JPS6126272A - Driving device for reactive load - Google Patents

Driving device for reactive load

Info

Publication number
JPS6126272A
JPS6126272A JP14709584A JP14709584A JPS6126272A JP S6126272 A JPS6126272 A JP S6126272A JP 14709584 A JP14709584 A JP 14709584A JP 14709584 A JP14709584 A JP 14709584A JP S6126272 A JPS6126272 A JP S6126272A
Authority
JP
Japan
Prior art keywords
switch
turned
time
capacitor
becomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14709584A
Other languages
Japanese (ja)
Inventor
Yoshitake Nagashima
長島 良武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14709584A priority Critical patent/JPS6126272A/en
Publication of JPS6126272A publication Critical patent/JPS6126272A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To enable the efficient utilization of power by a method wherein the reactive power generated by reactive load is recollected and re-utilized. CONSTITUTION:When a switch S1 turns on, a current I flows through an inductance L, a piezoelement C1 discharges. Next, when the switch S1 is turned off and a switch S2 on, a capacitor C2 is set in charging and turns off the switch S2 at the time when the current I becomes 0. Then, the capacitor C2 is charged into the energy lost in the element C1 and the voltage energy for next impressing by turning on a switch S3. The element C1 is started to be charged by turning the switch S2 on, the switch S2 off at the time when the voltage V2 of the capacitor C2 becomes 0, and S1 on, resulting in the drive of the piezoelement. Then, the switch S1 is turned off at the time when the current I becomes 0. After a necessary time is passed, the switch S1 is turned on and the above-mentioned process is repeated. This manner minimizes the energy loss and yields the driving device of high efficiency for capacitive load.

Description

【発明の詳細な説明】 く技術分野〉 本発明は例えばピエゾ素子等のリアクティブ負荷を駆動
するリアクティブ負荷の駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a reactive load drive device that drives a reactive load such as a piezo element.

〈従来技術〉 ピエゾ等を用いた電歪素子の入力インピーダンスは純容
量性に近く、これらの素子を駆動すると殆んど無効電力
となる。従来この電力は駆動装置の出力トランジスタで
熱になってしまい、効率が低く装置が大きくなりコスト
が上ってしまうと〜・う欠点があった。
<Prior Art> The input impedance of an electrostrictive element using a piezo or the like is close to pure capacitance, and driving these elements results in almost no reactive power. Conventionally, this power turned into heat in the output transistor of the drive device, resulting in low efficiency, large device size, and increased cost.

〈目 的〉 本発明は上述の如き従来技術の欠点に鑑み効率の良いリ
アクティブ負荷の駆動装置の提供を目的としている。
<Objective> In view of the above-mentioned shortcomings of the prior art, it is an object of the present invention to provide a highly efficient reactive load drive device.

〈実施例〉 第1図は本発明の一実施例の駆動回路図であり、第2図
は第1図の各部の動作タイミング図である。
<Embodiment> FIG. 1 is a drive circuit diagram of an embodiment of the present invention, and FIG. 2 is an operation timing diagram of each part of FIG. 1.

本実施例においては負荷が容量性である場合について説
明する。
In this embodiment, a case where the load is capacitive will be described.

図において01はリアクティブ負荷としてのインクジェ
ットヘッドに用いられるピエゾ素子、DRはピエゾ素子
C1を駆動する駆動回路である。
In the figure, 01 is a piezo element used in an inkjet head as a reactive load, and DR is a drive circuit that drives the piezo element C1.

Llはインダクタンス、C2はコンデンサで両方で回収
手段を構成している。Rは抵抗、Eは可変直流電源、S
l、82.83はスイッチである。
Ll is an inductance, and C2 is a capacitor, both of which constitute a recovery means. R is resistance, E is variable DC power supply, S
l, 82.83 are switches.

