JPS61262610A - Measuring straightness of positioning table - Google Patents

Measuring straightness of positioning table

Info

Publication number
JPS61262610A
JPS61262610A JP10484085A JP10484085A JPS61262610A JP S61262610 A JPS61262610 A JP S61262610A JP 10484085 A JP10484085 A JP 10484085A JP 10484085 A JP10484085 A JP 10484085A JP S61262610 A JPS61262610 A JP S61262610A
Authority
JP
Japan
Prior art keywords
straightness
measurement
positioning table
reference block
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10484085A
Other languages
Japanese (ja)
Inventor
Ichiji Gomi
五味 市治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10484085A priority Critical patent/JPS61262610A/en
Publication of JPS61262610A publication Critical patent/JPS61262610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To cancel a straightness error of a standard block to thereby increase a measuring accuracy by conducting a measurement three times by using the standard block and computing measured values by a computer. CONSTITUTION:The straightness of a positioning table in which a table 1 is moved by a drive motor 3 and a power transmitting screw 4 in an X direction while being guided by a guide 2 is measured by an air micrometer while the table 1 carrying thereon a standard block 5 with some straightness error. A system comprises the detector 8, controller 9 both of the air micrometer and a communication line 10 for automatically taking in measured values from the air micrometer in response to the command of a computer 7, and the like. A motor driver 11 is connected to a motor 3 peculiar to the positioning table and, further, the driver 11 drives the motor 3 in response to the command of the computer 7, the three time measurements are automatically performed. Then, by computing the measured values by the computer 7, the straightness can be measured with a high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1位置決めテーブルの真直度測定方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the straightness of a positioning table.

〔従来の技術〕[Conventional technology]

従来の位置決めテーブルの真直度測定を、第2図により
説明する。計測定としては、基準ブロックを利用する方
法と、レーザ光線による方法があるが、レーザによる測
定は本発明の狙いとするところから外れるので、基準ブ
ロックを利用する方法について説明する。基準ブロック
を利用し念真直度測定では、第2図に示すようK、可動
テーブル1(以後、テーブルと呼ぶ)釦、基準ブロック
5を載せて、X方向に移動させる。このときテーブル1
け、Y方向にも微小量なりtら変動する六t、この変動
を、地面に対して固定され之変位形6により測定する。
The straightness measurement of a conventional positioning table will be explained with reference to FIG. There are two methods for measurement: a method using a reference block and a method using a laser beam. However, since measurement using a laser is outside the scope of the present invention, a method using a reference block will be described. In the straightness measurement using a reference block, as shown in FIG. 2, K, a movable table 1 (hereinafter referred to as table) button, and a reference block 5 are placed on the table and moved in the X direction. At this time table 1
6t also fluctuates by a minute amount in the Y direction, and this fluctuation is measured by a displacement probe 6 fixed to the ground.

第3図に、前記測定により得られた、テーブル移動量(
幻と、Y方向変位の関係を示すが、この魚群を、2直線
間の距離l!It最も小さくなるような2直線で挾み、
この両方線間のY方向距離をもって真直度とする(最小
領域法)のが、従来の真直度測定方法であり几。
FIG. 3 shows the amount of table movement (
The relationship between illusion and displacement in the Y direction is shown below.This school of fish is defined by the distance l! between two straight lines. It is sandwiched by two straight lines that make it the smallest,
The conventional method for measuring straightness is to determine the straightness by the distance in the Y direction between these two lines (minimum area method).

〔発明b’−解決しようとする問題点および目的〕しか
し、前記の従来技術によるところの、基準ブロックを用
いた真直度測定方法では、第、2図の変位形6から出力
されるY方向変位は、求めるべ会位置決めテーブルの真
直度に加えて、同図中に2点鎖線で示した。基準ブロッ
ク5に固有の、真直度誤差をも含んだものであり、位置
決めテーブルの真直度を正確に表わしていない。殊に近
年は大傘な移動範囲(友とえば、100m5)Kh7t
りで従来では考えられなかっ几ような高水準の真直度(
几とえば、±1μ惰]が求められるようになって断てい
るが、こうした測定に耐えられるほどに高精度な(高い
真直度を有する)基準プp#りの製作は、現実的には非
常に離し−。
[Invention b'--Problems and Objectives to be Solved] However, in the straightness measuring method using a reference block according to the prior art described above, the Y-direction displacement output from the displacement shape 6 in FIG. In addition to the straightness of the table positioning table to be determined, this is indicated by a two-dot chain line in the figure. It also includes a straightness error inherent to the reference block 5, and does not accurately represent the straightness of the positioning table. Especially in recent years, the range of movement is large (for example, 100m5) Kh7t
This allows for a high level of straightness that was previously unimaginable (
For example, ±1μ inertia] is now required, but in reality, it is difficult to manufacture a reference plate with high precision (high straightness) that can withstand such measurements. Very far apart.

