JPS6126415B2 - - Google Patents

Info

Publication number
JPS6126415B2
JPS6126415B2 JP19596781A JP19596781A JPS6126415B2 JP S6126415 B2 JPS6126415 B2 JP S6126415B2 JP 19596781 A JP19596781 A JP 19596781A JP 19596781 A JP19596781 A JP 19596781A JP S6126415 B2 JPS6126415 B2 JP S6126415B2
Authority
JP
Japan
Prior art keywords
ethylene
activated carbon
gas
test
potassium bromate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19596781A
Other languages
Japanese (ja)
Other versions
JPS5898141A (en
Inventor
Yutaka Osajima
Katsumi Yamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Original Assignee
Honshu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP56195967A priority Critical patent/JPS5898141A/en
Publication of JPS5898141A publication Critical patent/JPS5898141A/en
Publication of JPS6126415B2 publication Critical patent/JPS6126415B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンガス等の酸化により他の化
学物質に変るガスを吸収するためのガス吸収剤及
びその製造方法に関するものである。 従来、各種のガスを吸着する吸着剤としては普
通活性炭や水処理活性炭が最も一般的に知られて
いるもので、これは活性炭の多孔質部分にガス分
子が吸着されるという物理的吸着メカニズムによ
るものであつた。 従つて、エチレンガスを吸着させようとしても
同時に水分や炭酸ガス等の他のガス類をも吸着す
るために短時間にて吸着限界に達し、十分なエチ
レン吸着ができないと共に一旦吸着したエチレン
ガスが水分に伴つて溶出し、再びエチレンガスと
なつてしまう欠点を保有しているものであつた。
また、ゼオライトに過マンガン酸カリウムを被覆
したガス吸着剤のように吸着剤に酸化剤を表面付
着させたものも知られているもので、これは酸化
剤によりエチレンガス等を化学的に変化させ、変
化させた物質を吸着剤により物理的吸着させると
いう吸着メカニズムによるものであつた。 従つて、酸化剤コートによるガス吸着剤を用い
た場合には、吸着剤自体が化学変化により性質の
異なる物質になるものではないために、化学反応
式で示される当量関係及び物理的吸着量での限界
によつて、ガス吸着量が少なく十分なガス吸着が
できないという欠点を有するものであつた。そし
て、酸化剤として過マンガン酸カリウムを用いた
場合には、水分の存在で過マンガン酸カリが溶出
してガス吸着能力が低下するばかりでなく、過マ
ンガン酸カリウムの有する毒性の為に食品には使
用できず、しかも周辺の物質を赤く汚染させる欠
点を有するものであつた。また、植物の成長に関
するエチレンの植物ホルモンとしての作用(植物
を成長・分化転換する作用)をいかす植物成長・
分化作用調整剤としては硝酸銀が知られている
が、この硝酸銀は植物に塗布して硝酸銀とエチレ
ンを反応させて除去したり植物の気孔をふさいで
エチレンが植物内に入るのを防ぐことで調整機能
を示すのであるが、この方法は定量的に取扱い困
難の為そのコントロールが十分できなかつた欠点
があつた。これに対し、今回の発明品によつてそ
の調整が定量的に且充分にできることとなり同調
整剤としての用途が取り上げられた。 尚、この場合過マンガン酸カリコートの吸着剤
では植物体からでる水分の為過マンガン酸カリが
溶出するので植物成長・分化作用調整剤としては
不適である。 本発明は、上述のような従来のガス吸着剤の有
する欠点に鑑みて研究し、従来にない全く新しい
ガス吸収メカニズムを呈するガス吸収剤及びその
製造方法を完成させたもので、本発明の目的とす
るところは、エチレンガス等の酸化により他の化
学物質に変化するガスを、高い吸収能で吸収させ
ることができ、摘果物の鮮度保持剤や植物の成
長・分化作用調整剤や脱臭剤等の用途に適用でき
るガス吸収剤及びその製造方法を提供することに
存する。 次に、本発明のガス吸収剤及びその製造方法を
以下詳細に説明する。 まず、実施例によりガス吸収剤の製造方法を説
明すると、同方法は、臭素酸カリウム
(KBrO3)10gを溶解した一規定濃度の硫酸水溶
液100c.c.に活性炭100gを浸漬して加熱状態で処理
反応させる工程と、同処理反応後に常温まで冷却
させる工程と、固形物である活性炭を処理液から
濾過分離させる工程と、同濾過分離した活性炭を
乾燥させる工程とからなるものである。 ここで、硫酸酸性下で活性炭と臭素酸カリウム
を処理する臭素酸カリウムは次式の様に反応し この反応により生成されるKBrは水に溶解し、酸
素(30)は活性炭と結合し、夫も活性炭の表面だ
けでなく凹凸内部まで酸素と結合して酸化能を有
する活性炭に性状変質させるものである。 また、加熱状態にするのは、反応を促進させる
と共に活性炭内部にまで浸透させるためであり、
この加熱及びその後の冷却は必ずしも要するもの
ではない。 また、実施例では酸性水として硫酸水溶液を用
いたものであるが、他の酸性水であつてもよい。 次に、本発明のガス吸収剤について説明する
と、同吸収剤は前述の方法によつて製造されるも
のであり、その構成は、臭素酸カリウムを溶解し
た酸性水によつて活性炭を処理反応させて、普通
活性炭を酸化能を有する乾燥固形物の特殊な活性
