JPS6126226B2 - - Google Patents

Info

Publication number
JPS6126226B2
JPS6126226B2 JP5392077A JP5392077A JPS6126226B2 JP S6126226 B2 JPS6126226 B2 JP S6126226B2 JP 5392077 A JP5392077 A JP 5392077A JP 5392077 A JP5392077 A JP 5392077A JP S6126226 B2 JPS6126226 B2 JP S6126226B2
Authority
JP
Japan
Prior art keywords
heat
boiling
liquid refrigerant
semiconductor element
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5392077A
Other languages
Japanese (ja)
Other versions
JPS53138677A (en
Inventor
Hiroshi Mitsuoka
Yoshio Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5392077A priority Critical patent/JPS53138677A/en
Publication of JPS53138677A publication Critical patent/JPS53138677A/en
Publication of JPS6126226B2 publication Critical patent/JPS6126226B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 この発明は沸騰冷却形半導体装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporative cooling type semiconductor device.

第1図は従来の沸騰冷却形半導体装置の概略構
成図である。ダイオード、サイリスタ等の半導体
素子1は、圧接、ろう付などにより銅等の良好な
熱伝導部材からなる放熱体2と当接され、これら
を重ね合せたいわゆるスタツク構成にすることが
多い。半導体素子1の通電により発生した熱は、
放熱体2に伝達され、液体冷媒3を沸騰気化さ
せ、この際の気化潜熱として吸収される。気化し
た液体冷媒3は密閉容器4の空間部で凝縮し、熱
を放散して再び液体となり密閉容器4内の下部に
戻る。この作用により半導体素子1は冷却され
る。なお図において5は密閉容器の冷却効果を高
めるための放熱フイン、6は半導体素子1に通電
するための通電導体、7は通電導体6が密閉容器
4を貫通する部分に設けられた絶縁部材である。
FIG. 1 is a schematic diagram of a conventional boiling-cooled semiconductor device. A semiconductor element 1 such as a diode or thyristor is often brought into contact with a heat dissipating body 2 made of a good thermally conductive material such as copper by pressure welding, brazing, etc., and stacked together to form a so-called stacked structure. The heat generated by energizing the semiconductor element 1 is
It is transmitted to the heat radiator 2, boils and vaporizes the liquid refrigerant 3, and is absorbed as latent heat of vaporization at this time. The vaporized liquid refrigerant 3 condenses in the space of the closed container 4, radiates heat, becomes liquid again, and returns to the lower part of the closed container 4. This action cools the semiconductor element 1. In the figure, 5 is a heat dissipation fin for enhancing the cooling effect of the sealed container, 6 is a current-carrying conductor for supplying electricity to the semiconductor element 1, and 7 is an insulating member provided at a portion where the current-carrying conductor 6 penetrates the sealed container 4. be.

第2図は第1図に示す装置に使用される一つの
半導体素子1とそれに当接される放熱体2の横断
面図である。図中放熱体2の半導体素子1との接
触面以外の部分においては、半導体素子1で発生
する過大な熱流束(単位面積当りの発生熱量)を
軽減して液体冷媒3に伝達するため、液体冷媒3
との接触表面積を拡大する溝状の通路21が形成
される。この通路21は、放熱体2の厚みに対
し、比較的残くかつ均一につくられ、したがつて
放熱体2の表面各部における温度はほぼ等しくな
つており、各部における液体冷媒3との温度差は
ほとんど同じである。
FIG. 2 is a cross-sectional view of one semiconductor element 1 used in the apparatus shown in FIG. 1 and a heat radiator 2 in contact with it. In the figure, in a portion other than the contact surface of the heat dissipating body 2 with the semiconductor element 1, a liquid Refrigerant 3
A groove-like passageway 21 is formed which increases the surface area of contact with the substrate. This passage 21 is formed relatively uniformly with respect to the thickness of the heat radiator 2, so that the temperature at each part of the surface of the heat radiator 2 is almost equal, and the temperature difference between each part and the liquid refrigerant 3 is small. are almost the same.