そこで1本発明の目的は、基準ブロックに真直度誤差b
−多少あっても、同基準ブロックを適切に用いて3度の
測定を行Va%測定値をコンピュータで演算することに
より、基準ブロックの真直度誤差をキャンセルし、真の
位置決めテーブルの真直度を与える真直度測定方法を提
供することである。
Therefore, one object of the present invention is to provide a reference block with a straightness error b.
- Even if there is some error, the straightness error of the reference block can be canceled and the true straightness of the positioning table can be determined by properly using the same reference block and calculating the Va% measurement value with a computer. It is an object of the present invention to provide a straightness measurement method that provides a straightness measurement method.

r問題を解決する念めの手段〕 本発明の位置決めテーブルの真直度測定方法は測定対象
たる位置決めテーブルの真直度誤差に対して、無視し得
ない真直度誤差を有する基準ブロックを用いて測定せざ
るを得ない場合においても測定方法のくふう、およびコ
ンピュータ処理により、基準ブロックの影響を排除した
、真の位置決めテーブルの真直度を得られるようkする
ものである。その手段としては、第1図のテーブル1上
に載せた基準ブーツク5に対する、位置決めテーブルの
真直度測定時の、測定参照点を第5図に示すht 、同
図社)のようk、1度目の測定では基準プロ嗜り5の0
面の任意の点DIより、所要の測定ビ噌チルでD!・・
・・・・・・・・D覇、 Denの2n個の点(外は2
以上の自然数)を参照して、必要な長さtにわたって1
位置決めテーブルの真直度を測定する。
A precautionary measure to solve the problem] The method for measuring the straightness of a positioning table according to the present invention uses a reference block that has a non-negligible straightness error to measure the straightness error of the positioning table that is the measurement target. Even in cases where this is unavoidable, the true straightness of the positioning table, which eliminates the influence of the reference block, can be obtained through careful measurement methods and computer processing. As a means of doing so, when measuring the straightness of the positioning table with respect to the reference boots 5 placed on the table 1 shown in Fig. 1, the measurement reference point is set at the first time as shown in Fig. 5. In the measurement, the standard professional taste is 5 out of 0.
From any point DI on the surface, D! at the required measurement angle.・・・
・・・・・・・・・2n points of D victory, Den (outside is 2
1 over the required length t.
Measure the straightness of the positioning table.

次に、基準ブロック5を、第5図の)のように180度
反転して、A端、B端が左右入れ替わるように置き替え
る。このとき基準ブーツク5の参照点はOrMで不変で
あることに注意する。前記置き替え6Z終了したなら、
2度目の測定に入るが1本測定では、1度目の測定のD
!ユ点と同一点、すなわち基準ブロック50B端よりt
だけ隔たった位置でしかもテーブル1よりqの高さの点
11 (4m 、qの寸法については、第4図参照)よ
轢、測定ビダチルでIt 、 It・・・・・・・・・
・?an−s 、 1!:tn  と、2n個の基準ブ
ロック上の点を参照して、位置決めテーブルの真直度を
測定する。次に、1度目の測定(第4回顧参照)に対し
て、テーブル1上の基準ブロック5を1ピッチ分、すな
わちんだけ右側に移動し九位置に置く。このtき替えb
Z完了すると、IIEJ図(c) IC示すようkなる
が、この状態より、IFs、Pt・・−IFtn−t 
、 IFtn−tの、2n−1点を参照膚とする3度目
の1位置決めテーブルの真直度測定を行う。
Next, the reference block 5 is reversed by 180 degrees as shown in FIG. 5) and replaced so that the A end and B end are interchanged. At this time, it is noted that the reference point of the reference boot stock 5 is OrM and remains unchanged. Once the above replacement 6Z is completed,
It is the second measurement, but in one measurement, the D of the first measurement is
! t from the same point as point U, that is, from the end of the reference block 50B.
Point 11 (4 m, see Figure 4 for the dimension of q) at a distance of q from table 1, and measure It, It...
・? an-s, 1! :tn and 2n points on the reference block to measure the straightness of the positioning table. Next, for the first measurement (see fourth review), the reference block 5 on the table 1 is moved one pitch, that is, to the right, and placed at the 9th position. This t change b
When Z is completed, k is shown in IIEJ diagram (c) IC, but from this state, IFs, Pt...-IFtn-t
, IFtn-t, performs the third straightness measurement of the 1-positioning table using 2n-1 points as a reference skin.