炭に性状変質させたものである。 ここで、活性炭の形状は粒状でも粉末状でもよ
い。また、活性炭の性状変質は、単純な表面変化
ではなく、多孔質の凹陥部内部を含む全体が酸化
能を有するように性状変質させたものである。 また、本発明の吸収剤表面には、わずかに臭素
酸カリウム(KBrO3)が付着してもよいもので、
(試験分析の結果発明品100g当り0.3gの臭素酸
カリウムが確認された)この臭素酸カリウムは従
来の吸着メカニズム同様に、例えばエチレンガス
(C2H4)と反応した場合にはエチレングライコー
ルを生成し、これが活性炭により吸着されるか、
又は水に溶出するものである。 次に、本発明者が行なつた本発明のガス吸収剤
の機能確認試験結果を以下述べる。 1 本発明のガス吸収剤のエチレン吸収能試験 (試験方法) 本発明のガス吸収剤(以下発明品と称す)5
gを130ml容のフラスコに入れて密閉し、その
中にエチレンを最初10分毎に注入し、続いて20
分毎及び30分毎に注入し、その都度のエチレン
残留量Oを確認しながらエチレン吸収能の試験
を行なつた。 そして、エチレン吸収能が低下した時点でエ
チレンの総吸収量を測定したもので、その測定
時でも低い乍ら尚吸収能力は残つていた。 (試験結果) 以上の方法による試験結果を(表1)に示
す。
The present invention relates to a gas absorbent for absorbing gases such as ethylene gas that are converted into other chemical substances by oxidation, and a method for manufacturing the same. Traditionally, the most commonly known adsorbents for adsorbing various gases are ordinary activated carbon and water treatment activated carbon, which rely on a physical adsorption mechanism in which gas molecules are adsorbed to the porous portions of activated carbon. It was hot. Therefore, even if an attempt is made to adsorb ethylene gas, the adsorption limit will be reached in a short period of time since other gases such as moisture and carbon dioxide will also be adsorbed at the same time, making it impossible to adsorb sufficient ethylene and once the ethylene gas has been adsorbed, the adsorption limit will be reached. It had the disadvantage that it would elute with moisture and turn into ethylene gas again.
There are also gas adsorbents that have an oxidizing agent attached to the surface of the adsorbent, such as gas adsorbents made of zeolite coated with potassium permanganate, which chemically change ethylene gas, etc. This was due to an adsorption mechanism in which the changed substance was physically adsorbed by an adsorbent. Therefore, when using a gas adsorbent coated with an oxidizing agent, the adsorbent itself does not become a substance with different properties due to chemical changes, so the equivalence relationship and physical adsorption amount shown in the chemical reaction formula Due to the limitation of , the amount of gas adsorbed is small and sufficient gas adsorption cannot be achieved. When potassium permanganate is used as an oxidizing agent, not only does the presence of moisture cause the potassium permanganate to leach out, reducing its gas adsorption ability, but also the toxicity of potassium permanganate makes it unsuitable for food. could not be used, and had the disadvantage of contaminating surrounding materials with red. In addition, we are developing a plant growth system that takes advantage of the action of ethylene as a plant hormone (the action of growing and transdifferentiating plants).
