JPS61260635A - Method and device for plasma process - Google Patents

Method and device for plasma process

Info

Publication number
JPS61260635A
JPS61260635A JP10123085A JP10123085A JPS61260635A JP S61260635 A JPS61260635 A JP S61260635A JP 10123085 A JP10123085 A JP 10123085A JP 10123085 A JP10123085 A JP 10123085A JP S61260635 A JPS61260635 A JP S61260635A
Authority
JP
Japan
Prior art keywords
plasma
electric field
magnets
magnet
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10123085A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Takeshi Harada
武 原田
Yutaka Omoto
豊 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10123085A priority Critical patent/JPS61260635A/en
Priority to US06/777,725 priority patent/US4631106A/en
Priority to KR1019850006846A priority patent/KR900005347B1/en
Publication of JPS61260635A publication Critical patent/JPS61260635A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a material being processed to be processed by plasma at a high speed and moreover uniformly by a method wherein vertical magnets and a horizontal magnet are provided on a yoke, and the high density part and the low density part are provided to magnetic flux to meet at right angles with an electric field. CONSTITUTION:A magnetic element 8 is constructed on a yoke 40 according to vertical magnets 41, 42 and a horizontal magnet 43, the S-pole and the N-pole are arranged on the surface sides of the magnets 41, 42, and the magnet 43 is arranged by making polarities to coincide therewith. The magnets 41, 42, 43 form scroll type together, and extend to the circumference of the yoke from the neighborhood of the center of rotation O. Because the interval d3 between the magnets inserted with the magnet 43 is narrower than the interval d4 between the magnets not inserted with the magnet 43, and moreover reinforced with the magnet 43, a magnetic field of high magnetic flux density is constructed in the direction meeting at right angles with an electric field between the magnetic having width d3, and a magnetic field of middle grade is constructed in the direction meeting at right angles with the electric field between the magnets having width d4. Accordingly, the high-speed and uniform processing of a material to be processed can be attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ処理方法及び装置に係り、特に真空
下のガスを電界と磁界の作用のもとてプラズマ化させプ
ラズマ中のイオンあるいは活性種によって半導体ウェハ
等の被処理物質を処理するプラズマ処理方法及び装置に
関するものでる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma processing method and apparatus, and in particular, the present invention relates to a plasma processing method and apparatus, and in particular to a method and apparatus for plasma processing, in which gas under vacuum is turned into plasma under the action of an electric field and a magnetic field, and ions or active species in the plasma are processed. The present invention relates to a plasma processing method and apparatus for processing materials to be processed such as semiconductor wafers.

〔発明の背景〕[Background of the invention]

真空下のガスをグロー放電によってプラズマ化して、プ
ラズマ中のイオンあるいは活性種によって被処理物質を
処理する装置は材料表面の改質および加工、さらに材料
表面への物質の堆積と種々の分野で使用されている。
Equipment that converts gas under vacuum into plasma using glow discharge and treats substances with ions or active species in the plasma is used in a variety of fields for modifying and processing material surfaces, as well as depositing substances on material surfaces. has been done.