なお前記3度にわ念る測定は全て、空気マイクロメータ
を使用する。このようkして得られt6%−2個の測定
値を、コンピュータ7(91図参照)kより、適切なア
ルゴリズムに従い演算処理すると、基準ブロックの真直
度誤差が中ヤンセルされた。真の位置決めテーブルの真
直度が得られる。
Note that an air micrometer is used for all of the three measurements mentioned above. When the t6%-2 measured values thus obtained were processed by the computer 7 (see Figure 91) according to an appropriate algorithm, the straightness error of the reference block was reduced to a medium value. True positioning table straightness is obtained.

〔作用〕[Effect]

前記の測定手段に従い、第5図ら)に示すように1度目
の真直度測定で測定するDs、D宜・・・・・・・・・
・Di −tDz、  Dz4t・・・・・・・・・・
DzH−s、  D電点に対する測定値をそれぞれyl
、 y* ……・…yi−x 、 yi 、 yi+s
 、−ytn−s 。
According to the above measurement method, Ds, D, etc. are measured in the first straightness measurement as shown in Fig. 5 et al.
・Di −tDz, Dz4t・・・・・・・・・・
DzH-s, the measured value for the D electric point is yl, respectively.
, y*......yi-x, yi, yi+s
, -ytn-s.

ytnとし第5図の)に示す、2度目の真直度測定で測
定するWs Ik・・・・・・・・・・1!!<−t 
、  Wi 、 Wi+s、・・・・・・・・・・1z
n−t 、シn点に対する測定値をそれぞれZt 、 
Zt・・”・・Zi−*、  Zi 、  Zi+s・
−=−Zzn−*、  Zznとする。またδi 、 
aj (tl、 j=1.2・’−” 2s−1,2n
 ) u、位置決めテーブルの真の真直度誤差とし、Δ
V・、Δzj(<、 jxl、 2. ・・・・・・2
n −1,2s )は、基準ズOqりの真直度誤差とす
る。ここで、第5図(a)、 (6)に示したように、
δ、 w %n= Q 、Δ1/l=Δytn = O
ytn and Ws Ik measured in the second straightness measurement as shown in ) in Figure 5...1! ! <-t
, Wi, Wi+s,・・・・・・・・・1z
nt, the measured value for point n is Zt,
Zt・・・・・Zi−*, Zi, Zi+s・
−=−Zzn−*, Zzn. Also, δi,
aj (tl, j=1.2・'-” 2s-1,2n
) Let u be the true straightness error of the positioning table, and Δ
V・, Δzz (<, jxl, 2. ・・・・・・2
n −1,2s ) is the straightness error of the reference deviation. Here, as shown in Figure 5(a) and (6),
δ, w%n=Q, Δ1/l=Δytn=O
.

Δ2.=Δ% n−Qとすると各値より、1度目の測定
からは。
Δ2. =Δ% n-Q From each value, from the first measurement.

’t = ” Ytnl−us )μ)x(<−1)ル
+1゜2度目の測定値からは。
't=''Ytnl-us)μ)x(<-1)le+1°From the second measurement value.

Q j= ((Zt n −Zt n ) ×(j−’
 )ん+Z。
Q j= ((Zt n −Zt n ) ×(j−'
)n+Z.

をそれぞれ引算すると、結果としてそれぞれ7/< −
g =δi −Δyi C4= 1 、2、−・−2s
)−(1)zj−リ=9−ΔZj(j=1.2.・・・
・・・2s)−(2)ところで、Riと)n+1イは、
先に説明し几とおり同一点であるため。
When subtracting each, the result is 7/< −
g = δi −Δyi C4= 1, 2, −・−2s
) - (1) zj - ri = 9 - ΔZj (j = 1.2...
...2s)-(2) By the way, Ri and)n+1i are
As explained earlier, the points are the same.

