclear Fuels Plc Monitoring and/or detecting alpha-radiation sources
US7649183B2 (en) 2004-12-01 2010-01-19 Vt Nuclear Services Limited Apparatus for monitoring an item for radioactive material on or associated with the item

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038531A1 (en) * 1997-02-26 1998-09-03 British Nuclear Fuels Plc Monitoring and/or detecting alpha-radiation sources
US6455859B1 (en) 1997-02-26 2002-09-24 British Nuclear Fuels Plc Selective flow path alpha particle detector and method of use
US7649183B2 (en) 2004-12-01 2010-01-19 Vt Nuclear Services Limited Apparatus for monitoring an item for radioactive material on or associated with the item

Similar Documents

Publication Publication Date Title
US3124679A (en) Nuclear determination of
JPH065297B2 (en) Dosimetry device capable of nuclide discrimination
GB1409480A (en) Neutron activation analysis system
US6341150B1 (en) Fissile material detector
Walker et al. Measurement of radiative capture resonance integrals in a thermal reactor spectrum, and the thermal cross section of Pu-240
JP2006258755A (en) ZnS(Ag) SCINTILLATION DETECTOR
US4742226A (en) Radionuclide identification in liquid scintillation counting
US4201912A (en) Subthreshold neutron interrogator for detection of radioactive materials
US4975574A (en) Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture
US2954473A (en) Cerenkov radiation fission product detector
JPH03123881A (en) Method and apparatus for analyzing gamma ray nuclide
US3536914A (en) Radiation dosimeter having cell size scintillators
JPS61265593A (en) Method for measuring radioactivity
US4409480A (en) Method and system for the testing and calibration of radioactive well logging tools
US4617167A (en) Underwater radiation detector
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JP7148916B2 (en) Strontium 90 radioactivity measuring device and its measuring method
JPH04194772A (en) Radiation measuring device
JP2000088966A (en) alpha RADIOACTIVITY MEASURING DEVICE AND METHOD
CN212965440U (en) Gamma-beta composite detecting device
Korun et al. Measurements of the total-to-peak ratio of a semiconductor gamma-ray detector
Waheed et al. High efficiency neutron detector for low neutron flux measurement
Aoyama et al. Application of air proportional counters to a tritium-in-air monitor
JP7154154B2 (en) Radioactive dust monitor and method for measuring radioactivity concentration