電界によるグロー放電に磁界を作用させると、電気的に
クーロン力と11に磁気によるローレンツ力が作用し、
特に電界と磁界が直交するように構成すると、荷電粒子
がサイクロイド運動することによって粒子ないし分子間
の衝突頻度が増し、イオンあるいは活性種の密度が増加
することは衆知のことであり、処理速度の向上る目的に
この技術を応用した装置も実用に供されている。特にド
ライエツチング装置では特開昭58−16078号公報
が開示されている。この従来装置は第9図、第10図に
示すようにウェハ111を載置する下部電極112の下
にN極113とS極114で構成される磁石要素115
を配置し。N極−S極間で増強されたプラズマ領域をウ
ェハ111に対して相対的に移動させて均一性を高める
ために磁石要素115を駆動系116によって直進的に
走査している。均一化を図るためには磁石要素115を
第10図のウェハ一端の位置Aから他端位置Bまで移動
させる必要があり、電極下部の空間は磁石要素115の
移動のために大きな空間が必要で、このためエツチング
装置が大きくなるという問題点があった。
When a magnetic field is applied to a glow discharge caused by an electric field, Coulomb force acts electrically and Lorentz force due to magnetism acts on 11.
In particular, it is well known that when the electric field and magnetic field are configured to be perpendicular to each other, the cycloidal motion of charged particles increases the frequency of collisions between particles or molecules, and the density of ions or active species increases. Devices that apply this technology to improve performance are also in practical use. In particular, a dry etching apparatus is disclosed in Japanese Patent Laid-Open No. 16078/1983. As shown in FIGS. 9 and 10, this conventional device has a magnet element 115 composed of an N pole 113 and an S pole 114 under a lower electrode 112 on which a wafer 111 is placed.
Place. The magnet element 115 is linearly scanned by a drive system 116 in order to move the plasma region enhanced between the north and south poles relative to the wafer 111 and improve uniformity. In order to achieve uniformity, it is necessary to move the magnet element 115 from position A at one end of the wafer to position B at the other end in FIG. Therefore, there was a problem that the etching apparatus became large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は小形で被処理物質の均一処理に好適なプ
ラズマによる処理方法と装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma processing method and apparatus that are compact and suitable for uniformly processing a material to be processed.

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は電界と直交する平面内で高密度プ
ラズマと中密度プラズマを作り、特に中央近傍を中密度
プラズマとし、これを回転させて処理の均一化を図った
ことである。
The first feature of the present invention is that high-density plasma and medium-density plasma are created in a plane perpendicular to the electric field, and that the medium-density plasma is created particularly near the center, and this is rotated to achieve uniform processing.

本発明の第2の特徴はプラズマの流れ現象を利用したこ
とである。電磁場が直交するウェハ近傍のプラズマの状
態をよ(観察し、磁石配置とプラズマ状態およびエツチ
ング速度との関係を求めた結果、第1図のようなプラズ
マの流れ現象が存在することがわかった。ここで21は
S極、ηはN極であり、電界は紙面に直角に加っている
。田はプラズマの密度の高い場所で電界と磁界のベクト
ル積の方向すなわち電子がサイクロトロン運動していく
方向(図中のX方向)に流れ、そのエツチング速とE、
 R,もプラズマの流れる方向に徐々に大きくなってい
る。したがって、回転中心付近から周囲に向って流れる
高密度プラズマと周囲から回転中心付近に流れ込む中密
度プラズマを作ってこれを回転させれば均一処理が可能
となる。ここで、高密度プラズマとは、プラズマ密度が
最も高いプラズマのことで、また、中密度プラズマとは
、高密度プラズマのプラズマ密度よりもプラズマ密度が
低く、かつ、磁界の影響を受けない部分でのプラズマの
プラズマ密度よりもプラズマ密度が高いプラズマのこと
である。
The second feature of the present invention is that it utilizes the plasma flow phenomenon. As a result of observing the plasma state near the wafer where the electromagnetic fields are perpendicular to each other and determining the relationship between the magnet arrangement, the plasma state, and the etching rate, it was found that a plasma flow phenomenon as shown in Figure 1 exists. Here, 21 is the south pole and η is the north pole, and the electric field is applied perpendicular to the plane of the paper.The field is the direction of the vector product of the electric field and the magnetic field in a place where the plasma density is high, that is, the electrons move in the cyclotron. direction (X direction in the figure), its etching speed and E,
R also gradually increases in the direction of plasma flow. Therefore, uniform processing can be achieved by creating high-density plasma flowing from the vicinity of the rotation center toward the periphery and medium-density plasma flowing from the periphery toward the rotation center and rotating them. Here, high-density plasma is the plasma with the highest plasma density, and medium-density plasma is the part where the plasma density is lower than that of high-density plasma and is not affected by the magnetic field. It is a plasma whose plasma density is higher than that of the plasma of .

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図から第5図に示す。 An embodiment of the present invention is shown in FIGS. 2 to 5.

本実施例では被処理物質が半導体ウェハで、かっ半導体
ウェハなドライエツチング処理する場合を採り上げる。
In this embodiment, the material to be processed is a semiconductor wafer, and a case where the dry etching process is performed on the semiconductor wafer will be described.