Δyi=ΔZrn幻−i(イ=1.2・・・・・・ 2
s)−(3)式(1)〜(3)より、n個の独立した、
δs(sn1.2・・・・・・2s)f−未知数とする
連立−次方穆式を得る。
Δyi=ΔZrn phantom-i (i=1.2...2
s)-(3) From formulas (1) to (3), n independent,
δs(sn1.2...2s)F-obtains a simultaneous equation with an unknown quantity.

δi −bh−i =yi −zms−i −pi +
 qp−h−4ci = 1.2m2%)   (4) 次に、3度目の真直度測定でm電する]lFtelFg
・・・・・・・・F*n−* 、 Fm−を点に対する
測定値を%s、脅・・…・tcm−t 、 uznl 
 とし、第5図(e) Ic示す。同図にシいて、δl
;0.δ!n=0とする直線B、および。
δi −bh−i =yi −zms−i −pi +
qp-h-4ci = 1.2m2%) (4) Next, conduct m current for the third straightness measurement]lFtelFg
......F*n-*, Fm- as %s, threat...tcm-t, uznl
and is shown as Ic in FIG. 5(e). In the same figure, δl
;0. δ! Straight line B with n=0, and.

Δul= O、Δstn = Oとする直線Mが得られ
れば。
If a straight line M with Δul=O and Δstn=O is obtained.

δに+r 、 Δuk 、 sk Ckml、 2・・
・= 2s−1)より構成される一次方穆式 s−を個
を式(4)と連立させて全てのδ1(i=1.2・・・
・・・2s)ICついて解くことができるh(、δ1お
よび礪tn )C関する情報が無いtめ任意の・直線S
およびTを仮定して、δに+1!/c対しδ”  、 
Δ’gkに対しΔKk本(k = 1 、2−・・・−
2s−1>をに+鳳 本     本 仮定しs’lLt@1g!n−1を第5図(c)の寸法
とすると。
δ +r, Δuk, sk Ckml, 2...
・= 2s-1) by combining the linear square equation s- with equation (4) to obtain all δ1 (i=1.2...
...2s) Any straight line S without information about h(, δ1 and tn)C that can be solved for IC
and +1 to δ, assuming T! /c versus δ”,
ΔKk for Δ'gk (k = 1, 2−...−
2s-1> + Otori book Assuming s'lLt@1g! Let n-1 be the dimension shown in FIG. 5(c).

Rk= ((u”、−、−5−vCl−h ) )X(
Ac−1)ル+÷−(5)式(9を用いて * % −Rk z ak+、 −61% (k xx 1
 、2 ・・・−2fL−1)−H6)もし、δに+s
 、”k の仮定が正しいとき、δ轟、=本 京 δに+8.ΔgkxΔykとなるから1式(11t 考
51 L、k舅(として、 ’jli −X’i −(4−Pi ) mδi−δi
 +1 (t= 1.2+++++271−1 )□(
7) ここで、式(4)および式(7)にi=nを代入して。
Rk = ((u”, -, -5-vCl-h))X(
Ac-1) Ru + ÷ - (5) Using formula (9) *% -Rk z ak+, -61% (k xx 1
, 2...-2fL-1)-H6) If δ has +s
, "When the assumption of k is correct, δ Todoroki = Hongyo δ + 8. Δgk δi
+1 (t= 1.2+++++271-1)□(
7) Here, by substituting i=n into equations (4) and (7).

(δn−δn+、)が等しいと置くと。If we assume that (δn−δn+,) are equal.

Rn 寓Qn −Zn+ sn−m−(8)式(8)よ
り、Rn(ul、 5tn−t >wk(k N定数)
゛だから、葛!n−1は1&、の関数として表わされる
。したがって任意に襲、*を決めて、5m(5)により
Rkを定め。
Rn Qn −Zn+ sn−m−(8) From formula (8), Rn(ul, 5tn−t >wk(k N constant)
゛So, Kudzu! n-1 is expressed as a function of 1&. Therefore, arbitrarily determine the attack and *, and determine Rk by 5m (5).

k−xiとして式(71K代入し、式(7)と式(4)
の合計35−2個の、−次方穆式のうち適当なものを選
んで解き、残りのn−2個の方穆式に解を代入して入て
、精度上、差支えない1度に解が収束し次なら、そのと
きのJ< (4=1.2・・・・・・2s )をもって
鱗とする。なお解が収束しないときは、U、の仮定が正
しくなかったためであるから、修正し、精度を高めてゆ
く。
As k-xi, substitute equation (71K, equation (7) and equation (4)
Choose an appropriate one out of a total of 35-2 -order square equations, solve it, substitute the solution into the remaining n-2 square equations, and solve it at once as long as there is no problem in terms of accuracy. If the solution converges to the following, take J< (4=1.2...2s) as the scale. Note that if the solution does not converge, it is because the assumption of U was incorrect, so it is corrected to improve accuracy.

