JPS61260227A - Infrared light controlling method using ferroelectric liquid crystal - Google Patents

Infrared light controlling method using ferroelectric liquid crystal

Info

Publication number
JPS61260227A
JPS61260227A JP60103154A JP10315485A JPS61260227A JP S61260227 A JPS61260227 A JP S61260227A JP 60103154 A JP60103154 A JP 60103154A JP 10315485 A JP10315485 A JP 10315485A JP S61260227 A JPS61260227 A JP S61260227A
Authority
JP
Japan
Prior art keywords
infrared light
liquid crystal
ferroelectric liquid
transmission
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60103154A
Other languages
Japanese (ja)
Inventor
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60103154A priority Critical patent/JPS61260227A/en
Publication of JPS61260227A publication Critical patent/JPS61260227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13756Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To control effectively the transmission and the reflection of the infrared light by sandwiching a ferroelectric liquid crystal between electrodes and impressing a voltage between electrodes. CONSTITUTION:In a call having a very simple construction which sandwiches a ferroelectric liquid crystal 2 between two electrode plates 1 and is provided with a driving electric power source 4, the voltage may be impressed between both electrodes. Thus, the transmission, reflecting, etc., of the infrared ray can be controlled. When the double refraction, or the optical activity of the infrared light is used, the element constructed to arrange a polarizer 3 at the front side or the front/rear side of the cell may be used. Actually, besides these electrode plates and the polarizer, the construction material or protective material is included in a case as a cell supporting body. In case of the transmitting type element, both electrode plates and in case of the reflecting type element, at least one side electrode plate is necessary to have permeability for the infrared light to control. In the transmission factor of the infrared light, the higher factor is desirable, and especially, it is not limited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信、各種センサー、エネルギ一応用等の
分野で使用される赤外域の光の透過、反射等のスイッチ
、変調等の制御を行う方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in the fields of optical communications, various sensors, energy applications, etc., and is used to control transmission, reflection, etc. switches, modulation, etc. of infrared light. Concerning how to do.

〔従来技術〕[Prior art]

近年、大量の情報の高速、高精度な伝送、処理、記録等
が極めて重要となり、そのためこの情報関連技術に光を
用いるオプトエレクトロニクスが著しく発達し始めてい
る。このような目的に利用される光として、特に光伝送
等に用いられるオプティカルファイバーの伝送特性、ま
た発光素子の効率、製作上の問題等から赤外域の光を利
用することが適切であるとされている。一方、ドアーの
開閉用のモニター、人工衛生からの赤外線写真の例を見
るまでもなく、人間、物体等の検知、分析のために赤外
線を用いる、いわゆる赤外線センシング技術が高度に発
展しつつある。即ち、赤外域でのオプトエレクトロニク
ス、赤外センシング、更には赤外線エネルギ一応用を始
めとする各種の赤外光応用分野に於て、赤外光の高速、
精度の高いスイッチ、変調等の制御が必要とされている
In recent years, high-speed, high-precision transmission, processing, recording, etc. of large amounts of information have become extremely important, and therefore optoelectronics that use light in this information-related technology has begun to develop significantly. As light used for such purposes, it is considered appropriate to use light in the infrared region due to the transmission characteristics of optical fibers used for light transmission, efficiency of light emitting elements, manufacturing issues, etc. ing. On the other hand, so-called infrared sensing technology, which uses infrared rays to detect and analyze people, objects, etc., is becoming highly developed, as is the case with infrared photography from door opening/closing monitors and artificial hygiene. In other words, high-speed,
Highly accurate control of switches, modulation, etc. is required.

従来赤外光の制御手段としては、主としてメカニカルシ
ャッター法、偏光子とボッケル素子を組み合せる等の各
種の方法が利用されているが、いずれも余り高速でない
、大がかりである、駆動電圧が極めて高い、高価である
、等の難点を有している。このため、高速かつ構造が単
純であり、駆動電圧が低く、安価な赤外光制御素子が求
められていた。
Conventionally, various methods have been used to control infrared light, such as a mechanical shutter method and a combination of a polarizer and a Bockel element, but these methods are not very fast, are large-scale, and require extremely high driving voltage. It has disadvantages such as being expensive. Therefore, there has been a demand for an infrared light control element that is fast, has a simple structure, has a low driving voltage, and is inexpensive.