第2図で、ドライエツチング装d1は互いに平行な上部
電極3と下部電極4の両放電電極とを内蔵し、ガスの供
給孔5.排気孔6.ウェハ18の搬入搬出孔7とを有す
る処理室2と、モータ92回転伝達機構10によって回
転駆動される磁石要素8とから構成されている。さらに
詳細には上部電極3は絶縁物11を介して処理室2に取
り付けられ、高周波電力が印加される下部電極4は絶縁
部化を介して処理室2を構成する電極支持材13に取り
付けられる。磁石要素8は下部電極4のごく接近した下
方の大気中に回転可能な状態に支持されている。この磁
石要素8は第3図、第4図に詳細に示すように、平板状
のヨーク園に垂直に立てた磁石31、31’ 、 32
.32’から構成されており、31.31’は表面にS
極が32.32’は表面にN極側が配置されるようにな
されている。第3図の平面図に示すように、これらの磁
石の一端は回転中心Oの近傍に位置し、スクロール状に
周辺に広っており、対になったS極とN極31と!およ
び31’と支′との間の間Fillld+は狭くほぼ等
しい巾を有し、隣合うS極とN極である31と支′およ
び31′とnとの間の間隙d2はd、より広くなってい
る。したがって、d1巾を有する磁石間では電界と直交
する方向に強い磁束密度の磁場を構成し、d2巾を有す
る磁石間では電界と直交する方向に、磁石の真上よりや
や強い中程度の磁場を構成している。また、dl中を有
する磁石間では、この平面と直角の方向に加っている電
界と磁界との間のベクトル禎の方向が中心より外側に向
い、d2巾を有する磁石間の磁界と電界のベクトル禎の
方向は外周から中心に向うようN極、S極が配置されて
いる。
In FIG. 2, the dry etching device d1 includes two discharge electrodes, an upper electrode 3 and a lower electrode 4, which are parallel to each other, and includes gas supply holes 5. Exhaust hole6. It is comprised of a processing chamber 2 having an inlet/outlet hole 7 for a wafer 18, and a magnet element 8 which is rotationally driven by a motor 92 and a rotation transmission mechanism 10. More specifically, the upper electrode 3 is attached to the processing chamber 2 via an insulator 11, and the lower electrode 4 to which high-frequency power is applied is attached to the electrode support material 13 constituting the processing chamber 2 through insulation. . Magnetic element 8 is rotatably supported in the atmosphere below in close proximity to lower electrode 4 . As shown in detail in FIGS. 3 and 4, this magnet element 8 consists of magnets 31, 31', 32 that are vertically erected in a flat yoke garden.
.. 32' and 31.31' are S on the surface.
The poles 32 and 32' are arranged so that the north pole side is placed on the surface. As shown in the plan view of FIG. 3, one end of these magnets is located near the center of rotation O, and extends around the periphery in a scroll shape, forming a pair of S and N poles 31! The gap d2 between the adjacent S and N poles, 31 and the support ′ and 31′ and n, is narrower and has approximately the same width. It has become. Therefore, between the magnets having a width of d1, a magnetic field with a strong magnetic flux density is created in the direction perpendicular to the electric field, and between the magnets having a width of d2, a medium magnetic field, which is slightly stronger than directly above the magnets, is created in the direction perpendicular to the electric field. It consists of Furthermore, between the magnets having a width of dl, the direction of the vector between the electric field and the magnetic field applied perpendicular to this plane is directed outward from the center, and the magnetic field and the electric field between the magnets having a width of d2 are The north and south poles are arranged so that the direction of the vector direction is from the outer periphery to the center.

このように構成された電磁界によるウェハ近傍のプラズ
マは第5図のようになる。ここで、おは中央近傍からス
クロール状に周辺へ流れる高密度プラズマを示し、讃は
周辺からスクロール状に中央に流れ込む中密度プラズマ
を示している。
Plasma in the vicinity of the wafer due to the electromagnetic field configured as described above is generated as shown in FIG. Here, 0 indicates high-density plasma flowing from the vicinity of the center to the periphery in a scroll shape, and 3 indicates medium-density plasma flowing from the periphery to the center in a scroll shape.