前記のような段階を経て求めt真直度データは第6図に
示すようにグラフ化し、最小領域法にて真直度を求める
が、この値には、既に基準ブロックの影響は全く入って
いない。
The straightness data obtained through the steps described above is graphed as shown in FIG. 6, and the straightness is determined by the minimum area method, but this value does not include any influence of the reference block.

〔実施例〕〔Example〕

第1図は1本発明の実施例における全体構成図である。 FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

駆動用モータ3および、動力伝達用ねじ4により、案内
部2に従ってX方向にテーブル1が動く、位置決めテー
ブルの真直Ill:、テーブル1上に、多少真直度誤差
を有する基準ブロック5を載せ、空気マイクルメータで
測定する。計測器として空気マイク−メータを採用した
のは、同計測器が安価な割に精度が高いことと、比較的
測定ii(基準ブロックの参照面)の表面粗さなどの要
因に鈍感であることによる。同図中、空気マイク−メー
タの検出部8.同制御部9.空気マイクロメータより、
8I定値をコンビ為−夕7の命令を受けて自動的に取り
込むための通信線10などにより、システム構成がされ
ている。また1位量決めテーブル固有の駆動そ一一3に
は、システム固有のモータドライバー1が接続され、さ
らk、モータドライバー1がコンピュータ7の命令によ
り。
The table 1 moves in the X direction according to the guide part 2 by the driving motor 3 and the power transmission screw 4.The straightness of the positioning table Ill: A reference block 5 with a slight straightness error is placed on the table 1, and the air Measure with a micrometer. An air microphone-meter was chosen as the measuring instrument because it is inexpensive but highly accurate, and because it is relatively insensitive to factors such as the surface roughness of the measurement ii (reference surface of the standard block). by. In the figure, the air microphone-meter detection section 8. Control unit 9. From an air micrometer,
The system is configured by a communication line 10 for automatically receiving the 8I constant value upon receiving a command from the combination machine 7. Further, a motor driver 1 unique to the system is connected to the drive unit 3 unique to the 1st position quantity determining table, and the motor driver 1 is driven according to instructions from the computer 7.

駆動モータ3を駆動することにより、測定は自動的に行
なわれる。几だし、3度にわたる測定パターンの変更に
伴う、基準ブロック5のセヴテイングは、人間が行う(
友だし、将来的には自動化指向)。コンビ為−夕7は、
自動測定のtめのシステム制御の他に、前記演算をする
。同演算では測定点数を2%点(必ず偶数個)とするが
、5=20として1式(4)1式(7)より適当に選ん
だ40元の連立−次方糧式を、ガウスの消去法等によっ
て解けば、16ビツトしパーソナルコンピュータでも。
By driving the drive motor 3, the measurement is performed automatically. The separation of the reference block 5 due to the three-time change in the measurement pattern is carried out by humans (
It's a friend, and I'm aiming for automation in the future). Combi Tame-Evening 7th,
In addition to the tth system control of automatic measurement, the above calculation is performed. In this calculation, the number of measurement points is 2% (must be an even number), and the Gaussian simultaneous-order formula of 40 elements, which is appropriately selected from Equation 1 (4) and Equation 1 (7), with 5 = 20, is used. If you solve it by the process of elimination, it will be 16 bits, even on a personal computer.

オ 60秒糧かかりてしまい、さらに、xl を修正して充
分な精度を有する解を得るためkは、膨大な時間を要す
る。しかし、実施例では1式(7)がδi−δ7++ 
= k’6 (Kliは定数)の形をしていることに注
目し、辺々加えることにより。
It takes 60 seconds, and furthermore, it takes an enormous amount of time to correct xl and obtain a solution with sufficient accuracy. However, in the example, equation 1 (7) is δi−δ7++
By noting that it has the form = k'6 (Kli is a constant) and adding the sides.