Silver nitrate is known as a differentiation action regulator, but this silver nitrate can be applied to plants and removed by reacting with silver nitrate and ethylene, or it can be adjusted by blocking the stomata of plants to prevent ethylene from entering the plant. However, this method had the disadvantage that it was difficult to handle quantitatively and that it could not be controlled sufficiently. On the other hand, the product of this invention can be quantitatively and sufficiently adjusted, and its use as a regulating agent has been taken up. In this case, the adsorbent of potassium permanganate is unsuitable as a plant growth/differentiation regulator because the potassium permanganate is eluted due to water released from the plant body. The present invention has been made by conducting research in view of the drawbacks of conventional gas adsorbents as described above, and has completed a gas absorbent exhibiting a completely new gas absorption mechanism and a method for manufacturing the same. This is because it can absorb gases such as ethylene gas, which change into other chemical substances through oxidation, with a high absorption capacity, and can be used as a freshness-preserving agent for fruit picking, a plant growth/differentiation regulator, a deodorizing agent, etc. The object of the present invention is to provide a gas absorbent that can be applied to the following uses and a method for producing the same. Next, the gas absorbent of the present invention and its manufacturing method will be explained in detail below. First, to explain the method for manufacturing a gas absorbent using an example, the method involves immersing 100 g of activated carbon in 100 c.c. of a sulfuric acid aqueous solution of a normal concentration in which 10 g of potassium bromate (KBrO 3 ) is dissolved and heating it. The process consists of a step of carrying out a treatment reaction, a step of cooling to room temperature after the treatment reaction, a step of filtering and separating solid activated carbon from the treatment liquid, and a step of drying the filtered and separated activated carbon. Here, activated carbon and potassium bromate are treated under sulfuric acid. Potassium bromate reacts as shown in the following equation. KBr produced by this reaction dissolves in water, and oxygen (30) combines with activated carbon, which also combines with oxygen not only on the surface of the activated carbon but also inside the irregularities, changing its properties into activated carbon with oxidizing ability. be. In addition, the reason for heating is to promote the reaction and to penetrate the inside of the activated carbon.
This heating and subsequent cooling are not necessarily required. Further, in the examples, a sulfuric acid aqueous solution is used as the acidic water, but other acidic water may be used. Next, the gas absorbent of the present invention will be explained. The absorbent is manufactured by the method described above, and its structure is that activated carbon is treated and reacted with acidic water in which potassium bromate is dissolved. It is made by changing the properties of ordinary activated carbon into special activated carbon, which is a dry solid substance with oxidizing ability. Here, the activated carbon may be in the form of granules or powder. Furthermore, the altered properties of activated carbon are not a simple surface change, but are altered so that the entire activated carbon, including the inside of the porous recesses, has oxidizing ability. In addition, a slight amount of potassium bromate (KBrO 3 ) may be attached to the surface of the absorbent of the present invention.
(As a result of test analysis, 0.3 g of potassium bromate was confirmed per 100 g of the invention product.) Similar to the conventional adsorption mechanism, this potassium bromate reacts with ethylene glycol (C 2 H 4 ) when it reacts with ethylene glycol. is generated and this is adsorbed by activated carbon, or
Or it is eluted in water. Next, the results of a test to confirm the function of the gas absorbent of the present invention conducted by the present inventor will be described below. 1 Ethylene absorption capacity test of the gas absorbent of the present invention (Test method) The gas absorbent of the present invention (hereinafter referred to as the invention product) 5
g into a 130 ml flask, seal it, and inject ethylene into it every 10 minutes at first, then inject ethylene into it every 10 minutes.
The ethylene absorption capacity was tested by injecting every minute and every 30 minutes and checking the residual amount of ethylene each time. The total amount of ethylene absorbed was measured at the time when the ethylene absorption capacity decreased, and even at the time of measurement, the absorption capacity remained, although it was low. (Test Results) The test results according to the above method are shown in (Table 1).

