JPS61264673A - Manufacture of sintered cathode plate - Google Patents

Manufacture of sintered cathode plate

Info

Publication number
JPS61264673A
JPS61264673A JP60105574A JP10557485A JPS61264673A JP S61264673 A JPS61264673 A JP S61264673A JP 60105574 A JP60105574 A JP 60105574A JP 10557485 A JP10557485 A JP 10557485A JP S61264673 A JPS61264673 A JP S61264673A
Authority
JP
Japan
Prior art keywords
nickel nitrate
sintered
nickel
substrate
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60105574A
Other languages
Japanese (ja)
Inventor
Shinsuke Nakahori
中堀 真介
Kazuhiro Oota
和宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60105574A priority Critical patent/JPS61264673A/en
Publication of JPS61264673A publication Critical patent/JPS61264673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the efficiency of alkali treatment by repeating a treatment cycle in which a sintered substrate is immersed in a solution mainly comprising nickel nitrate, dried in an atmosphere of inert gas, immersed in alkaline solution and washed to convert the nickel nitrate into active material. CONSTITUTION:A sintered nickel substrate having a porousty of about 82% is immersed in a nickel nitrate solution, dried in an atmosphere of nitrogen, immersed in a sodium hydroxide solution, washed, then dried. This treatment cycle is repeated six times. By this process, the removal of nitrate radical in alkaline solution is facilitated, and the nickel nitrate is quickly converted into active material, and the decomposition of nickel nitrate in the intermediate drying process is retarded, and the formation of decomposition produces is substantially decreased and the efficiency of alkali treatment is increased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は焼結式陽極板の製造方法に関し、詳しくは、
アルカリ蓄電池等の陽極板として用いられ、水酸化ニッ
ケルを活物質とする焼結式陽極板の製造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a sintered anode plate.
The present invention relates to a method for manufacturing a sintered anode plate that is used as an anode plate for alkaline storage batteries and uses nickel hydroxide as an active material.

〈従来の技術〉 上記のような焼結式陽極板の製造方法としては、多孔性
ニッケル基板の如き焼結基板を硝酸ニッケルを主成分と
する含浸液に浸漬して基板微孔中に硝酸ニッケルを含浸
させた後、アルカリ処理して基板微孔中の硝酸ニッケル
を活物質である水酸化ニッケルに置換し活物質化し、水
洗及び乾燥するという一連の操作を数回繰返し行なって
焼結基板中に所定量の活物質を充填する所謂化学含浸法
が知られている。
<Prior art> As a method for manufacturing the above-mentioned sintered anode plate, a sintered substrate such as a porous nickel substrate is immersed in an impregnating liquid containing nickel nitrate as a main component, and nickel nitrate is added into the micropores of the substrate. After impregnating the sintered substrate with alkali treatment, the nickel nitrate in the micropores of the substrate is replaced with nickel hydroxide, an active material, and the series of operations of washing and drying are repeated several times. A so-called chemical impregnation method is known in which a predetermined amount of active material is filled into a substrate.

ところで、この化学含浸法においては、アルカリ処理の
際、多孔基板の微孔入口に付着している硝酸ニッケルの
みが活物質化し、次回以降の含浸時に硝酸ニッケルが基
板中に入り込まなくなるという不都合がおる。このよう
な不都合を解消するため、例えば特開昭57−2059
68号公報に開示されているような、含浸液浸漬とアル
カリ処理との工程間に60〜120℃での中間乾燥工程
を設けることが広く行なわれている。
By the way, this chemical impregnation method has the disadvantage that during alkali treatment, only the nickel nitrate adhering to the entrances of the micropores of the porous substrate becomes an active material, and nickel nitrate does not enter the substrate during subsequent impregnation. . In order to eliminate such inconvenience, for example, Japanese Patent Application Laid-Open No. 57-2059
It is widely practiced to provide an intermediate drying step at 60 to 120° C. between the steps of immersion in an impregnating liquid and alkali treatment, as disclosed in Japanese Patent No. 68.