この従来の放熱体2における熱伝達の様子を第
3図および第4図を用いて説明する。第3図は沸
騰熱伝達特性を示す沸騰曲線であり、縦軸は放熱
体2の沸騰伝熱表面の熱流束Q、横軸は放熱体2
の表面と液体冷媒3との温度差を示し、第4図は
放熱体2の熱抵抗特性を示すものであり、横軸は
放熱体2の熱負荷P、縦軸は放熱体2の半導体素
子1との接触面中央部の最高温度Tjと冷媒3の
温度TFとの差と、熱負荷Pとの比すなわち放熱
体2の熱抵抗θを示している。第3図中点A−B
間は核沸騰領域、点B−C間は遷移沸騰領域、点
C−D間は膜沸騰領域となつているものであり、
第4図中実線部−間は核沸騰領域に対応し、
実線部−間は遷移沸騰領域ないし膜沸騰領域
に対応しているものである。
The state of heat transfer in this conventional heat sink 2 will be explained using FIGS. 3 and 4. Figure 3 is a boiling curve showing boiling heat transfer characteristics, where the vertical axis is the heat flux Q of the boiling heat transfer surface of the heat sink 2, and the horizontal axis is the heat flux Q of the boiling heat transfer surface of the heat sink 2.
4 shows the temperature difference between the surface of the heat sink 2 and the liquid refrigerant 3, and FIG. 1 and the temperature T F of the refrigerant 3 and the ratio of the thermal load P, that is, the thermal resistance θ of the heat sink 2. Figure 3 midpoint A-B
The region between points B and C is a nucleate boiling region, the region between points B and C is a transition boiling region, and the region between points C and D is a film boiling region.
The solid line in Figure 4 corresponds to the nucleate boiling region,
The solid line portion corresponds to the transition boiling region or film boiling region.

そして、上記第2図に示した表面の凹凸が比較
的少なく、表面温度が比較的均一化された放熱体
2の動作領域は熱負荷の増大につれ、第3図中実
線矢印ア部、イ部及び、ウ部のように表面温度の
差が狭い範囲で沸騰曲線上を移動することになる
ものである。従つて、放熱体2表面の動作点が第
3図における最大熱伝達率点であるB点に達する
と熱負荷がわずかに増大しただけで、放熱体2表
面の各部動作点は一斉に遷移沸騰領域となるイ部
に突入し、膜沸騰領域となるウ部へと移行し、第
4図における実線部−間に示されるように、
放熱体2の熱抵抗は最低熱抵抗を与える熱負荷P1
を越えると急激に増大することになるものであ
る。
As the heat load increases, the operating area of the heat sink 2 shown in FIG. And, as shown in part (c), the difference in surface temperature moves on the boiling curve within a narrow range. Therefore, when the operating point on the surface of the heat sink 2 reaches point B, which is the maximum heat transfer coefficient point in FIG. It enters part A, which is a region, and moves to part C, which is a film boiling region, and as shown between the solid line part in Fig. 4,
The thermal resistance of the heat sink 2 is the thermal load P 1 that gives the lowest thermal resistance.
If it exceeds this, it will increase rapidly.

従つて、従来の沸騰冷却形半導体装置にあつて
は、過負荷が加わつた場合でも、放熱体2表面の
動作点が遷移沸騰領域ないし膜沸騰領域に移行す
るのを避けるため、放熱体2の表面熱流束を必要
以上に小さく、最低熱抵抗を与える熱負荷P1より
もかなり低い熱負荷の状態、例えば第3図に示す
ア部の状態にて動作するように設計されていたも
のである。
Therefore, in the case of a conventional boiling-cooled semiconductor device, even when an overload is applied, the operating point of the heat sink 2 is prevented from shifting to the transition boiling region or the film boiling region. It was designed to operate in a state where the surface heat flux is smaller than necessary and the heat load is much lower than the heat load P 1 that gives the lowest thermal resistance, for example, the state shown in part A shown in Figure 3. .

この様にして設計された従来の沸騰冷却形半導
体装置においては、沸騰冷却の効率が悪く、しか
も充分な沸騰冷却の効果を得ようとすれば放熱体
2が大きくなつてしまうものであつた。
In conventional evaporative cooling type semiconductor devices designed in this manner, the efficiency of evaporative cooling is poor, and in order to obtain a sufficient evaporative cooling effect, the heat radiator 2 becomes large.

