JPS6126468Y2 - - Google Patents

Info

Publication number
JPS6126468Y2
JPS6126468Y2 JP13028782U JP13028782U JPS6126468Y2 JP S6126468 Y2 JPS6126468 Y2 JP S6126468Y2 JP 13028782 U JP13028782 U JP 13028782U JP 13028782 U JP13028782 U JP 13028782U JP S6126468 Y2 JPS6126468 Y2 JP S6126468Y2
Authority
JP
Japan
Prior art keywords
pressure chamber
cutter head
mud
partition wall
inner cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13028782U
Other languages
Japanese (ja)
Other versions
JPS5935494U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13028782U priority Critical patent/JPS5935494U/en
Publication of JPS5935494U publication Critical patent/JPS5935494U/en
Application granted granted Critical
Publication of JPS6126468Y2 publication Critical patent/JPS6126468Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は地層が変化する地盤の掘削に適したシ
ールド掘削機に関するものである。
[Detailed Description of the Invention] The present invention relates to a shield excavator suitable for excavating ground where the strata change.

シールド掘削機でトンネルを掘削する場合に、
切羽を安定させる方法の相違によつて泥水式シー
ルド工法、泥土式シールド工法、土圧式シールド
工法等に区別され、地盤の状態、例えば、シルト
質地盤、砂質地盤、礫地盤等に応じて選択、採用
されている。
When excavating a tunnel with a shield excavator,
Depending on the method of stabilizing the face, it is classified into mud shield method, mud shield method, earth pressure shield method, etc., and the method is selected depending on the ground condition, such as silt ground, sandy ground, gravel ground, etc. , has been adopted.

しかしながら、現実の地盤は均質な地層を形成
しておらず、シールド発進前に一工法を選択、決
定して同一工法でトンネル全長を掘進することは
その工法に適した地質以外の地盤に達したときに
円滑な掘削が行えなくなるという問題点を有す
る。
However, the actual ground does not form a homogeneous stratum, and selecting and deciding on one method before launching the shield and excavating the entire length of the tunnel using the same method would result in reaching ground other than the geology suitable for that method. This has the problem that sometimes smooth excavation cannot be performed.

本考案はこのような問題点に鑑みてなされたも
ので、掘進中に変化する地質に応じて泥水式シー
ルド工法や土圧式シールド工法等に切替えること
のできるシールド掘削機を提供するものである。
The present invention has been developed in view of these problems, and the object is to provide a shield excavator that can switch to a mud shield method, an earth pressure shield method, etc. depending on the changing geology during excavation.

本考案の実施例を図面について説明すると、1
はスキンプレート2の前端側にカツターヘツド3
を配設してなるシールド機本体で、該カツターヘ
ツド3の背面から適宜間隔を存したスキンプレー
ト2の内周に隔壁4の外周面を一体的に固着して
この隔壁4の前面とスキンプレート2の背面間を
圧力室5に形成すると共に隔壁4の背面側(大気
側)を運転室6に隔設してある。
The embodiments of the present invention will be explained with reference to the drawings: 1
The cutter head 3 is attached to the front end side of the skin plate 2.
The outer circumferential surface of the partition wall 4 is integrally fixed to the inner circumference of the skin plate 2 at an appropriate distance from the back surface of the cutter head 3, so that the front surface of the partition wall 4 and the skin plate 2 are connected to each other. A pressure chamber 5 is formed between the rear surfaces of the partition wall 4 and an operator's cab 6 is provided on the rear side (atmospheric side) of the partition wall 4 .

又、隔壁4の外周部は前方に向かつて突出した
周段部7に形成されてある。
Further, the outer peripheral portion of the partition wall 4 is formed into a circumferential step portion 7 that protrudes forward.