δ1−δ2n=ミに一!  =(9) を得て1式(4)でj=1とおいたものと比較して、目
安を付けた後、精密な解を求めたので、充分実用化価値
のある時間内に結果を得ることができ友。
δ1−δ2n=One in Mi! = (9) and compared it with Equation 1 (4) where j = 1 was set, and after setting a rough guide, we found a precise solution, so we could obtain the result within a time that is sufficiently useful for practical use. Can be a friend.

〔発明の効果〕〔Effect of the invention〕

以上に記したような本発明によれば、従来の基準ブーツ
クを用い几測定方式では、同プロヴクの真直度誤差を含
んだ真直度が測定結果として得られ7を几め、自ずとあ
る測定精度限界bt存在するがこの限界が飛躍的に改善
される。すなわち、本位置決めテーブルの真直度測定方
法が、構造的に基準ブaツクの真直度誤差をキャンセル
する機能を有しているため、コンビ為−夕の演算精度を
上げさえすれば(これは容易である)、最終結果bζは
とんど測定器(空気マイクロメータ等)の精度の人に依
存するまでに高精度化される。し友がって従来より行な
われてきた基準ブロックを利用した簡便な真直度測定方
法の延長線上に、一部の特殊な測定対象を除く一般的真
直度測定が1本発明の方法により、必要充分な精度を広
測定域にわたって安価に提供される。
According to the present invention as described above, in the conventional measurement method using a reference boot, the straightness including the straightness error of the same proof is obtained as a measurement result. bt exists, but this limit is dramatically improved. In other words, since the straightness measurement method of this positioning table has a structural function to cancel the straightness error of the reference book, it is easy to do so by increasing the calculation accuracy of the combination table. ), the final result bζ is highly accurate to the point where it almost depends on the accuracy of the measuring instrument (such as an air micrometer). As an extension of the simple straightness measurement method using a reference block that has been conventionally carried out, the method of the present invention allows for general straightness measurement excluding some special measurement objects. Sufficient accuracy can be provided over a wide measurement range at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、位置決めテーブルの真直度測定システムの全
体構成図。 第2図は、従来の真直度測定方法説明図。 第3図は、テーブル移動量(3)と、Y方向変位の関係
を示す図。 第4図は、本発明が特徴とする3パターンの測定セツテ
ィングと測定箇所を示し 第4図61は、1変目の真直度測定にかける七噌ティン
グと測定箇所を示す図。 第4図の)は、2度目の真直度測定におけるセリティン
グと測定箇所を示す図。 第4図(C)は、3度目の真直度測定にかけるセツティ
ングと測定箇所を示す図。 第5図は、本発明の裏付は基礎式導出補助図で第5図れ
)は、1度目の真直度測定の内容説明晩115図(b)
は、2度目の真直度測定の内容説明図。 第5図(c)は、3度目の真直度測定の内容説明図。 第6図は、最終的真直度表示図。 1・・・・・・可動テーブル 2・・・・・・案内部 3・・・・・・駆動用モータ 4・・・・・・動力伝達用ネジ 5・・・・・・基準ブロック 6・・・・・・変位計 7・・・・・・コンピュータ 8・・・・・・空気マイクロメータ検出部9・・・・・
・空気マイクロメータ制御部10・・・・・・通儒線 11・・・・・拳モータドライバ 以  上
FIG. 1 is an overall configuration diagram of a positioning table straightness measurement system. FIG. 2 is an explanatory diagram of a conventional straightness measuring method. FIG. 3 is a diagram showing the relationship between table movement amount (3) and displacement in the Y direction. FIG. 4 shows the three patterns of measurement settings and measurement locations that are characteristic of the present invention, and FIG. 4 61 is a diagram showing the seven-point setting and measurement locations used to measure the straightness of the first change. ) in FIG. 4 is a diagram showing seriting and measurement points in the second straightness measurement. FIG. 4(C) is a diagram showing the settings and measurement locations for the third straightness measurement. Figure 5 is an auxiliary diagram for deriving the basic formula that supports the present invention.
is an explanatory diagram of the second straightness measurement. FIG. 5(c) is an explanatory diagram of the contents of the third straightness measurement. FIG. 6 is a diagram showing the final straightness. 1... Movable table 2... Guide section 3... Drive motor 4... Power transmission screw 5... Reference block 6. ... Displacement meter 7 ... Computer 8 ... Air micrometer detection section 9 ...
・Air micrometer control unit 10... Confucian wire 11... Fist motor driver and above

Claims (1)