一方、近年ネマチック液晶技術の大幅な進歩があり、光
学素子、デバイス等が画期的な変化を生じた事は周知の
所である。このような素子において可視域の光を利用す
る液晶としては、TN型、DSM型等がある。しかしこ
れらネマチック液晶の駆動原理は液晶分子の誘電率の異
方性に基くものであるため、高速化が難しかった。しか
るに最近になって、強誘電性を示すスメクチック液晶、
いわゆる強誘電性液晶が開発され、高速表示デバイスが
実現できるものとして非常に注目を集めている。しかし
、これ等はいずれも可視域の光を対象にして研究されて
きており、赤外域の光の制御に利用するという考え方は
全くなかった。
On the other hand, it is well known that there has been significant progress in nematic liquid crystal technology in recent years, resulting in revolutionary changes in optical elements, devices, and the like. Liquid crystals that utilize light in the visible range in such devices include TN type, DSM type, and the like. However, since the driving principle of these nematic liquid crystals is based on the anisotropy of the dielectric constant of liquid crystal molecules, it has been difficult to increase the speed. However, recently, smectic liquid crystals that exhibit ferroelectricity,
So-called ferroelectric liquid crystals have been developed and are attracting much attention as they can be used to realize high-speed display devices. However, all of these have been researched targeting light in the visible range, and there has been no idea of using them to control light in the infrared range.

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、赤外光の透過或いは反射を
制御する有効な方法を提供することである。
Therefore, it is an object of the present invention to provide an effective method for controlling the transmission or reflection of infrared light.

〔発明の構成〕[Structure of the invention]

本発明者は鋭意研究の結果、強誘電性液晶が赤外域の光
に対してもすぐれた動作特性を示すことを初めて見出し
た。本発明はこの強誘電性液晶のすぐれた動作特性を利
用して赤外光の透過或いは反射を制御しようとするもの
である。
As a result of intensive research, the present inventors discovered for the first time that ferroelectric liquid crystals exhibit excellent operating characteristics even with respect to light in the infrared region. The present invention attempts to control the transmission or reflection of infrared light by utilizing the excellent operating characteristics of this ferroelectric liquid crystal.

すなわち本発明は、強誘電性液晶を電極間に挟み、この
電極間に電圧を印加することにより赤外光の透過或いは
反射を制御する方法である。
That is, the present invention is a method for controlling transmission or reflection of infrared light by sandwiching a ferroelectric liquid crystal between electrodes and applying a voltage between the electrodes.

以下本発明を、添付図面を参照し、詳細に説明する。The present invention will be described in detail below with reference to the accompanying drawings.

本発明方法を実施するには、たとえば、第1図(a)に
示す様に、2枚の電極板1の間に強誘電性液晶2をはさ
み、駆動電源4を備えた極めて単純な構造のセルにおい
て、両電極間に電圧を印加すればよい。これにより赤外
光の透過、反射等を制御することができる。また第1図
ら)に示す様に、赤外光の複屈折或いは旋光性を利用す
る場合はセルの前或いは前後に偏光子3を配置した構造
の素子を使用すればよい。勿論実際には、これ等の電極
板、偏光子の、外、セル支持体としての構造材保護材を
含む場合もある。
In order to carry out the method of the present invention, for example, as shown in FIG. In the cell, a voltage may be applied between both electrodes. Thereby, transmission, reflection, etc. of infrared light can be controlled. Further, as shown in FIG. 1, etc., when utilizing the birefringence or optical rotation of infrared light, an element having a structure in which a polarizer 3 is disposed in front of or behind the cell may be used. Of course, in reality, in addition to these electrode plates and polarizers, a structural material protecting material as a cell support may also be included.