8はカツターヘツド3の背面外周部にその前端
を一体に固着した段付円筒で、その後部を小径円
筒部8aに形成してあり、該小径円筒部8aの外
周面をスキンプレート2の内周面に固着した軸受
9によつて回転自在に支承させると共に前部の大
径円筒部背面と軸受9間にスラストベアリング1
0を介在させてある。さらに、段付円筒8はスキ
ンプレート2の内周面と大径円筒部外周面間及び
小径円筒部内周面と隔壁4の周段部外周面間とに
夫々配設した止水パツキン11,12等を介して
スキンプレート2及び隔壁4の周段部外周面に対
し、水密的に且つ回転自在に摺接してある。
Reference numeral 8 denotes a stepped cylinder whose front end is integrally fixed to the outer periphery of the back surface of the cutter head 3. Its rear portion is formed into a small diameter cylindrical portion 8a, and the outer periphery of the small diameter cylindrical portion 8a is connected to the inner periphery of the skin plate 2. The thrust bearing 1 is rotatably supported by a bearing 9 fixed to the
0 is inserted. Further, the stepped cylinder 8 has water-stop gaskets 11 and 12 disposed between the inner circumferential surface of the skin plate 2 and the outer circumferential surface of the large-diameter cylindrical portion, and between the inner circumferential surface of the small-diameter cylindrical portion and the outer circumferential surface of the stepped portion of the partition wall 4, respectively. It is in watertight and rotatable sliding contact with the outer circumferential surfaces of the circumferential portions of the skin plate 2 and the partition wall 4 via etc.

13は隔壁7の背面外周部に取付けたモータ等
の駆動装置で、その回転軸を隔壁4の前面側に突
出させて該突出端部に固着したピニオン14を段
付円筒8の小径円筒部外周面に固着したラツク1
5に噛合させてカツターヘツド3を回転させるよ
うにしてある。
Reference numeral 13 denotes a drive device such as a motor attached to the outer periphery of the rear surface of the partition wall 7, and its rotating shaft projects toward the front side of the partition wall 4, and a pinion 14 fixed to the projecting end is connected to the outer periphery of the small-diameter cylindrical portion of the stepped cylinder 8. Rack 1 stuck to the surface
5 to rotate the cutter head 3.

16は段付円筒8の小径円筒部8aの前端部内
周面にその外周面をパツキン17を介して回転自
在に摺接させた内側カツターヘツドで、この内側
カツターヘツド16により前記圧力室5を前部圧
力室5aと後部圧力室5bとに区画してあり、さ
らに該カツターヘツド16の回転軸18を隔壁4
の中央部に回転自在に支承させると共にこの回転
軸18を運転室6側に配設したモータ等の駆動装
置19によつて回転させるようにしてある。
Reference numeral 16 designates an inner cutter head whose outer circumferential surface is in rotatable sliding contact with the inner circumferential surface of the front end of the small diameter cylindrical portion 8a of the stepped cylinder 8 via a packing 17. It is divided into a chamber 5a and a rear pressure chamber 5b, and the rotation shaft 18 of the cutter head 16 is connected to the partition wall 4.
The rotary shaft 18 is rotatably supported in the center of the driver's cab 6 and is rotated by a drive device 19 such as a motor provided on the driver's cab 6 side.

内側カツターヘツド16には半径方向に長孔か
らなるスリツト20を穿設してあり、これらのス
リツト20にカツター刃21を取付けてある。
又、スリツト20はカツターヘツド16の背面に
取付けたシリンダー22によつて回動させられる
カツターゲート23により開閉できるようになつ
ており、さらに、カツターヘツド16の外周部2
ケ所に送、排泥管の挿通可能な通孔24,24を
穿設し、この通口24,24もシリンダー25に
よつて回動するゲート26により開閉できるよう
にしてある。
The inner cutter head 16 has slits 20 formed in the form of elongated holes in the radial direction, and cutter blades 21 are attached to these slits 20.
The slit 20 can be opened and closed by a cutter gate 23 which is rotated by a cylinder 22 attached to the back of the cutter head 16.
Through holes 24, 24 are bored through which a sludge drainage pipe can be inserted, and these through holes 24, 24 can also be opened and closed by a gate 26 which is rotated by a cylinder 25.

27,28は前記通孔24,24に対向する隔
壁4の適所を貫通してその先端部を圧力室5内に
夫々連通させた送泥管と排泥管で、隔壁4に穿設
した孔に水密的に嵌着した短管29,29の内周
面に水密的に且つ摺動自在に挿嵌してあり、地上
に設置した泥水処理設備(図示せず)と圧力室5
間を泥水ポンプ(図示せず)と介して泥水を環流
させるものである。
Reference numerals 27 and 28 denote a sludge feeding pipe and a sludge draining pipe, which penetrate the partition wall 4 at appropriate locations opposite to the through holes 24 and 24 and have their tips communicated with the pressure chamber 5, respectively. The short pipes 29, 29 are fitted watertightly and slidably into the inner peripheral surfaces of the short pipes 29, 29, which are watertightly and slidably fitted into the muddy water treatment equipment (not shown) installed on the ground and the pressure chamber 5.
Mud water is circulated between the two via a mud pump (not shown).