この発明は上記した点に鑑みてなされたもので
あり、液体冷媒の沸騰作用を利用して半導体素子
を冷却するものにおいて、放熱体の表面にその表
面温度が高温度領域と低温度領域とが形成される
ようにし、低温度領域が液体冷媒の核沸騰状態に
より、高温度領域が液体冷媒の遷移沸騰状態によ
り冷却されるようにして、沸騰冷却の効率が良
く、かつ放熱体を小形にできる沸騰冷却形半導体
装置を提案するものである。
This invention has been made in view of the above points, and in a device that cools a semiconductor element using the boiling effect of a liquid refrigerant, the surface of the heat sink has a high temperature region and a low temperature region. The low-temperature region is cooled by the nucleate boiling state of the liquid refrigerant, and the high-temperature region is cooled by the transition boiling state of the liquid refrigerant, thereby improving the efficiency of boiling cooling and making it possible to make the heat sink compact. This paper proposes a boiling-cooled semiconductor device.

以下にこの発明の実施例を説明する。 Examples of the present invention will be described below.

第5図は本発明の特徴とする放熱体と半導体素
子との組合せの半導体素子とそれに当接する一例
を示す水平断面図である。図中放熱体2におい
て、その中央部近くにある溝状の液体冷媒の通路
22aはできるだけ深くとつており、中央部から
離れた所の溝状の通路23aは相対的に浅くとつ
てある。したがつて中央部の通路22aの底辺部
の温度は、半導体素子1との距離が近いため高温
となり、中央部から離れた所の通路23aにおい
ては相対的に低い温度となる。すなわち同一放熱
体2の表面に半導体素子からの熱により低い低温
度領域と表面温度の高い高温度領域とが形成され
ることになる。この結果、放熱体2の各部分にお
ける冷媒3との温度差△Tは中央部の通路22a
の底辺部においては大きくなり、周辺部の通路2
3aにおいては小さくなつて、放熱体2の沸騰動
作点は第3図の破線領域エ,オ,カで示すように
広い温度差巾をもつて、熱負荷の増大に伴ない順
次移動することになるものである。
FIG. 5 is a horizontal sectional view showing an example of a combination of a heat radiator and a semiconductor element, which is a feature of the present invention, and a semiconductor element in contact with the semiconductor element. In the heat radiator 2 shown in the figure, a groove-shaped liquid refrigerant passage 22a near the center is as deep as possible, and a groove-shaped passage 23a away from the center is relatively shallow. Therefore, the temperature at the bottom of the passage 22a in the center is high because of the short distance to the semiconductor element 1, and the temperature in the passage 23a away from the center is relatively low. That is, a low temperature region and a high temperature region with a high surface temperature are formed on the surface of the same heat sink 2 due to heat from the semiconductor element. As a result, the temperature difference ΔT between each part of the heat radiator 2 and the refrigerant 3 is
It becomes larger at the bottom of the passage 2 at the periphery.
3a, the boiling point of the heat sink 2 gradually shifts as the heat load increases, with a wide temperature difference as shown by the broken line areas E, O, and F in Figure 3. It is what it is.

一方、放熱体2の熱抵抗特性は第4図の破線に
て示すように、破線部−間では放熱体2は核
沸騰動作し、熱負荷の増大と共に熱抵抗は低下
し、最低熱抵抗を与える熱負荷P1を越しても、放
熱体2の表面は広い温度差巾をもつて沸騰曲線上
を順次移行するため破線−間に示すように、
熱負荷Pの増大に対しても熱抵抗θはほぼ最低の
状態を保ち、放熱体2の表面の最も液体冷媒との
温度差が少ない部分すなわち通路23aの近傍
が、第3図の沸騰曲線のB点を越えるような熱負
荷P2が与えられたところで熱抵抗θは急増するこ
とになるものである。
On the other hand, the thermal resistance characteristics of the heat sink 2 are as shown by the broken line in Fig. 4. Between the broken line and the broken line, the heat sink 2 performs nucleate boiling operation, and as the heat load increases, the thermal resistance decreases, and the lowest thermal resistance is reached. Even if the applied heat load P 1 is exceeded, the surface of the radiator 2 sequentially moves on the boiling curve with a wide temperature difference, as shown between the broken lines.
Even when the heat load P increases, the thermal resistance θ remains almost at its lowest state, and the part of the surface of the heat sink 2 where the temperature difference with the liquid refrigerant is the smallest, that is, the vicinity of the passage 23a, corresponds to the boiling curve in FIG. When a thermal load P2 exceeding point B is applied, the thermal resistance θ increases rapidly.