このようにして回転中心付近には中密度のプラズマが生
じ、外周に向っては高密度のプラズマがスクロール状に
生じるので、磁石要素8を回転させてやることにより極
めて高速で均一性に秀れたドライエツチング処理が可能
である。また、スクロール状に磁石が配置されているの
で、半導体ウェハ上の高密度プラズマ領域が広くとれ、
エツチングの高速化と個々のイオンの照射エネルギを決
定するセルフバイアス電圧の低下(素子に対する低ダメ
ージ化)が可能である。
In this way, medium-density plasma is generated near the center of rotation, and high-density plasma is generated in a scroll shape toward the outer periphery, so by rotating the magnet element 8, it can be achieved at extremely high speed and with excellent uniformity. Dry etching treatment is possible. In addition, since the magnets are arranged in a scroll shape, the high-density plasma area on the semiconductor wafer can be widened.
It is possible to speed up etching and lower the self-bias voltage that determines the irradiation energy of individual ions (less damage to the element).

本発明の他の実施例を第6図〜第8図に示す。Other embodiments of the invention are shown in FIGS. 6-8.

第6図は磁石要素の平面図、第7図は第6図の■−■断
面図、第8図は半導体ウェハ近傍におけるプラズマ状態
を示す模式図である。
FIG. 6 is a plan view of the magnet element, FIG. 7 is a sectional view taken along the line -■ in FIG. 6, and FIG. 8 is a schematic diagram showing the plasma state in the vicinity of the semiconductor wafer.

この実施例ではヨーク伯上に垂直に立てた磁石41.4
2および水平に置いた磁石(以下、水平磁石と略)43
により磁石要素8を構成し、垂直に立てた磁石41.4
2のそれぞれ表面側に8極とN極を配置し、その極性と
一致させて水平磁石43を配置している。このような磁
石41.42.43はともにスクロール状をなし、回転
中心Oの近傍からヨーク周辺へ伸びている。中心01〜
04はスクロール形状な決定する中心点であり、4分円
をつなぎ合わせて構成している。水平磁石43が挿入さ
れた磁石間隔d3は水平磁石梠が挿入されていない磁石
間隔d4より狭くなっており、かつ水平磁石6より補強
されているのでd3巾を有する磁石間では電界と直交す
る方向に強い磁石密度の磁場を構成し、d4巾を有する
磁石間では電界と直交する方向に中程度の磁場を構成し
ている。
In this embodiment, a magnet 41.4 is placed vertically on the York Count.
2 and a magnet placed horizontally (hereinafter abbreviated as horizontal magnet) 43
A vertically erected magnet 41.4 constitutes a magnet element 8.
Eight poles and an N pole are arranged on the front side of each of the magnets 2, and a horizontal magnet 43 is arranged to match the polarity of the eight poles. These magnets 41, 42, and 43 all have a scroll shape and extend from the vicinity of the rotation center O to the periphery of the yoke. Center 01~
04 is the center point that determines the scroll shape, and is constructed by connecting quadrants. The magnet spacing d3 in which the horizontal magnets 43 are inserted is narrower than the magnet spacing d4 in which the horizontal magnets 43 are not inserted, and is reinforced more than the horizontal magnet 6, so that between the magnets having a width of d3, a direction perpendicular to the electric field is generated. A magnetic field with a strong magnet density is formed between the magnets, and a medium magnetic field is formed between the magnets having a width of d4 in a direction perpendicular to the electric field.

このように構成された電磁界によるウェハ近傍ノフラス
マは第8図のようになる。ここで祠は中央近傍からスク
ロール状に周辺へ流れる高密度プラズマを示し、45は
周辺からスクロール状に中央に流れ込む中密度プラズマ
を示している。
The noflash near the wafer due to the electromagnetic field configured in this manner is as shown in FIG. Here, the shrine indicates high-density plasma flowing from near the center to the periphery in a scroll shape, and 45 indicates medium-density plasma flowing from the periphery to the center in a scroll shape.

このようにして磁石要素8を回転させてやることにより
前記一実施例での場合よりさらに高速で同程度の均一性
が得られる。
By rotating the magnet element 8 in this manner, the same degree of uniformity can be obtained at a higher speed than in the previous embodiment.