又、隔壁4の適所に別な送泥管30に先端部を
水密的に且つ摺動自在に貫通させてその先徴端部
を圧力室5内に連通させると共に後端を泥水処理
設備に接続してある。
Further, the tip end of another mud feeding pipe 30 is slidably penetrated in a watertight manner at an appropriate location of the partition wall 4, and the leading end is communicated with the pressure chamber 5, and the rear end is connected to muddy water treatment equipment. It has been done.

31,32,33は一端を隔壁4の背面に連結
したシリンダーで、そのロツド先端を前記送、排
泥管27,28及び別な送泥管30の適所に夫々
連結してあり、シリンダー31,32を収縮させ
ることによつて送、排泥管27,28の先端部を
後部圧力室5bを横断して内側カツターヘツド1
6に設けた通孔24に貫通し、前部圧力室5aに
臨ませるようにすると共にこれらの送、排泥管2
7,28が後部圧力室5bに連通している状態に
おいて別な送泥管30をシリンダー33によつて
前進させることによつて、その先端部を通孔24
に貫通して前部圧力室5aに連通可能に構成して
ある。
Reference numerals 31, 32, and 33 designate cylinders whose one end is connected to the rear surface of the partition wall 4, and whose rod tips are connected to appropriate positions of the feeding and mud removal pipes 27, 28 and another mud feeding pipe 30, respectively. 32 is contracted, and the tips of the sludge removal pipes 27 and 28 are passed across the rear pressure chamber 5b to the inner cutter head 1.
6 and facing the front pressure chamber 5a.
7 and 28 are in communication with the rear pressure chamber 5b, by advancing another mud feeding pipe 30 by the cylinder 33, the tip of the mud feeding pipe 30 is opened through the hole 24.
The front pressure chamber 5a is configured to be able to communicate with the front pressure chamber 5a by penetrating through the front pressure chamber 5a.

以上のように構成したシールド掘削機の作用を
述べると、掘削地盤34が土圧式シールド工法に
適した地盤の場合、まず、シリンダー31,3
2,33を伸長して送、排泥管27,28及び別
な送泥管30の先端部を隔壁4の近傍部にまで後
退させることにより後部圧力室5bに連通させて
おくと共に内側カツターヘツド16に設けた通孔
24,24を閉止する。
To describe the operation of the shield excavator configured as described above, when the excavated ground 34 is suitable for the earth pressure shield method, first, the cylinders 31, 3
2 and 33 are extended and fed, and the distal ends of the mud removal pipes 27 and 28 and another mud feeding pipe 30 are retreated to the vicinity of the partition wall 4 to communicate with the rear pressure chamber 5b and the inner cutter head 16. The through holes 24, 24 provided in the holes 24 and 24 are closed.

次いで、泥水ポンプを作動させて送泥管27を
通じ、泥水を圧力室5に充満させ、排泥管28を
介して圧力室5と地上の処理設備間を環流させな
がら地盤側の水圧等の圧力とバランスさせる。こ
の状態で、駆動装置によつてカツターヘツド3を
回転させると、掘削された土砂を該カツターヘツ
ド3に設けた土砂取入口(図示せず)から前部圧
力室5a内に入り、該土砂によつて前部圧力室5
a内泥水をスリツト20,20を通じて後部圧力
室5b内に排除しつゝ前部圧力室5a内に充満す
る。
Next, the mud water pump is operated to fill the pressure chamber 5 with mud water through the mud feed pipe 27, and while circulating the mud water between the pressure chamber 5 and the above-ground processing equipment through the mud removal pipe 28, pressure such as water pressure on the ground side is reduced. and balance it. In this state, when the cutter head 3 is rotated by the drive device, the excavated earth and sand enters the front pressure chamber 5a through the earth and sand intake port (not shown) provided in the cutter head 3, and is absorbed by the earth and sand. Front pressure chamber 5
The muddy water inside a is discharged into the rear pressure chamber 5b through the slits 20, 20, while filling the front pressure chamber 5a.

こうして前部圧力室5a内に生じる土圧によつ
て地盤34の土圧とバランスさせることにより地
盤の崩壊を防止する。
In this way, the earth pressure generated in the front pressure chamber 5a is balanced with the earth pressure of the ground 34, thereby preventing the ground from collapsing.