従つて、この発明における沸騰冷却形半導体装
置においては、放熱体2表面における低温度領域
となる通路23aの近傍で核沸騰領域にて動作さ
せ、高温度領域となる通路22aの近傍で遷移沸
騰領域にて動作させること、例えば第3図に示す
破線領域オにて沸騰冷却させることを特徴とする
ものである。
Therefore, the boiling-cooled semiconductor device of the present invention operates in the nucleate boiling region near the passage 23a, which is a low temperature region on the surface of the heat sink 2, and operates in the transition boiling region near the passage 22a, which is a high temperature region. For example, the system is characterized in that it is operated at a temperature of 100.degree. C., and is characterized by boiling and cooling, for example, in the region O shown by the broken line in FIG.

この様にしたことにより、放熱体2では、核沸
騰領域から遷移沸騰領域にわたる広範囲の動作点
内で沸騰冷却が行なわれることになり、この時の
平均的な放熱体表面の熱流束Qはかなり高いもの
となつているものである。いいかえれば放熱体2
は熱負荷の増大と共に部分的に遷移沸騰領域で動
作しながらも高い熱伝達を示しているものであ
る。
By doing this, the heat sink 2 undergoes boiling cooling within a wide range of operating points ranging from the nucleate boiling region to the transition boiling region, and the average heat flux Q on the heat sink surface at this time is considerably It is becoming expensive. In other words, heat sink 2
shows high heat transfer while operating partially in the transition boiling region as the heat load increases.

以上のことから明らかなように、この発明にお
ける沸騰冷却形半導体装置にあつては、放熱体2
の熱抵抗が低い状態で動作しているため、沸騰冷
却の効率が向上し、放熱体2を小形化できるもの
である。しかも、第4図にて破線−間で示さ
れているように第3図カ部に示す遷移沸騰領域な
いし膜沸騰領域に移行するまでは非常に大きな熱
負荷の増大を許容できるため、装置に過負荷が加
わつた場合でも、放熱体2の熱抵抗が低い状態に
維持され、過負荷耐量の大きいものが得られるも
のである。
As is clear from the above, in the boiling-cooled semiconductor device of the present invention, the heat sink 2
Since it operates with a low thermal resistance, the efficiency of boiling cooling is improved and the heat sink 2 can be made smaller. Moreover, as shown by the broken line in FIG. 4, a very large increase in heat load can be tolerated until the transition boiling region or film boiling region shown in section 3 of FIG. Even when an overload is applied, the thermal resistance of the heat sink 2 is maintained in a low state, and a large overload capacity can be obtained.

第6図は本発明の特徴とする放熱体と半導体素
子の他の例を示す横断面である。図において22
b,23bはそれぞれ放熱体2に設けた孔状の液
体冷媒3の通路であり、放熱体2の水平断面の中
央部近くにおける孔状の通路22bは中央部から
離れた所における孔状の通路23bに比べ厚み方
向に大きく、すなわち断面積を大きくしてあり、
第5図に示した放熱体と同様に表面に低温度領域
と高温度領域とを形成でき、低温度領域が核沸騰
状態により、高温度領域が遷移沸騰状態により動
作させることができ、第5図に示したものと同様
の効果が得られるものである。
FIG. 6 is a cross-sectional view showing another example of a heat sink and a semiconductor element, which are features of the present invention. In the figure 22
b and 23b are hole-shaped passages for the liquid refrigerant 3 provided in the heat radiator 2, and the hole-shaped passage 22b near the center of the horizontal section of the heat radiator 2 is a hole-shaped passage away from the center. Compared to 23b, it is larger in the thickness direction, that is, the cross-sectional area is larger,
Similar to the heat sink shown in FIG. 5, a low temperature region and a high temperature region can be formed on the surface, and the low temperature region can be operated in a nucleate boiling state and the high temperature region can be operated in a transition boiling state. The same effect as shown in the figure can be obtained.