このような中間乾燥によって、基板表面に膜を作って微
孔を塞ぐ原因となる基板表面に付着した硝酸ニッケル水
溶液中の水分は除去され、また、基板微孔中の硝酸ニッ
ケルである (Ni(NO>  )  ・6H20の結晶水の一部が
脱水して(N ! (NO3>2 >2 ・4H2C)
ヤ(N f (NO3>2 >2 ” 2H20に変化
するため、硝酸ニッケルの結晶が微細化され、結果的に
、活物質化及び次回の含浸が円滑化される訳である。
This intermediate drying removes the moisture in the nickel nitrate aqueous solution adhering to the substrate surface, which causes a film to form on the substrate surface and close the pores, and also removes the moisture in the nickel nitrate aqueous solution in the substrate pores. NO> ) ・Part of the crystal water of 6H20 is dehydrated (N! (NO3>2 >2 ・4H2C)
(N f (NO3>2>2''2H20), the crystals of nickel nitrate are made finer, and as a result, formation of the active material and subsequent impregnation are facilitated.

〈発明が解決しようとする問題点〉 しかしながら、本発明者の研究によれば、上記のような
中間乾燥を空気中で行なった場合には、焼結基板上で硝
酸ニッケルの一部分解が起こることがX線回折により判
明し、また、この時の分解生成物である水酸化ニッケル
と硝酸ニッケルの混合体は水及びアルカリに比較的安定
であり、これがアルカリ処理工程における硝酸根の除去
に時間がかかり、アルカリ処理の効率を悪くする原因と
なるという問題点があることが判った。
<Problems to be solved by the invention> However, according to the research of the present inventor, when the above-mentioned intermediate drying is performed in air, partial decomposition of nickel nitrate occurs on the sintered substrate. was found by X-ray diffraction, and the mixture of nickel hydroxide and nickel nitrate, which is a decomposition product at this time, is relatively stable in water and alkali, which means that it takes time to remove nitrate radicals in the alkali treatment process. It has been found that there is a problem in that this causes the alkali treatment to become inefficient.

〈問題点を解決するための手段〉 本発明者は、上記の如き中間乾燥の目的を十分に果たし
、しかも、硝酸ニッケルの分解を防いでアルカリ処理時
の硝酸根除去を短時間化せんと研究し考察するために、
中間乾燥時に起こる硝酸ニッケルの分解を調査したとこ
ろ、この分解反応は乾燥温度、基板ニッケルの活性度、
酸素ガス(M素イオン)の存在等に起因し、基板金属ニ
ッケルー硝酸ニッケル水溶液−吸着酸素の三相界面上で
起こると予想されることを知得してこの発明を完成した
<Means for Solving the Problems> The present inventor conducted research to fully achieve the purpose of intermediate drying as described above, and to prevent the decomposition of nickel nitrate and shorten the time required to remove nitrate roots during alkali treatment. In order to consider
When we investigated the decomposition of nickel nitrate that occurs during intermediate drying, we found that this decomposition reaction depends on the drying temperature, the activity of the nickel substrate,
This invention was completed after learning that this phenomenon is expected to occur on the three-phase interface of substrate metal nickel, nickel nitrate aqueous solution, and adsorbed oxygen due to the presence of oxygen gas (M elementary ions).

この発明の焼結式陽極板の製造方法は、焼結基板を硝酸
ニッケルを主成分とする含浸液に浸・酒漬、不活性ガス
雰囲気中で乾燥し、爾後、アルカリ処理し、水洗して前
記硝酸ニッケルを活物質化するという一連の操作を繰返
して行なうことを要旨とするものでおる。上記の如き不
活性ガス雰囲気としては、例えば窒素雰囲気が挙げられ
る。
The method for producing a sintered anode plate of the present invention includes soaking a sintered substrate in an impregnating solution containing nickel nitrate as a main component, drying it in an inert gas atmosphere, then treating it with alkali, and washing it with water. The gist of this method is to repeatedly perform a series of operations for converting the nickel nitrate into an active material. An example of the above-mentioned inert gas atmosphere is a nitrogen atmosphere.

つまり、この発明では、中間乾燥を不活性ガス雰囲気中
で行なうことにより、上記分解反応における酸素の影響
をできる限り除去し、分解反応を低下緩和させようとす
るものである。
That is, the present invention attempts to remove the effect of oxygen on the decomposition reaction as much as possible by performing intermediate drying in an inert gas atmosphere, thereby slowing down and mitigating the decomposition reaction.