この状態にしてカツターヘツド3により地盤3
4を掘削しながら駆動装置19によつて内側カツ
ターヘツド16を回転させると、前部圧力室内の
土砂は一定の土圧を保持しつつ内側カツターヘツ
ド16のスリツト20を通じて後部圧力室5bに
入り、還流する泥水によつて坑外の処理設備にま
で輸送、排出される。
In this state, use the cutter head 3 to cut the ground 3.
When the inner cutter head 16 is rotated by the drive device 19 while excavating the cutter head 4, the earth and sand in the front pressure chamber enters the rear pressure chamber 5b through the slit 20 of the inner cutter head 16 while maintaining a constant earth pressure, and is refluxed. The mud is transported and discharged to treatment facilities outside the mine.

この時、前部圧力室5a内を一定の土圧に保持
するには、その土圧を適宜手段によつて測定しな
がら内側カツターヘツド16の回転数或いはシリ
ンダー22により開閉するゲート23によるスリ
ツト20の開度を調節して内側カツターヘツド1
6による掘削土砂取入速度を調節する。又、還流
泥水の静圧力を地下水圧にほヾ等しい圧力に保持
するものである。
At this time, in order to keep the inside of the front pressure chamber 5a at a constant earth pressure, the earth pressure is measured by an appropriate means and the number of rotations of the inner cutter head 16 or the opening and closing of the slit 20 by the gate 23 opened and closed by the cylinder 22 is adjusted. Adjust the opening and open the inner cutter head 1
Adjust the excavated soil intake speed according to step 6. Furthermore, the static pressure of the reflux mud is maintained at approximately the same pressure as the groundwater pressure.

次に、シールド掘進中に泥土式シールド工法に
適した地盤に遭遇すると、前述した掘削作業を中
止したのち、内側カツターヘツド16のゲート2
6をシリンダー25の作動によつて開いて通孔2
4,24を開放し、送泥管30のみをシリンダー
33の作動により前進させて一方の通孔24に挿
通し、その先端部を前記圧力室5aに臨ませる。
Next, when the ground suitable for the mud shield method is encountered during shield excavation, the excavation work described above is stopped, and the gate 2 of the inner cutter head 16 is
6 is opened by the operation of the cylinder 25 to open the through hole 2.
4 and 24 are opened, and only the mud feeding pipe 30 is moved forward by the operation of the cylinder 33 and inserted into one of the through holes 24, so that its tip portion faces the pressure chamber 5a.

この状態で、該送泥管30を通じて泥水を前部
圧力室5a内に注入、供給すると共にカツターヘ
ツド3を回転させて地盤34を掘削すると、前部
圧力室5a内に入つた掘削土砂が泥水に撹乱、混
合して泥土状となり、この泥土化した土砂は停止
している内側カツターヘツド16のスリツト20
及び通孔24を通して後部圧力室5b内に押出さ
れ、送排泥管27,28を還流する泥水によつて
処理設備まで排出されるものである。
In this state, when mud is injected and supplied into the front pressure chamber 5a through the mud feeding pipe 30 and the cutter head 3 is rotated to excavate the ground 34, the excavated soil that has entered the front pressure chamber 5a turns into mud. The soil is disturbed and mixed to form muddy soil, and this muddy soil flows through the slit 20 of the inner cutter head 16 where it is stopped.
The slurry is extruded into the rear pressure chamber 5b through the through hole 24, and is discharged to the treatment equipment by the muddy water flowing back through the mud feeding and draining pipes 27 and 28.

次に、泥水式シールド工法に適した地盤に遭遇
した場合、前記掘削作業を中止したのち、内側カ
ツターヘツド16の通孔24,24を開口させ、
シリンダー31,32を作動させて送、排泥管2
7,28を夫々通孔24,24に挿通させること
によりその先端部を前部圧力室5aに連通させ
る。
Next, when ground suitable for the mud shield method is encountered, the excavation work is stopped, and the through holes 24, 24 of the inner cutter head 16 are opened,
Operate the cylinders 31 and 32 to send the sludge to the drainage pipe 2.
7 and 28 are inserted through the through holes 24 and 24, respectively, so that their tips communicate with the front pressure chamber 5a.

この状態で送、排泥管27,28を通じて泥水
を還流させると、前部圧力室5aは泥水の充満し
た圧力室となり、その泥水圧によつて切羽の安定
が図れる。この場合、泥水ポンプによつて還流泥
水の静圧力を切羽の土圧と地下水圧に等しいか、
やゝ大きい圧力になるように加圧、調節する。
When the slurry is fed in this state and the mud is returned through the mud removal pipes 27 and 28, the front pressure chamber 5a becomes a pressure chamber filled with mud, and the mud water pressure stabilizes the face. In this case, whether the static pressure of the return mud by the mud pump is equal to the earth pressure at the face and the groundwater pressure,
Pressurize and adjust to a slightly higher pressure.