以上の実施例では、ドライエツチング装置を採り上げて
説明したが、スパッタ装置等の他のプラズマ処理装置に
ついても同様に適用できるものである。
Although the above embodiments have been explained using a dry etching apparatus, the present invention can be similarly applied to other plasma processing apparatuses such as sputtering apparatuses.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば磁場回転方式により
小形で被処理物質の高速、均一処理に適したプラズマ処
理方法および装置を提供することができる効果がある。
As described above, according to the present invention, it is possible to provide a plasma processing method and apparatus that are compact and suitable for high-speed, uniform processing of a material to be processed using a magnetic field rotation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための図、第2図〜第
5図は本発明を実施したプラズマ処理装置の一実施例を
説明するもので、第2図は装置の縦断面図、第3図は磁
石要素の平面図、第4図は第3図中のVl−Vl断面図
、第5図はプラズマの状態を示す図、第6図〜第8図は
本発明を実施したプラズマ処理装置の他の実施例を示す
磁石要素の平面図、断面図およびプラズマの状態を示す
図、第9図は従来のプラズマ処理装置の縦断面図、第1
0図は第9図中の磁石要素の平面図である。 2・・・・・・処理室、3・・・・・・上部電極、4・
・・・・下部電極、8・・・・・・磁石要素、オ、44
・・・・・・高密度プラズマ、ア、45・・・・・・中
密度プラズマ、9・・・・・・モータ、10・・・回転
伝達機構、31.31’ 、 41・・曲S極、諺、 
32. 、42・・・・・・N極、30.40・・・・
・・ヨーク、6・・・・・・水平磁石代理人 弁理士 
 小 川 勝 男 オ1図 一−χ 2−−−−−Mf室、  3−、rq#ttk 、4−
−−−−Tlp#i、lx8− E這償ふ、9−  モ
ータ、 10 −−−一回!?1.仏逢ぜに+i4オ8
図 オq図 工l; //:)  //4  //j
FIG. 1 is a diagram for explaining the present invention in detail, FIGS. 2 to 5 are diagrams for explaining an embodiment of a plasma processing apparatus implementing the present invention, and FIG. 2 is a longitudinal cross-sectional view of the apparatus. , FIG. 3 is a plan view of the magnet element, FIG. 4 is a Vl-Vl sectional view in FIG. 3, FIG. 5 is a diagram showing the state of plasma, and FIGS. FIG. 9 is a longitudinal sectional view of a conventional plasma processing apparatus;
FIG. 0 is a plan view of the magnet element in FIG. 9. 2... Processing chamber, 3... Upper electrode, 4...
...Lower electrode, 8...Magnetic element, E, 44
...High density plasma, a, 45...Medium density plasma, 9...Motor, 10...Rotation transmission mechanism, 31.31', 41...Song S pole, proverb,
32. , 42...N pole, 30.40...
...York, 6...Horizontal Magnet Agent Patent Attorney
Katsuo Ogawa 1 Figure 1-χ 2----Mf room, 3-, rq#ttk, 4-
---Tlp#i, lx8-E compensation, 9- motor, 10 ---Once! ? 1. Buddha meeting + i4o8
Figure oq Artwork l; //:) //4 //j

Claims (1)