透過型の素子の場合は両電極板とも、反射型の場合は少
くとも一方の電極板が制御しようとする赤外光に対して
透過性であることが必要である。
In the case of a transmissive element, both electrode plates must be transparent to the infrared light to be controlled, and in the case of a reflective element, at least one electrode plate must be transparent to the infrared light to be controlled.

赤外光の透過率は、高い方が望ましいが特に制限はない
。比較的近赤外の光を制御する場合は、これ等の電極材
としてネサ(即ちI nz O!l 、S n 02等
の金属酸化物をコート或いは蒸着した)ガラス或いは石
英板、或いはプラスチック板でも良く、またこれ等の基
板に金属等の導電性材料を蒸着、塗付等何らかの手段で
コートしたものを使う事ができる。更に長波長域の赤外
光を制御する場合には、Si、Geを始めとする各種の
半導体等を直接使用する事ができる。このように本発明
において電極板は制御しようとする赤外光に対して透過
性を有しかつ導電性であれば、いかなる材料も使用する
ことができ、何等特定の材料に限定されるものでない。
The transmittance of infrared light is preferably higher, but is not particularly limited. When relatively near-infrared light is controlled, these electrode materials may be NESA (i.e., coated or vapor-deposited with metal oxides such as InzO!l, Sn02, etc.) glass, quartz plate, or plastic plate. However, it is also possible to use a substrate coated with a conductive material such as metal by some means such as vapor deposition or painting. Furthermore, when controlling infrared light in a long wavelength range, various semiconductors such as Si and Ge can be used directly. As described above, in the present invention, any material can be used for the electrode plate as long as it is transparent to the infrared light to be controlled and is conductive, and is not limited to any particular material. .

強誘電性液晶の動作モードとしては、比較的厚いセルを
利用し強誘電性液晶に特有なヘリカル構造を解き、一様
配向させた場合の赤外光透過量の変化を利用するもの、
或いはTSM型(例えば吉野他、[レーザー研究J 1
2 (1984)30)と称する電界印加により一様配
向で高透過状態になっている素子の電界を極性反転させ
、自発分極の反転による新しい逆方向の一様配向状態に
落ちつくまでの激しい分子運動に伴う光散乱を利用する
もの、更には数μm以下の薄セルで壁面に強制された配
向が電界印加により逆転した場合に生ずる複屈折の変化
を利用し偏光子と組み合せる事により透過量を制御する
もの等があるが、本発明は強誘電性液晶セルと赤外光を
組み合せる所に特徴があるのであり、何ら特定の動作モ
ードに限定されるものでない。
The operating modes of ferroelectric liquid crystals include those that utilize relatively thick cells, solve the helical structure unique to ferroelectric liquid crystals, and utilize changes in the amount of infrared light transmitted when uniformly aligned.
Or TSM type (for example, Yoshino et al., [Laser Research J 1
2 (1984) 30), the polarity of the electric field in a device that is uniformly oriented and in a highly transparent state is reversed by applying an electric field, and intense molecular movement occurs until the device settles into a new uniformly oriented state in the opposite direction due to the reversal of spontaneous polarization. In addition, in a thin cell of several μm or less, the amount of transmission can be increased by using the change in birefringence that occurs when the orientation forced on the wall surface is reversed by applying an electric field, and by combining it with a polarizer. However, the present invention is characterized by the combination of a ferroelectric liquid crystal cell and infrared light, and is not limited to any particular operation mode.

本発明に使用される強誘電性液晶は、赤外域に透過性を
有するものであればよく、何ら特定の分子構造に限定さ
れるものでない。すなわち、これまでに開発されている
シッフベース系、ビフェ;ル系、エステル系を始め各種
の強誘電性液晶(例えば吉野:機能材料5 (1985
)16参照)を使用できる。本発明においては、赤外光
透過性のいかなる強誘電性液晶も単体で、或いは2種類
、または3種類以上の混合物として、更に不純物等を添
加した材料、また非強誘電性材料の混合により強誘電性
を示す材料等もすべて利用可能である。
The ferroelectric liquid crystal used in the present invention is not limited to any particular molecular structure as long as it is transparent in the infrared region. In other words, various ferroelectric liquid crystals including Schiff-based, bifer-based, and ester-based liquid crystals that have been developed so far (for example, Yoshino: Functional Materials 5 (1985)
)16) can be used. In the present invention, any ferroelectric liquid crystal that transmits infrared light can be made stronger by itself, or as a mixture of two or more types, by adding impurities, or by mixing non-ferroelectric materials. All materials exhibiting dielectric properties can also be used.