【特許請求の範囲】[Claims] 真直度に無視できない誤差のある基準ブロックを用いて
、位置決めテーブルの真意度を測定する場合において、
1度目の測定では基準ブロックの任意の始点より終点ま
でを利用して測定し、2度目の測定では、基準ブロック
の左右を入れ替えて前記1度目の測定の終点箇所より始
点箇所へ、基準ブロック上の同一点を利用して測定して
ゆき、3度目の測定では、基準ブロックを測定点1ケ所
分だけ右側にずらして測定することにより得られる3組
の測定データを、コンピュータ演算することで、基準ブ
ロックの真直度誤差を含まない位置決めテーブルの真直
度測定方法。
When measuring the straightness of a positioning table using a reference block with a non-ignorable error in straightness,
For the first measurement, measure from the arbitrary start point to the end point of the reference block, and for the second measurement, swap the left and right sides of the reference block and move from the end point of the first measurement to the start point, on the reference block. For the third measurement, the reference block is shifted to the right by one measurement point, and the three sets of measurement data obtained are calculated by computer. A method for measuring the straightness of a positioning table that does not include the straightness error of the reference block.
JP10484085A 1985-05-16 1985-05-16 Measuring straightness of positioning table Pending JPS61262610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10484085A JPS61262610A (en) 1985-05-16 1985-05-16 Measuring straightness of positioning table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10484085A JPS61262610A (en) 1985-05-16 1985-05-16 Measuring straightness of positioning table

Publications (1)

Publication Number Publication Date
JPS61262610A true JPS61262610A (en) 1986-11-20

Family

ID=14391541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10484085A Pending JPS61262610A (en) 1985-05-16 1985-05-16 Measuring straightness of positioning table

Country Status (1)

Country Link
JP (1) JPS61262610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235304A (en) * 2000-02-21 2001-08-31 Kuroda Precision Ind Ltd Method of measuring accuracy of straight motion using straightness measuring apparatus
CN108731582A (en) * 2018-07-07 2018-11-02 东莞市联洲知识产权运营管理有限公司 A kind of full-automatic flatness detection mechanism of crossbeam of intelligence desk body
CN111331430A (en) * 2020-03-03 2020-06-26 马拉兹(江苏)电梯导轨有限公司 Guide rail machining device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235304A (en) * 2000-02-21 2001-08-31 Kuroda Precision Ind Ltd Method of measuring accuracy of straight motion using straightness measuring apparatus
CN108731582A (en) * 2018-07-07 2018-11-02 东莞市联洲知识产权运营管理有限公司 A kind of full-automatic flatness detection mechanism of crossbeam of intelligence desk body
CN111331430A (en) * 2020-03-03 2020-06-26 马拉兹(江苏)电梯导轨有限公司 Guide rail machining device

Similar Documents

Publication Publication Date Title
US2906179A (en) Vector gage
DE112012006115B4 (en) Contour and Surface Texture Meter and Contour and Surface Texture Measurement
US4769763A (en) Control for coordinate measuring instruments
Castro et al. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer
US3561125A (en) Three-dimensional position indicating sensor
JPH02220106A (en) Digitization controller containing measuring function
EP1459031B1 (en) Method and system for the calibration of a computer vision system
DE19947374A1 (en) Method to detect geometrical variations of co-ordinate measuring devices or tools; involve measuring large number of lengths optically and determining two-dimensional network by trilateration
WO1993008449A1 (en) Measuring the accuracy of multi-axis machines
Bicker et al. Verifying position errors in CNC gear measuring instruments using a laser interferometer with dynamic data capture software
JPS5771756A (en) Digital display device for feeding amount of machine tool and the like
JPS61262610A (en) Measuring straightness of positioning table
US3668501A (en) Means for generating compensating control means
US3698817A (en) Method and apparatus for manufacturing reference scales
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JPS60205311A (en) Three-dimensional coordinate measuring method
US3869802A (en) Gauging apparatus
EP0053199B1 (en) Process for incrementally measuring geometrical dimensions, and devices to perform the process
Nikam Coordinate Measuring Machine (CMM)
Liu et al. Theory and application of laser interferometer systems
JPH0660817B2 (en) Straightness measuring method and device
JP4533050B2 (en) Surface shape measuring apparatus and surface shape measuring method
Artkin CMM machines and industrial applications
US2806293A (en) Calibration apparatus for threaded parts
EP0309094A1 (en) Precision slides and position encoders therefor