【特許請求の範囲】 1、電界と直交する平面内で高密度プラズマと中密度プ
ラズマとを作る工程と、前記高密度プラズマと前記中密
度プラズマとた回転させる工程と、回転している前記高
密度プラズマと前記中密度プラズマとにより被処理物質
を処理することを特徴とするプラズマ処理方法。 2、前記高密度プラズマが回転中心から周囲に向って流
れ、前記中密度プラズマが周囲から回転中心に向って流
れるようにする特許請求の範囲第1項記載のプラズマ処
理方法。 3、電界発生手段と、該手段での電界と直交し該電界と
直交する磁束密度に強弱が生じる磁界を作る磁石要素と
を具備し、該磁石要桑を前記電界と直交する面内で回転
可能に設けたことを特徴とするプラズマ処理装置。 4、前記磁石要素を構成するいくつかのS極およびN極
との間隔を変えて前記磁束密度に強弱を与えた特許請求
の範囲第3項記載のプラズマ処理装置。 5、前記磁石要素を平板状のヨークおよびこれに垂直に
立てたいくつかの永久磁石とで構成し、かつ一部の磁石
間に別の磁石を水平に設け前記磁束密度に強弱を与えた
特許請求の範囲第3項記載のプラズマ処理装置。 6、前記強磁場と前記電界とのベクトル積の方向が中心
より外側に向い、前記やや弱い中程度の磁場と前記電界
とのベクトル積の方向が回転中心に向う成分を有するよ
うに前記磁石要素を構成した特許請求の範囲第3項記載
のプラズマ処理装置。
[Claims] 1. A step of creating a high-density plasma and a medium-density plasma in a plane orthogonal to an electric field, a step of rotating the high-density plasma and the medium-density plasma, and a step of rotating the high-density plasma and the medium-density plasma. A plasma processing method characterized in that a material to be processed is processed using a density plasma and the medium density plasma. 2. The plasma processing method according to claim 1, wherein the high-density plasma flows from the center of rotation toward the periphery, and the medium-density plasma flows from the periphery toward the center of rotation. 3. Equipped with an electric field generating means and a magnetic element that generates a magnetic field that is orthogonal to the electric field in the means and produces a magnetic flux density that is perpendicular to the electric field, and rotates the magnet element in a plane orthogonal to the electric field. A plasma processing apparatus characterized in that it is capable of being installed. 4. The plasma processing apparatus according to claim 3, wherein the magnetic flux density is varied in strength by changing intervals between some S poles and N poles constituting the magnet element. 5. A patent in which the magnetic element is composed of a flat plate-shaped yoke and several permanent magnets erected perpendicularly thereto, and another magnet is provided horizontally between some of the magnets to give strength or weakness to the magnetic flux density. A plasma processing apparatus according to claim 3. 6. The magnet element is configured such that the direction of the vector product of the strong magnetic field and the electric field points outward from the center, and the direction of the vector product of the somewhat weak medium magnetic field and the electric field has a component that points toward the center of rotation. A plasma processing apparatus according to claim 3, comprising:
JP10123085A 1984-09-19 1985-05-15 Method and device for plasma process Pending JPS61260635A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10123085A JPS61260635A (en) 1985-05-15 1985-05-15 Method and device for plasma process
US06/777,725 US4631106A (en) 1984-09-19 1985-09-19 Plasma processor
KR1019850006846A KR900005347B1 (en) 1984-09-19 1985-09-19 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10123085A JPS61260635A (en) 1985-05-15 1985-05-15 Method and device for plasma process

Publications (1)

Publication Number Publication Date
JPS61260635A true JPS61260635A (en) 1986-11-18

Family

ID=14295096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10123085A Pending JPS61260635A (en) 1984-09-19 1985-05-15 Method and device for plasma process

Country Status (1)

Country Link
JP (1) JPS61260635A (en)

Similar Documents

Publication Publication Date Title
KR900005347B1 (en) Plasma processor
KR0127663B1 (en) Apparatus & method for generating plasma of uniform flux density
US4960073A (en) Microwave plasma treatment apparatus
KR100977891B1 (en) Device for carrying out a plasma-assisted process
US5798029A (en) Target for sputtering equipment
KR100390540B1 (en) Magnetron plasma etching apparatus
US4943361A (en) Plasma treating method and apparatus therefor
JPS6272121A (en) Semiconductor treating device
JP3081003B2 (en) Plasma processing equipment
JPS59232420A (en) Dry etching apparatus
JPS61260635A (en) Method and device for plasma process
JPS59144133A (en) Plasma dry processing apparatus
JPH0660393B2 (en) Plasma concentrated high-speed sputter device
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
JPH02312231A (en) Dryetching device
JP2709162B2 (en) Microwave plasma processing equipment
JPH11140639A (en) Magnetron device and sputtering device
JP3113344B2 (en) Dual frequency excitation plasma device using rotating magnetic field
JPH04276069A (en) Method and device for sputtering
JPH0830275B2 (en) Rotating magnetic field type magnetron etching device
JPH0621009A (en) Plasma processor
JP2877398B2 (en) Dry etching equipment
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
JPH07116624B2 (en) Rotating electrode type magnetron etching device
JPH02156526A (en) Microwave plasma treating system