例えば第2図にP−デシルオキシベンジリデン−P′−
アミノ−2−メチルブチルシンナメート(DOBAMB
C) 、第3図にビフェニル系混合強誘電性液晶の赤外
透過スペクトルの例を示すが、かなり広い赤外波長範囲
で使用可能である事がわかる。本発明に使用可能な強誘
電性液晶の具体例を次に示す。
For example, in Figure 2, P-decyloxybenzylidene-P'-
Amino-2-methylbutylcinnamate (DOBAMB)
C) Figure 3 shows an example of the infrared transmission spectrum of a biphenyl-based mixed ferroelectric liquid crystal, and it can be seen that it can be used in a fairly wide infrared wavelength range. Specific examples of ferroelectric liquid crystals that can be used in the present invention are shown below.

しかし本発明に用いる液晶は何らこれらの具体例に限定
されるものではない。
However, the liquid crystal used in the present invention is not limited to these specific examples.

==− こj                   ==また
強誘電性液晶の駆動電圧の印加方法としては何ら特定の
方法に限定されるものでない。
==- This j ==The method of applying the driving voltage to the ferroelectric liquid crystal is not limited to any particular method.

〔発明の効果〕〔Effect of the invention〕

本発明による強誘電性液晶を用いた赤外光制御方法によ
れば、赤外域の光のスイッチ、変調等の制i動作を極め
て高速に行う事ができるので、赤外オプトエレクトロニ
クス、赤外センシング、赤外エネルギ一応用分野等、各
種の赤外光応用分野に利用できる。
According to the infrared light control method using ferroelectric liquid crystal according to the present invention, control operations such as switching and modulation of light in the infrared region can be performed at extremely high speed. It can be used in various infrared light application fields, such as infrared energy application fields.

また本発明を実施するのに使用する素子は従来のものに
比べて高速化、小型化、コンパクト化、高信頼化、低電
圧駆動化が可能となり、しかも構造が簡単であり安価と
なる。更にこれまでの低速度の素子では応用できなかっ
た新しい分野に応用でき、新しい使い方、たとえば明所
のみならず暗所、あるいは夜間での応用も可能となる。
Furthermore, the elements used to carry out the present invention can be faster, smaller, more compact, more reliable, and driven at lower voltages than conventional elements, and have a simpler structure and lower cost. Furthermore, it can be applied to new fields that could not be applied to conventional low-speed devices, and can be used in new ways, such as in the dark as well as in bright places, or at night.

このように本発明はこれらの赤外光応用分野に大きなイ
ンパクトを与へるのは必至である。
As described above, it is inevitable that the present invention will have a great impact on these infrared light application fields.

〔実施例〕〔Example〕

以下本発明の実施例を示すが、本発明はこれ等の実施例
に限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these Examples.

実施例1 石英板表面にlTl2O3をコートした透明表面導電性
石英板二枚を対向させ、厚さ100μmのテフロンシー
トを石英板周辺部にスペーサーとして用い、このセルの
中に強誘電性液晶DOBAMBCを入れ、厚さ100μ
mの素子を作成した。
Example 1 Two transparent conductive quartz plates coated with lTl2O3 on the surface of the quartz plates were placed facing each other, a Teflon sheet with a thickness of 100 μm was used as a spacer around the quartz plates, and a ferroelectric liquid crystal DOBAMBC was placed in this cell. Insert, thickness 100μ
m elements were created.

導電性石英板の表面はあらかじめラビング処理を行った
。この状態では素子内での強誘電性液晶はヘリカル構造
をとっているので光散乱が生じ透過光量は極めて少い。
The surface of the conductive quartz plate was subjected to a rubbing treatment in advance. In this state, the ferroelectric liquid crystal within the element has a helical structure, so light scatters and the amount of transmitted light is extremely small.