この他、放熱体に設ける液体冷媒の孔状の通路
の数を放熱体の各部で異なるようにし、すなわち
中央部では孔の数を多く、周辺部では少なくする
ことによつて低温度領域と高温度領域とを形成で
きるようにしても良いものである。
In addition, the number of hole-shaped passages for the liquid refrigerant provided in the heat radiator is made different in each part of the heat radiator, that is, by having more holes in the center and fewer in the periphery, it is possible to differentiate between low temperature areas and high temperature areas. It may also be possible to form a temperature region.

なお、半導体素子1は、少なくとも一つのP−
N接合を有する半導体素子基体そのもの、あるい
は半導体素子基体をパツケージに収納してなる半
導体素子などであつても良く、また、放熱体2の
液体冷媒通路はパツケージのケース電極自体に形
成されたものであつても良い。
Note that the semiconductor element 1 has at least one P-
It may be the semiconductor element base itself having an N junction, or a semiconductor element formed by housing the semiconductor element base in a package, and the liquid refrigerant passage of the heat sink 2 may be formed in the case electrode of the package itself. It's okay if it's hot.

この発明は以上に述べたように、液体冷媒の沸
騰作用を利用して半導体素子を冷却するものにお
いて、液体冷媒に接する放熱体の表面に、半導体
素子からの熱により、その表面温度の低い低温度
領域と表面温度の高い高温度領域とが形成される
ように放熱体を構成し、低温度領域が液体冷媒の
核沸騰状態により、高温度領域が液体冷媒の遷移
沸騰状態により冷却されるようにしたので、沸騰
冷却の効率が向上するとともに過負荷耐量が大き
くなり、安定動作が得られるとともに放熱体を小
形軽量化できるという効果を有するものである。
As described above, this invention cools a semiconductor element using the boiling action of a liquid refrigerant, and the surface of the heat radiator in contact with the liquid refrigerant is heated by the heat from the semiconductor element to a low surface temperature. The heat radiator is configured to form a temperature region and a high temperature region with a high surface temperature, and the low temperature region is cooled by the nucleate boiling state of the liquid refrigerant, and the high temperature region is cooled by the transition boiling state of the liquid refrigerant. As a result, the efficiency of boiling cooling is improved, the overload capacity is increased, stable operation is obtained, and the heat dissipation body can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の沸騰冷却形半導体装置の概略構
成図、第2図は第1図の装置における半導体素子
とこれに当接する放熱体の横断面図、第3図は液
体冷媒の沸騰熱伝達特性を示す沸騰曲線、第4図
は放熱体の熱抵抗特性、第5図および第6図は本
発明の特徴とする放熱体とこれに当接する半導体
素子の異なる例を示す水平断面図である。 図において1は半導体素子、2は放熱体、3は
液体冷媒、22a,22b,23a,23bはい
づれも放熱体に設けられた液体冷媒の通路であ
る。なお図中同一符号は同一または相当部分を示
す。
Fig. 1 is a schematic diagram of a conventional boiling-cooled semiconductor device, Fig. 2 is a cross-sectional view of a semiconductor element and a heat radiator in contact with it in the device of Fig. 1, and Fig. 3 is boiling heat transfer of liquid refrigerant. FIG. 4 is a boiling curve showing the characteristics, FIG. 4 is a thermal resistance characteristic of a heat sink, and FIGS. 5 and 6 are horizontal cross-sectional views showing different examples of a heat sink and a semiconductor element in contact with the heat sink, which is a feature of the present invention. . In the figure, 1 is a semiconductor element, 2 is a heat radiator, 3 is a liquid refrigerant, and 22a, 22b, 23a, and 23b are all passages for the liquid refrigerant provided in the heat radiator. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子に放熱体を当接し、これらを液体
冷媒に浸し上記液体の沸騰作用を利用して、上記
半導体素子を冷却するものにおいて、上記液体冷
媒と接する上記放熱体の表面に、上記半導体素子
からの熱により、その表面温度の低い低温度領域
と表面温度の高い高温度領域とが形成され、か
つ、上記低温度領域が上記液体冷媒の核沸騰状態
により、上記高温度領域が上記液体冷媒の遷移沸
騰状態により冷却されるように上記放熱体に、水
平断面の中央部近くに設けられるものの断面積
が、上記中央部から離れて設けられるものの断面
積より大きくした水平断面形状が溝状あるいは孔
状の複数の液体冷媒の通路を形成したことを特徴
とする沸騰冷却形半導体装置。
1. In a device that cools the semiconductor element by bringing a heat radiator into contact with the semiconductor element, immersing them in a liquid refrigerant, and utilizing the boiling action of the liquid, the semiconductor element is placed on the surface of the heat radiator that is in contact with the liquid refrigerant. A low temperature region with a low surface temperature and a high temperature region with a high surface temperature are formed by the heat from the liquid refrigerant. In order to be cooled by the transition boiling state of An evaporative cooling type semiconductor device characterized by forming a plurality of hole-shaped liquid refrigerant passages.
JP5392077A 1977-05-10 1977-05-10 Vapor cooling type semiconductor device Granted JPS53138677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5392077A JPS53138677A (en) 1977-05-10 1977-05-10 Vapor cooling type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5392077A JPS53138677A (en) 1977-05-10 1977-05-10 Vapor cooling type semiconductor device