く作 用〉 以上の手段を用いることにより、中間乾燥時における分
解反応が緩和し、上記の如き分解生成物の発生が抑えら
れる結果、アルカリ処理時の硝酸根除去を短時間で行な
うことができるようになる。
By using the above means, the decomposition reaction during intermediate drying is relaxed and the generation of decomposition products as mentioned above is suppressed, so that nitrate radicals can be removed in a short time during alkali treatment. It becomes like this.

〈実施例〉 多孔度約82%のニッケル焼結基板を70℃、比重的1
,7の硝酸ニッケル水溶液中に20分浸漬し、その後窒
素雰囲気中で90℃で30分間中間乾燥し、更に80℃
の25%苛性ソーダ水溶液中に30分間浸漬し、爾後、
水洗し乾燥するといった一連の操作を6回繰返して本発
明に係る焼結式極板(極板A)を作った。また、苛性ソ
ーダ水溶液中への浸漬時間を120分間とした以外は同
様の方法にて、本発明に係る焼結式極板(極板B)を作
った。一方、比較のため、中間乾燥を空気中で行ない、
苛性ソーダ水溶液中への浸漬時間を夫々30分間、12
0分間とした以外は同様の方法により、従来の方法によ
る焼結式極板(極板C,D)を作った。
<Example> A sintered nickel substrate with a porosity of approximately 82% was heated at 70°C with a specific gravity of 1.
, 7 in the nickel nitrate aqueous solution for 20 minutes, then intermediately dried at 90°C for 30 minutes in a nitrogen atmosphere, and then further dried at 80°C.
immersed in a 25% caustic soda aqueous solution for 30 minutes, then
A series of operations such as washing with water and drying was repeated six times to produce a sintered electrode plate (electrode plate A) according to the present invention. Further, a sintered electrode plate (electrode plate B) according to the present invention was produced in the same manner except that the immersion time in the caustic soda aqueous solution was changed to 120 minutes. On the other hand, for comparison, intermediate drying was performed in air.
Immersion time in caustic soda aqueous solution for 30 minutes, 12
Sintered electrode plates (electrode plates C and D) were made using the conventional method in the same manner except that the heating time was 0 minutes.

以上の4つの極板A−Dについて、イオンクロマトアナ
ライザーにより極板中の硝酸根量(mg/ CC)を測
定して得た結果を下表に示す。
Regarding the above four electrode plates A to D, the amount of nitrate radicals (mg/CC) in the electrode plates was measured using an ion chromatoanalyzer, and the results obtained are shown in the table below.

上表より、本発明品はアルカリ中での硝酸根の除去が容
易で、非常に短時間且つ速やかに活物質化が行なえるこ
とがわかる。
From the table above, it can be seen that in the products of the present invention, nitrate radicals can be easily removed in an alkali, and active materials can be formed very quickly and in a very short time.

また−1第1図(A)は本発明に係る窒素雰囲気中で中
間乾燥を行なった極板の、第1図(B)は従来のように
空気中で中間乾燥を行なった極板の、それぞれの中間乾
燥直後のX線回折図を示したものであり、Δは金属ニッ
ケルを、○は硝酸ニッケル水和物(N 1−(NO3>
2 >2 ・4日20、(N i (NO3)2 )2
・2日20を、×は分解生成物を夫々示す。同図より、
本発明による場合は中間乾燥後における分解生成物の発
生が著しく抑えられていることがわかる。
In addition, -1 Figure 1 (A) shows an electrode plate that was intermediately dried in a nitrogen atmosphere according to the present invention, and Figure 1 (B) shows an electrode plate that was intermediately dried in air as in the conventional method. The X-ray diffraction diagrams are shown immediately after intermediate drying, where Δ indicates metallic nickel and ○ indicates nickel nitrate hydrate (N 1-(NO3>
2 > 2 ・4 days 20, (N i (NO3)2 ) 2
・2 days 20, × indicates decomposition products, respectively. From the same figure,
It can be seen that in the case of the present invention, generation of decomposition products after intermediate drying is significantly suppressed.