これに直流電圧を印加すると、しきい値電圧50V以上
の電圧印加で透過光量が大幅に上昇した。これは一様配
向に変って散乱が減少したためである。第4図は印加電
圧と各種波長の赤外線の透過光のコントラストとの関係
を示す。コントラストは電圧印加時の透過赤外線光量■
と電圧印加しない場合の透過赤外線光量!0の比I/I
oと定義されている。
When a DC voltage was applied to this, the amount of transmitted light increased significantly when a voltage of 50 V or higher was applied. This is because scattering is reduced due to the change to uniform orientation. FIG. 4 shows the relationship between the applied voltage and the contrast of transmitted infrared light of various wavelengths. Contrast is the amount of transmitted infrared light when voltage is applied■
and the amount of transmitted infrared light when no voltage is applied! 0 ratio I/I
It is defined as o.

即ち赤外域で大きなコントラストで透過光量制御が可能
である事がわかる。
That is, it can be seen that it is possible to control the amount of transmitted light with a large contrast in the infrared region.

ステップ状のパルス電圧印加時の透過赤外線光量変化の
立上り時間、即ち応答時間は100V印加の時2m5e
cであった。
The rise time of the change in the amount of transmitted infrared light when a step-like pulse voltage is applied, that is, the response time is 2m5e when 100V is applied.
It was c.

実施例2 実施例1と同一のセルにビフェニル系混合強誘電性液晶
(赤外吸収スペトルが第3図であたえられる混合液晶)
を挿入し素子とした。また駆動方法も実施例1と同様な
方式を採用し1〜3μmの赤外光で充分なコントラスト
を得る事ができた。
Example 2 A biphenyl-based mixed ferroelectric liquid crystal (mixed liquid crystal whose infrared absorption spectrum is given in FIG. 3) was placed in the same cell as in Example 1.
was inserted to form an element. Further, the same driving method as in Example 1 was adopted, and sufficient contrast could be obtained with infrared light of 1 to 3 μm.

1.5μmの波長ではコントラストは7であった。At a wavelength of 1.5 μm, the contrast was 7.

実施例3 実施例1と同様のセルで、但しセル厚のみを30μmと
してかつDOBAMBCを用い実施例1と同様の駆動を
行った。赤外域2.5μmまでの透過光制御が可能であ
った。しきい値電圧は低下したが、同時にコントラスト
も低下した。30V印加時のコントラストは1.5μm
の波長で4であった。
Example 3 The same cell as in Example 1 was used, except that the cell thickness was changed to 30 μm, and the same driving as in Example 1 was performed using DOBAMBC. It was possible to control transmitted light up to 2.5 μm in the infrared region. Although the threshold voltage decreased, the contrast also decreased at the same time. Contrast when applying 30V is 1.5μm
It was 4 at the wavelength of .

実施例4 実施例1と同一のセルにDOBAMBCを挿入し厚さ1
00μmの素子を作成した。この素子にあらかじめ直流
電圧■を印加しておくと赤外域の光に対して透明状態が
得られた。この印加電圧の極性を逆転し一■に切りかえ
ると、矢張り高透過状態であるが、極性切り換えの瞬間
には強い散乱が生じ透過赤外線強度が低下した。
Example 4 DOBAMBC was inserted into the same cell as Example 1 and the thickness was 1
A device with a diameter of 0.00 μm was fabricated. By applying a direct current voltage (1) to this element in advance, a state transparent to infrared light was obtained. When the polarity of this applied voltage was reversed and switched to 1, a high transmission state was obtained, but at the moment of polarity switching, strong scattering occurred and the intensity of transmitted infrared rays decreased.