【表】 2 従来の普通活性炭のエチレン吸着能試験 (試験方法) 5gの活性炭にエチレン0.15mlを注入して、
経時残留エチレンを分析した。 比較対象として、発明品5gにエチレン0.15
mlを注入して同様に残留エチレンを分析した。 (試験結果) 以上の試験方法による結果を(表2)に示
す。
[Table] 2 Conventional ethylene adsorption capacity test of ordinary activated carbon (test method) Inject 0.15ml of ethylene into 5g of activated carbon,
The residual ethylene over time was analyzed. For comparison, 5g of the invented product contains 0.15 ethylene.
ml was injected and analyzed for residual ethylene in the same manner. (Test Results) The results of the above test method are shown in (Table 2).

【表】 (表2)で判る様に、活性炭では残留エチレ
ン量25.7%で頭打ちとなる。即ち吸着能がなく
なつたことを示す。この試験の結果にもとづい
て活性炭のエチレン吸着量を算出するに、吸着
されたエチレン量は0.15ml×74.3/100=0.11ml
、同 重量換算では28g/22.41×0.11ml/100
0=0.0001375gとな る。 即ち、活性炭100g当りに換算したエチレン吸
着量は、2.75×10-3gとなる。 3 発明品に残留付着する臭素酸カリウムのエチ
レン分解能の確認試験 (試験目的) 発明品のエチレン吸収メカニズムを知るため
に行なつたものであつて、臭素酸カリウムでも
しエチレンが単純に酸化分解されるものであれ
ば当然に臭素酸カリウムの量とエチレン分解量
とに関係があるはずで、この点の確認を目的と
する。 (試験方法及び結果) 発明品の表面に付着する臭素酸カリウムの量
を電位差滴定法で測定する。 その結果、0.3%重量の臭素酸カリウムが含
まれていることが判つた。 これに基いて、その臭素酸カリウムにより酸
化分解されるエチレン量を算出すると、 まず、臭素酸カリウムがエチレンと反応した
場合、エチレングライコールを生成することが
知られており、その反応式は 3C2H4+3H2O+KBrO3 →3C2H4(OH)2+KBr であり、また発明品100g当りの残留付着臭素
酸カリウムは0.3gであるから、この0.3gが完
全にエチレンと反応した時に酸化されるエチレ
ン量は、0.3g×3×28/167=0.15g と算出される。 4 ゼオライトに過マンガン酸カリウムを被覆し
た従来品の吸着能確認試験 (試験方法) 試験1の分析と同様に、エチレンの経時注入
を行なつて残留エチレンを調べる方法により吸
着能の試験をした。 (試験結果) 5gの試供品(従来品)が吸着したエチレン
総量は8mlであつた。 そこで、これを100g当りに換算すると、そ
の吸着エチレン量は、 8ml/1000×28g/22.41×100g/5
g=0.2g となる。 5 他のガスとエチレンとの共存下におけるエチ
レン吸収能に対する影響試験 (試験方法及び結果) (1) 飽和水蒸気圧下においてエチレンの吸収能
を従来の普通活性炭と本発明品とによつて比
較試験した。 (2) 炭酸ガス影響下においてエチレンの吸収能
を従来の普通活性炭と本発明品とによつて比
較試験した。 この試験により、本発明品は飽和水蒸気圧下
でも炭酸ガス影響下でも吸収能力が低下するこ
となく、一定時間後にはエチレン濃度が0にな
つた。しかし、従来の普通活性炭は最初エチレ
ン濃度が50%以下まで下がるが溶出エチレンに
よりその後徐々に上昇する傾向がみられた。 以上の試験により、以下に列挙するような事実
が判明した。 (1) 発明品の吸収能が普通活性炭の吸着能に比べ
て桁違いに大きいこと。(試験では475倍) (2) 発明品に付着する臭素酸カリウムが分解吸着
するエチレン量よりも発明品のエチレン吸収量
が格段に大きいこと。(試験では8.7倍) (3) 従来の過マンガン酸カリウムをコートしたゼ
オライトの吸着能に比べ、発明品のエチレン吸
収量が格段に大きいこと。(試験では6.5倍) (4) 水蒸気や炭酸ガス等の化学的に安定なガスは
吸収せず、エチレンガス等の化学的に不安定な
ガスのみを選択吸収すること。 つまり、これらの事実により、本発明品は従来
のようにコートされた薬剤でエチレンが単純に酸
化されてから吸着されるという吸着メカニズムで
は化学量論的に説明できないものである。 従つて、本発明品のガス吸収メカニズムは、エ
チレン等のガスが吸収されると同時に酸化能を有
する活性炭自身により酸化分解吸収されるという
吸収メカニズムであり、活性炭の全表面でその反
応が起るが故にガス吸収量が飛躍的に増大するの
である。 言い換えれば、活性炭そのものが全く別の性状
をもつ新しい物質となる訳で、吸着剤に酸化剤を
単純にコートしたものとは本質的に異なるという
ことができる。 次に、本発明のガス吸収剤の用途を述べると、
第一に青果物の鮮度保持剤として用いることがで
きるもので、青果物から生成発散されるエチレン
ガスを吸収することにより青果物の吸収増大を抑
制して長期間その鮮度を保持できるものである。 尚、濃度が高い程、青果物の呼吸が抑制される
炭酸ガスは吸収しないため(試験結果からも明ら
か)より一層の鮮度保持効果を望めるものであ
る。 第二に植物の成長分化作用調整剤としても用い
ることができるもので、例えば稲においてはエチ
レンが中胚軸の成長に影響を及ぼすもので、これ
を本発明のガス吸収剤により吸収コントロールす
ることにより、成長の調整ができるものである。
尚その他果実や野菜や杉苗等の植物の成長をも調
整することができる。 第三に脱臭剤として用いることができるもの
で、対象となる有臭ガスを酸化しつつ吸収すると
いう機構の為、その脱臭効果は極めて大きい。
尚、本発明のガス吸収剤と普通活性炭等の他の脱
臭剤とを併用して用いてもよい。 また、その他、要するに酸化により元の性質を
失なつて他の性質に分解されるガスを吸収する用
途に用いることができるものである。 以上、本発明のガス吸収剤は、酸化能を有する
活性炭により全表面でガスを酸化分解吸収すると
いうガス吸収メカニズムであるためにきわめて高
いガス吸収効果を発揮し得るし、さらに、水蒸気
や炭酸ガス等に影響されない選択吸収能を有して
いるために、水の存在下や炭酸ガスの存在下にお
いてもガス吸収効果の低下がないものである。 また、臭素酸カリウムは食品添加物に使用され
ているもので食品に直接ふれても人畜無害である
という効果をも具備する。 次に、本発明のガス吸収剤の製造方法は、臭素
酸カリウムの分解反応剤として酸性水を用いた方
法によるために、普通活性炭を、酸化能をもつ活
性炭に性状変質させて本発明のガス吸収剤を容易
に製造し得る効果を有するものであり、同方法に
より製造されたガス吸収剤は前述のような様々な
効果を発揮し得るものである。
[Table] As shown in Table 2, the residual ethylene content of activated carbon reaches a ceiling at 25.7%. In other words, this indicates that the adsorption capacity has been lost. Calculating the amount of ethylene adsorbed by activated carbon based on the results of this test, the amount of ethylene adsorbed is 0.15ml x 74.3/100 = 0.11ml