〈発明の効果〉 以上のように構成される本発明の焼結式陽極板の製造方
法によれば、中間乾燥における硝酸ニッケルの分解反応
が抑えられ、前記の如き分解生成物の発生を著しく低減
できる結果、アルカリ処理時の硝酸根除去が容易となり
、非常に短時間で活物質化が行なえ、その分アルカリ処
理並びに極板製造工程の効率化が図れるという効果を奏
する。
<Effects of the Invention> According to the method for manufacturing a sintered anode plate of the present invention configured as described above, the decomposition reaction of nickel nitrate during intermediate drying is suppressed, and the generation of the above-mentioned decomposition products is significantly reduced. As a result, nitrate radicals can be easily removed during alkali treatment, and active material can be formed in a very short time, resulting in the effect that the alkali treatment and electrode plate manufacturing process can be made more efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(^)は本発明により製造した極板の、第1図(
B)は従来法により製造した極板の、それぞれ中間乾燥
直後のX線回折図である。
Figure 1 (^) is a diagram of the electrode plate manufactured according to the present invention.
B) is an X-ray diffraction diagram of the electrode plates produced by the conventional method, each immediately after intermediate drying.

Claims (1)

【特許請求の範囲】[Claims] 1、焼結基板を硝酸ニッケルを主成分とする含浸液に浸
漬後、不活性ガス雰囲気中で乾燥し、爾後、アルカリ処
理し、水洗して前記硝酸ニッケルを活物質化するという
一連の操作を繰返して行なうことを特徴とする焼結式陽
極板の製造方法。
1. After immersing the sintered substrate in an impregnating solution containing nickel nitrate as its main component, it is dried in an inert gas atmosphere, then treated with alkali, and washed with water to turn the nickel nitrate into an active material. A method for producing a sintered anode plate characterized by repeated steps.
JP60105574A 1985-05-17 1985-05-17 Manufacture of sintered cathode plate Pending JPS61264673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105574A JPS61264673A (en) 1985-05-17 1985-05-17 Manufacture of sintered cathode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105574A JPS61264673A (en) 1985-05-17 1985-05-17 Manufacture of sintered cathode plate

Publications (1)

Publication Number Publication Date
JPS61264673A true JPS61264673A (en) 1986-11-22

Family

ID=14411288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105574A Pending JPS61264673A (en) 1985-05-17 1985-05-17 Manufacture of sintered cathode plate

Country Status (1)

Country Link
JP (1) JPS61264673A (en)

Similar Documents

Publication Publication Date Title
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
JPS61264673A (en) Manufacture of sintered cathode plate
US3305398A (en) Method for making nickel electrodes for electrolytic cells
US3269864A (en) Electrodes for alkaline storage batteries
US3284237A (en) Thermal impregnating process for negative electrodes
US3663296A (en) Method for removal of residual nitrate from negative battery plates
JPS63128555A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
US3582403A (en) Process for preparing electrodes suitable for alkaline storage batteries
JPS59181456A (en) Manufacture of negative plate of alkali storage battery
US3356534A (en) Production of electrodes for alkaline storage batteries wherein active material is at least partially formed from the metals in said grid
JPS60225356A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JPS6136348B2 (en)
JPS5927457A (en) Manufacture of nickel positive pole for alkali cell
US3647547A (en) Process for removal of nitrates from sintered nickel plaques impregnated with nickel salts
JPS6124146A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JP3353617B2 (en) Manufacturing method of sintered electrode plate for alkaline storage battery
RU2050635C1 (en) Process of manufacture of cadmium electrode for chemical source of electric energy
JPH0550100B2 (en)
JPS60119077A (en) Manufacture of cathode plate of alkaline storage battery
JPH041992B2 (en)
JPH0562430B2 (en)
JPS58115762A (en) Manufacture of negative electrode plate for sealed nickel-cadmium storage battery
JPS603860A (en) Manufacture of positive plate for alkaline storage battery
JPS63116364A (en) Production of electrode plate for alkaline storage battery
JPS63105467A (en) Manufacture of plate for alkaline storage battery