まず、ピエゾ素子C1Vcvなる電圧が充電されており
、sl、s2.s3はすべてオフとする。
First, the piezo elements C1Vcv are charged with a voltage of sl, s2. All s3 are turned off.

第2図の時刻t1でスイッチS1がオンになるとインダ
クタンスLに電流Iが流れC1は放電し、C1の電圧v
1が0になったとき電流工は最大となる。
When the switch S1 is turned on at time t1 in FIG. 2, a current I flows through the inductance L, C1 is discharged, and the voltage V of C1 is
When 1 becomes 0, the electric current is at its maximum.

この時刻t2でスイッチS1をオフにしC2をオンにす
ると、コンデンサC2に充電が行われ、■が0となる時
刻で82をオフにする。次に83をオフにして、ピエゾ
素子C1で失なわれたエネルギーと次に印加する電圧エ
ネルギーに02を充電する(t4〜t5)。t6で82
をオンにし、C2の電圧■2がOKなる時刻t7で82
をオフ、Slをオンにし、ピエゾ素子CIK充電を開始
し、ピエゾ素子を駆動するnそして電流工がゼロに々る
時刻t8でSlをオフする。そして必要な時間が経過し
たのち時刻t9で81をオンにして、11.19のプロ
セスを繰り返す。
When the switch S1 is turned off and C2 is turned on at this time t2, the capacitor C2 is charged, and at the time when ■ becomes 0, the capacitor 82 is turned off. Next, 83 is turned off, and 02 is charged with the energy lost in the piezo element C1 and the voltage energy to be applied next (t4 to t5). 82 at t6
is turned on, and at time t7 when the voltage of C2 becomes OK, 82
is turned off, Sl is turned on, charging of the piezo element CIK is started, the piezo element is driven, and Sl is turned off at time t8 when the electric current reaches zero. Then, after the necessary time has elapsed, 81 is turned on at time t9, and the process of 11.19 is repeated.

この様にCIK蓄えられた静電エネルギーはLlの磁気
エネルギーを介してC2に静電エネルギーとして回収さ
れ、その過程で失った分と次の駆動口 が実現できる。
The electrostatic energy stored in CIK in this way is recovered as electrostatic energy in C2 via the magnetic energy of Ll, and the amount lost in this process can be used to realize the next drive port.

尚、第2図において0はスイッチのオフ、1はスイッチ
のオン状態を示している。スイッチ81〜S3のオン、
オフは公知のタイミング信号発生器により制御可能であ
る。
In FIG. 2, 0 indicates the off state of the switch, and 1 indicates the on state of the switch. Turning on switches 81 to S3,
Off can be controlled by a known timing signal generator.

く効 果〉 以上の如く、本発明に依ればリアクティブ負荷で発生し
た無効電力を回収し、再利用することが可能となり、電
力の効率利用が実現でき省電力に寄与する。更にそれに
伴い、電源の小型化、軽量化に寄与できる。
Effects> As described above, according to the present invention, it becomes possible to recover and reuse the reactive power generated by the reactive load, thereby realizing efficient use of power and contributing to power saving. Furthermore, it can contribute to making the power source smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の駆動回路図、第2図は第1図の各部
の電圧、電流波形及びスイッチS1.C2゜C3の状態
を示す図である。 図において01はリアクティブ負荷としてのピエゾ素子
、DRは駆動回路、Ll、C2は回収手段を構成するイ
ンダクタンス及びコンデンサ、sl、C2,C3はスイ
ッチを夫々示す。
FIG. 1 is a drive circuit diagram of this embodiment, and FIG. 2 shows voltage and current waveforms of each part of FIG. 1 and switch S1. It is a figure which shows the state of C2 degree C3. In the figure, 01 is a piezo element as a reactive load, DR is a drive circuit, Ll and C2 are inductances and capacitors constituting recovery means, and sl, C2 and C3 are switches, respectively.