, the same weight equivalent is 28g/22.41 x 0.11ml/100
0=0.0001375g. That is, the amount of ethylene adsorbed per 100 g of activated carbon is 2.75×10 −3 g. 3 Confirmation test for the ethylene decomposition ability of potassium bromate remaining on the invented product (test purpose) This was conducted to learn the ethylene absorption mechanism of the invented product, and it is possible that ethylene is simply oxidized and decomposed with potassium bromate. If this is the case, there should naturally be a relationship between the amount of potassium bromate and the amount of ethylene decomposed, and the purpose of this study was to confirm this point. (Test method and results) The amount of potassium bromate adhering to the surface of the invention product is measured by potentiometric titration. As a result, it was found that 0.3% by weight of potassium bromate was contained. Based on this, the amount of ethylene that is oxidized and decomposed by potassium bromate is calculated. First, it is known that when potassium bromate reacts with ethylene, it produces ethylene glycol, and the reaction formula is 3C 2 H 4 +3H 2 O + KBrO 3 →3C 2 H 4 (OH) 2 + KBr, and since the residual adhering potassium bromate per 100 g of the invention product is 0.3 g, when this 0.3 g completely reacts with ethylene, it will be oxidized. The amount of ethylene is calculated as 0.3g x 3 x 28/167 = 0.15g. 4 Adsorption ability confirmation test of conventional product in which zeolite is coated with potassium permanganate (test method) Similar to the analysis in Test 1, the adsorption ability was tested by the method of injecting ethylene over time and checking for residual ethylene. (Test Results) The total amount of ethylene adsorbed by 5 g of the sample (conventional product) was 8 ml. Therefore, when converting this to per 100g, the amount of adsorbed ethylene is 8ml/1000 x 28g/22.41 x 100g/5
g=0.2g. 5 Effect test on ethylene absorption capacity in the coexistence of other gases and ethylene (test method and results) (1) A comparative test was conducted on the ethylene absorption capacity under saturated water vapor pressure between conventional ordinary activated carbon and the product of the present invention. . (2) A comparative test was conducted on the ethylene absorption capacity of conventional ordinary activated carbon and the product of the present invention under the influence of carbon dioxide gas. As a result of this test, the product of the present invention showed no decrease in absorption capacity even under saturated water vapor pressure or under the influence of carbon dioxide gas, and the ethylene concentration reached 0 after a certain period of time. However, in conventional activated carbon, the ethylene concentration initially drops to below 50%, but then tends to rise gradually due to leached ethylene. The above tests revealed the following facts. (1) The absorption capacity of the invented product is an order of magnitude greater than that of ordinary activated carbon. (475 times higher in the test) (2) The amount of ethylene absorbed by the invented product is much greater than the amount of ethylene decomposed and adsorbed by the potassium bromate attached to the invented product. (8.7 times higher in the test) (3) Compared to the adsorption capacity of conventional zeolite coated with potassium permanganate, the ethylene absorption capacity of the invented product is significantly greater. (6.5 times