次に、内側カツターヘツド16を停止した状態
で、前部のカツターヘツド3のみを駆動装置13
により回転させると、このカツターヘツド3によ
り掘削された土砂は前部圧力室5a内から還流泥
水によつて坑外の処理設備に搬送され、こうして
泥水式シールド工法として掘進することができ
る。
Next, with the inner cutter head 16 stopped, only the front cutter head 3 is moved by the drive device 13.
When the cutter head 3 is rotated, the earth and sand excavated by the cutter head 3 is transported from the front pressure chamber 5a to an outside treatment facility by the return mud water, and thus can be excavated as a mud shield method.

なお、以上の実施例においては、送、排泥管2
7,28を長さ方向に移動させてその先端部を
前、後部圧力室5a,5bに選択的に連通させる
ようにしたが、第4図に示すようにこれらの送、
排泥管27,28を後部圧力室5bにその先端部
を突出させた状態で隔壁4に固定する一方、内側
カツターヘツド16を隔壁4と駆動装置19間に
連結したシリンダー35によつて前後摺動させる
ようにし、該内側カツターヘツド16を隔壁前面
に密接又は近接させた際に送、排泥管27,28
の先端部を前部加圧室5aに連通させるようにし
てもよく、その他の構成については前記実施例と
同様である。
In addition, in the above embodiment, the feed and sludge removal pipes 2
7, 28 are moved in the length direction to selectively communicate their tips with the front and rear pressure chambers 5a, 5b, but as shown in FIG.
The mud draining pipes 27 and 28 are fixed to the partition wall 4 with their tips protruding into the rear pressure chamber 5b, while the inner cutter head 16 is slid back and forth by a cylinder 35 connected between the partition wall 4 and the drive device 19. When the inner cutter head 16 is brought into close contact or close to the front surface of the bulkhead, the feeding and draining pipes 27 and 28
The tip end of the front pressurizing chamber 5a may be communicated with the front pressurizing chamber 5a, and the other configurations are the same as those of the previous embodiment.