Publications (2)

Publication Number Publication Date
JPS53138677A JPS53138677A (en) 1978-12-04
JPS6126226B2 true JPS6126226B2 (en) 1986-06-19

Family

ID=12956142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5392077A Granted JPS53138677A (en) 1977-05-10 1977-05-10 Vapor cooling type semiconductor device

Country Status (1)

Country Link
JP (1) JPS53138677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431684Y2 (en) * 1987-02-16 1992-07-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234059A (en) * 1985-04-10 1986-10-18 Hitachi Ltd Vapor cooling device for semiconductor element
JP4207672B2 (en) * 2003-06-05 2009-01-14 トヨタ自動車株式会社 Semiconductor device cooling structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431684Y2 (en) * 1987-02-16 1992-07-30

Also Published As

Publication number Publication date
JPS53138677A (en) 1978-12-04

Similar Documents

Publication Publication Date Title
US3852806A (en) Nonwicked heat-pipe cooled power semiconductor device assembly having enhanced evaporated surface heat pipes
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US3852805A (en) Heat-pipe cooled power semiconductor device assembly having integral semiconductor device evaporating surface unit
US6263959B1 (en) Plate type heat pipe and cooling structure using it
US4145708A (en) Power module with isolated substrates cooled by integral heat-energy-removal means
KR100836305B1 (en) Thermoelectric module
US5309986A (en) Heat pipe
US20050083655A1 (en) Dielectric thermal stack for the cooling of high power electronics
JP2015522943A (en) Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
US8505613B2 (en) Die having a via filled with a heat-dissipating material
JPH088421B2 (en) Heat dissipation device
US20070051498A1 (en) Heat dissipation device with a heat pipe
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
CN111681999A (en) Vacuum heat conduction cavity soaking plate and air-cooled heat dissipation device
JPS6126226B2 (en)
US3852804A (en) Double-sided heat-pipe cooled power semiconductor device assembly
US4395728A (en) Temperature controlled apparatus
JPH1187586A (en) Cooling structure for multi-chip module
US20070289313A1 (en) Thermosiphon with thermoelectrically enhanced spreader plate
RU2821431C1 (en) Powerful heat-conducting semiconductor device
JPH0714029B2 (en) Power semiconductor device
JPS6243346B2 (en)
KR200143379Y1 (en) Heat plate in heat pump
JPH06188342A (en) Cooling device for semiconductor element
JPH0289353A (en) Boiling cooling device