higher in the test) (4) It does not absorb chemically stable gases such as water vapor or carbon dioxide gas, but selectively absorbs only chemically unstable gases such as ethylene gas. In other words, due to these facts, the product of the present invention cannot be explained stoichiometrically by the conventional adsorption mechanism in which ethylene is simply oxidized with a coated agent and then adsorbed. Therefore, the gas absorption mechanism of the product of the present invention is such that gases such as ethylene are absorbed and at the same time are oxidized and decomposed and absorbed by the activated carbon itself, which has oxidizing ability, and the reaction occurs on the entire surface of the activated carbon. Therefore, the amount of gas absorbed increases dramatically. In other words, activated carbon itself is a new substance with completely different properties, and it can be said to be essentially different from simply coating an adsorbent with an oxidizing agent. Next, the uses of the gas absorbent of the present invention will be described.
First, it can be used as a freshness-preserving agent for fruits and vegetables, and by absorbing ethylene gas produced and emitted from fruits and vegetables, it can suppress the increase in absorption of fruits and vegetables and maintain their freshness for a long period of time. Incidentally, the higher the concentration, the more freshness-keeping effect can be expected because the carbon dioxide gas that suppresses the respiration of fruits and vegetables is not absorbed (as is clear from the test results). Second, it can also be used as a regulator of growth and differentiation in plants; for example, in rice, ethylene affects the growth of mesocotyls, and this can be absorbed and controlled by the gas absorbent of the present invention. This allows growth to be adjusted.
Furthermore, the growth of other plants such as fruits, vegetables, and cedar seedlings can also be adjusted. Thirdly, it can be used as a deodorizing agent, and because of its mechanism of absorbing the target odorous gas while oxidizing it, its deodorizing effect is extremely large.
Note that the gas absorbent of the present invention and other deodorizing agents such as ordinary activated carbon may be used in combination. In addition, it can be used to absorb gases that lose their original properties due to oxidation and are decomposed into other properties. As described above, the gas absorbent of the present invention has a gas absorption mechanism of oxidizing and decomposing and absorbing gas on the entire surface using activated carbon that has oxidizing ability, so it can exhibit an extremely high gas absorption effect. Since it has a selective absorption ability that is not affected by the above, the gas absorption effect does not decrease even in the presence of water or carbon dioxide. In addition, potassium bromate is used as a food additive and has the effect of being harmless to humans and animals even when it comes into direct contact with food. Next, since the method for producing the gas absorbent of the present invention uses acidic water as a decomposition reaction agent for potassium bromate, the properties of ordinary activated carbon are changed to activated carbon with oxidizing ability. This method has the effect of making it possible to easily produce an absorbent, and the gas absorbent produced by this method can exhibit the various effects described above.