以上のように本考案は、シールド機本体前端に
カツターヘツドを設けると共に該カツターヘツド
とシールド機本体内部に設けた隔壁間で形成する
圧力室内に内側カツターヘツドを設けて該内側カ
ツターヘツドを介して圧力室を前部圧力室と後部
圧力室とに分割し、さらに、隔壁から圧力室内に
送、送泥管の開口端部を臨ませると共に前記内側
カツターヘツドに送、排泥管の開口端部を挿嵌可
能な通孔を穿設し、内側カツターヘツドと送、排
泥管とを相対的に接離させて送、排泥管の開口端
部を前部圧力室と後部圧力室とに選択的に連通さ
せるように構成したことを特徴とするシールド掘
削機に係るものであるから、掘進中において地盤
の状態が変化してもその地層に応じて土圧式、泥
土式、泥水式のシールド工法に変更して掘削する
ことができ、しかもその変更は内側カツターヘツ
ドと送、排泥管とを互いに接離する方向に相対的
に移動させるだけで、容易に行い得るものであ
り、又、輻湊する地盤であつてもそれに応じて安
全に掘削することができ、一機種の掘削機によつ
て円滑且つ能率的なトンネル掘削が可能となるも
のである。
As described above, the present invention provides a cutter head at the front end of the shielding machine main body, and an inner cutter head is provided in the pressure chamber formed between the cutter head and the partition wall provided inside the shielding machine main body, and the pressure chamber is advanced through the inner cutter head. The sludge is divided into a pressure chamber and a rear pressure chamber, and the sludge is fed into the pressure chamber from the partition wall, facing the open end of the sludge feed pipe, and fed to the inner cutter head, into which the open end of the sludge removal pipe can be inserted. A through hole is bored, and the inner cutter head and the feed and mud removal pipes are moved relatively toward and away from each other, and the open end of the mud removal pipe is selectively communicated with the front pressure chamber and the rear pressure chamber. This is related to a shield excavator characterized by a structure that allows excavation to be carried out by changing to the earth pressure type, mud type, or mud water type shield method depending on the stratum even if the ground condition changes during excavation. Moreover, the change can be easily made by simply moving the inner cutter head and the feed and mud removal pipes toward and away from each other. Accordingly, tunnels can be excavated safely, and tunnels can be excavated smoothly and efficiently using one type of excavator.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示すもので、第1図は
その縦断側面図、第2図は内側カツターヘツドの
正面図、第3図はそのスリツト部の拡大断面図、
第4図は本考案の別の実施例を示す縦断側図であ
る。 1……シールド機本体、3……カツターヘツ
ド、4……隔壁、5……圧力室、5a……前部圧
力室、5b……後部圧力室、16……内側カツタ
ーヘツド、24……通孔、27,28……送、排
泥管。
The drawings show an embodiment of the present invention; FIG. 1 is a longitudinal sectional side view thereof, FIG. 2 is a front view of the inner cutter head, and FIG. 3 is an enlarged sectional view of the slit portion thereof.
FIG. 4 is a longitudinal sectional side view showing another embodiment of the present invention. 1... Shield machine body, 3... Cutter head, 4... Partition wall, 5... Pressure chamber, 5a... Front pressure chamber, 5b... Rear pressure chamber, 16... Inner cutter head, 24... Through hole, 27, 28... feeding, sludge drainage pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シールド機本体前端にカツターヘツドを設ける
と共に該カツターヘツドとシールド機本体内部に
設けた隔壁間で形成する圧力室内に内側カツター
ヘツドを設けて該内側カツターヘツドを介して圧
力室を前部圧力室と後部圧力室とに分割し、さら
に隔壁から圧力室内に送、排泥管の開口端部を臨
ませると共に前記内側カツターヘツドに送、排泥
管の開口端部を挿嵌可能な通孔を穿設し、内側カ
ツターヘツドと送、排泥管とを相対的に接離させ
て送、排泥管の開口端部を前部圧力室と後部圧力
室とに選択的に連通させるように構成したことを
特徴とするシールド掘削機。
A cutter head is provided at the front end of the shield machine main body, and an inner cutter head is provided in a pressure chamber formed between the cutter head and a partition wall provided inside the shield machine main body, and the pressure chamber is divided into a front pressure chamber and a rear pressure chamber through the inner cutter head. The sludge is further divided into two parts, and then sent into the pressure chamber from the partition wall, facing the open end of the sludge removal pipe, and sent to the inner cutter head. and a sludge removal pipe, the sludge removal pipe is relatively connected to and separated from the sludge removal pipe, and the open end of the sludge removal pipe is selectively communicated with a front pressure chamber and a rear pressure chamber. excavator.
JP13028782U 1982-08-27 1982-08-27 shield excavator Granted JPS5935494U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13028782U JPS5935494U (en) 1982-08-27 1982-08-27 shield excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13028782U JPS5935494U (en) 1982-08-27 1982-08-27 shield excavator

Publications (2)

Publication Number Publication Date
JPS5935494U JPS5935494U (en) 1984-03-05
JPS6126468Y2 true JPS6126468Y2 (en) 1986-08-08

Family

ID=30294926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13028782U Granted JPS5935494U (en) 1982-08-27 1982-08-27 shield excavator

Country Status (1)

Country Link
JP (1) JPS5935494U (en)

Also Published As

Publication number Publication date
JPS5935494U (en) 1984-03-05

Similar Documents

Publication Publication Date Title
KR910002230B1 (en) Shield tunneling machine
JP7337454B2 (en) shield machine
JPS6126468Y2 (en)
JPH0244996B2 (en)
JPH0216439B2 (en)
JP2528995Y2 (en) Pipe renewal shield machine
JPH09303088A (en) Method for replacing cutter bit for shield machine
JPS5824092A (en) Tunnel drilling machine
JP4177948B2 (en) Underground junction tunnel excavator and tunnel junction method
JPH0150758B2 (en)
JP2637160B2 (en) Shield method
JPH0220304Y2 (en)
JPS6011997Y2 (en) Backfilling injection device for shield tunneling machine
JP2585365B2 (en) Shield method
JPH0434677B2 (en)
JPH04203093A (en) Sludge pressure type shield machine
JPH0726515B2 (en) Underground docking shield machine
JPH0624476Y2 (en) Shield machine
JPH04343996A (en) Ground improving method
JPH03208912A (en) Construction method of solidified pile executed from inside of underground space and device thereof
JPH11210380A (en) Tunnel excavating machine for rockbed
JPH0419358B2 (en)
JPH07122395B2 (en) Outer ring-shaped lining device for planned tunnel
JPH0259275B2 (en)
JPH02217592A (en) Method of renewing existing buried pipe