Claims (1)

【特許請求の範囲】[Claims]  リアクタンス成分を有するリアクティブ負荷、前記リ
アクティブ負荷を駆動する駆動回路、前記リアクティブ
負荷で発生した無効電力を前記駆動回路へ回収する回収
手段より成ることを特徴とするリアクティブ負荷の駆動
装置。
1. A driving device for a reactive load, comprising a reactive load having a reactance component, a driving circuit for driving the reactive load, and a recovery means for recovering reactive power generated in the reactive load to the driving circuit.
JP14709584A 1984-07-16 1984-07-16 Driving device for reactive load Pending JPS6126272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14709584A JPS6126272A (en) 1984-07-16 1984-07-16 Driving device for reactive load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14709584A JPS6126272A (en) 1984-07-16 1984-07-16 Driving device for reactive load

Publications (1)

Publication Number Publication Date
JPS6126272A true JPS6126272A (en) 1986-02-05

Family

ID=15422365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14709584A Pending JPS6126272A (en) 1984-07-16 1984-07-16 Driving device for reactive load

Country Status (1)

Country Link
JP (1) JPS6126272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397854A (en) * 1986-10-13 1988-04-28 Nippon Denso Co Ltd Piezo-actuator drive circuit
JPH01202177A (en) * 1988-02-03 1989-08-15 Nippon Denso Co Ltd Driver for piezo actuator
US5562494A (en) * 1994-07-19 1996-10-08 The Whitaker Corporation Watertight plug and watertight connector in which it is used
US10315418B2 (en) 2015-03-20 2019-06-11 Archipelago Technology Group, LTD Method, system, and device for supplying electrical energy through electrical conductors adjacent to electrolyte solution environments

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397854A (en) * 1986-10-13 1988-04-28 Nippon Denso Co Ltd Piezo-actuator drive circuit
JPH01202177A (en) * 1988-02-03 1989-08-15 Nippon Denso Co Ltd Driver for piezo actuator
US5562494A (en) * 1994-07-19 1996-10-08 The Whitaker Corporation Watertight plug and watertight connector in which it is used
US10315418B2 (en) 2015-03-20 2019-06-11 Archipelago Technology Group, LTD Method, system, and device for supplying electrical energy through electrical conductors adjacent to electrolyte solution environments

Similar Documents

Publication Publication Date Title
JP2005505226A (en) Gate driver device having energy receiving circuit
JPH0653565A (en) Improved-efficiency driving system for piezoelectricity
WO2014032415A1 (en) Method and device for driving power switch tube
JP6762002B2 (en) Power regenerative pulse power supply
JPS6126272A (en) Driving device for reactive load
US20160149112A1 (en) Methods and Systems for Applying Charge to a Piezoelectric Element
JPS63130357A (en) Piezoelectric element driving circuit
JP4252281B2 (en) Motor drive device
JP4167835B2 (en) Switch type energy recovery for electroluminescent lamp panels
JPH06225546A (en) Drive circuit of capacitive load
JPS62163581A (en) High frequency and high voltage power source
JP4092897B2 (en) Piezoelectric element driving device and diaphragm pump
JP3070200B2 (en) Piezoelectric element driving device
JP3250308B2 (en) Gate drive circuit
KR20010088661A (en) Sustain driving circuit and method for collecting energy using plasma display panel
JP3612403B2 (en) Pulse generator for plasma generation
CN105743176B (en) Control method of capacitor charging device
JP2000323772A (en) Pulse power unit
KR100751933B1 (en) Energy recovery circuit for plasma display panel
CN201234214Y (en) Piezoelectric transformer driving circuit
US20030025460A1 (en) Resonant energy recovery for electro-luminescent lamp panels
CN101404462B (en) Piezoelectric transformer driving circuit and its output voltage control method
JP2010058317A (en) Method and device of supplying electric power for motor-driven injection molding machine
JP3277708B2 (en) Power converter with high frequency resonant link
KR100757428B1 (en) A sustain driving circuit for plasma display panel