Claims (1)

【特許請求の範囲】 1 臭素酸カリウムを溶解した酸性水によつて活
性炭を処理反応させ、普通活性炭を酸化能を有す
る乾燥固形物の活性炭に性状変質させてなるガス
吸収剤。 2 臭素酸カリウムを溶解した酸性水に活性炭を
浸漬して処理反応させる工程と、固形物である活
性炭を処理液から濾過分離させる工程と、同濾過
分離した活性炭を乾燥させる工程とからなるガス
吸収剤の製造方法。
[Scope of Claims] 1. A gas absorbent obtained by treating and reacting activated carbon with acidic water in which potassium bromate is dissolved, thereby changing the properties of ordinary activated carbon into dry solid activated carbon having oxidizing ability. 2 Gas absorption consisting of the steps of immersing activated carbon in acidic water in which potassium bromate is dissolved and causing a treatment reaction, filtering and separating the solid activated carbon from the treatment liquid, and drying the filtered and separated activated carbon. method for producing the agent.
JP56195967A 1981-12-04 1981-12-04 Gas absorbent and preparation thereof Granted JPS5898141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195967A JPS5898141A (en) 1981-12-04 1981-12-04 Gas absorbent and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195967A JPS5898141A (en) 1981-12-04 1981-12-04 Gas absorbent and preparation thereof

Publications (2)

Publication Number Publication Date
JPS5898141A JPS5898141A (en) 1983-06-10
JPS6126415B2 true JPS6126415B2 (en) 1986-06-20

Family

ID=16349964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195967A Granted JPS5898141A (en) 1981-12-04 1981-12-04 Gas absorbent and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5898141A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190231A (en) * 1984-03-10 1985-09-27 Honshu Paper Co Ltd Gas absorbent and preparation thereof
JPS60203138A (en) * 1984-03-27 1985-10-14 Buei Haneda Agent for keeping freshness of vegetables and fruits and sheet therefor
JPS61268354A (en) * 1985-05-20 1986-11-27 Honshu Paper Co Ltd Preparation of gas absorbent

Also Published As

Publication number Publication date
JPS5898141A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
US4578256A (en) Process for removal of poisonous gases
US4040802A (en) Activation of water soluble amines by halogens for trapping methyl radioactive iodine from air streams
US4855276A (en) Solid filtration medium incorporating alumina and carbon
US2920050A (en) Whetlerite product and process
DE2811627C2 (en)
EP0121339A2 (en) Method for removal of poisonous gases
CA1226270A (en) Carbon monoxide adsorbent/separating agent and method of producing same
EP0405404A1 (en) Chromium-free impregnated activated carbon for adsorption of toxic gases and/or vapors
SU820655A3 (en) Method of adsorbent production
US2963441A (en) Sorbents and process for their preparation
Kiani et al. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content
US5462693A (en) Air purifying agent and a process for producing same
EP0238700B1 (en) Carbon monoxide oxidizing catalyst
JPS6126415B2 (en)
Prasad et al. Kinetics of degradation of sulphur mustard on impregnated carbons
CN101862640A (en) Method for preparing desulfurizer used for removing H2S from natural gas
US20130302479A1 (en) Removing sulfur dioxide from packaging
JPH05111618A (en) Removing method of carbon monoxide
US2511289A (en) Activated protective carbon
CN105597682A (en) Normal-temperature formaldehyde-removing modified activated carbon and preparation method thereof
RU2764598C1 (en) Adsorbent for protective means
DE3223228C2 (en) Process for the regeneration of a spent PdCl? 2? / C catalyst
JPH0226539B2 (en)
JPS63147542A (en) Air cleaning agent
JP5069838B2 (en) Method for producing activated carbon for deodorizer and activated carbon for deodorizer