第5図は印加電圧■(極性反転後は一■)と光散乱時の
コントラストの関係を各種赤外線波長について測定した
結果を示すグラフである。ここではコントラストは直流
電圧印加時の透明状態での赤外線透過量を極性反転時の
散乱時の透過量で除したものでしる。矢張り、この素子
では赤外線の制御が充分できる事がわかる。
FIG. 5 is a graph showing the results of measuring the relationship between the applied voltage (1) (12 after polarity reversal) and the contrast during light scattering for various infrared wavelengths. Here, the contrast is defined as the amount of infrared transmission in the transparent state when a DC voltage is applied divided by the amount of transmission in the scattering state when the polarity is reversed. As can be seen, this element can sufficiently control infrared rays.

透過赤外線の応答時間、即ち透過量の変化する時間は極
性反転電圧■(→−■)の上昇と共に急激に短くなるV
=100Vの場合、立上り時間は約150μsecであ
った。
The response time of transmitted infrared rays, that is, the time for the amount of transmission to change, decreases rapidly as the polarity reversal voltage (→-■) increases.
= 100V, the rise time was approximately 150 μsec.

実施例5 実施例4と同一のセルを用いビフェニル系混合強誘電性
液晶を挿入して素子を構成し、実施例4と同様の駆動方
法で赤外線透過量の制御ができる事が確認された。■(
→−■)が60Vの場合立上り時間は約600μsec
であった。コントラストはこの時1.5μmの波長で8
であった。
Example 5 Using the same cell as in Example 4, a biphenyl-based mixed ferroelectric liquid crystal was inserted to construct an element, and it was confirmed that the amount of infrared transmission could be controlled using the same driving method as in Example 4. ■(
→-■) is 60V, the rise time is approximately 600μsec
Met. At this time, the contrast is 8 at a wavelength of 1.5 μm.
Met.

実施例6 実施例1と同様の表面導電性石英板の表面にポリイミド
をコーティングしラビング処理を行った後、厚す1.8
μmのセルを作成した。このセル間にDOBAMBCを
挿入し、更にセルの前、後に偏光子をおき第1図(6)
の型の素子を作成した。2枚の偏光子の偏光面は直交す
るように設定した。
Example 6 The surface of a surface conductive quartz plate similar to Example 1 was coated with polyimide and subjected to rubbing treatment, and then the thickness was 1.8
A μm cell was created. Insert DOBAMBC between these cells, and then place polarizers in front and behind the cells as shown in Figure 1 (6).
An element of the type was created. The polarization planes of the two polarizers were set to be orthogonal.

入射光側の偏光子を通った光の偏光面がガラスのラビン
グ方向と約25°となるようにした。初め直流電圧を印
加状態では透過光量は極めて微小であったが逆極性の電
圧印加により透過光量は上昇した。8000A〜2.0
μmの範囲の波長を有する赤外線でこの透過率の制御が
可能であった。
The plane of polarization of the light that passed through the polarizer on the incident light side was set to be approximately 25° with respect to the rubbing direction of the glass. Initially, when a DC voltage was applied, the amount of transmitted light was extremely small, but when a voltage of opposite polarity was applied, the amount of transmitted light increased. 8000A~2.0
Control of this transmittance was possible with infrared radiation having wavelengths in the μm range.

コントラストは1μmの赤外線で7となった。この素子
のしきい値電圧は極めて低く約5■であったが、電圧上
昇と共にスイッチ速度は上昇し、30Vの電圧によりス
イッチ速度80μsec となった。即ち、この素子は
高速、赤外光透過制御素子として機能する事が明らかと
なった。
The contrast was 7 for 1 μm infrared light. Although the threshold voltage of this device was extremely low, about 5 .mu.sec, the switching speed increased as the voltage increased, and at a voltage of 30 V, the switching speed became 80 .mu.sec. That is, it has become clear that this device functions as a high-speed, infrared light transmission control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を実施するのに使用可能な、強誘
電性液晶を用いた赤外線制御素子の一具体例の基本構造
を示す図面である。 (a)偏光子を用いない場合、ら)偏光子を用いる場合
1:赤外線に対して透明な電極(反射型で使う場合は一
方のみ透明であれば良い)。 2:強誘電性液晶 3:偏光子 4:駆動電源 第2図は、DOBAMBCの赤外吸収スペクトル、 第3図は、ビフェニル系混合強誘電性液晶の赤外吸収ス
ペクトル、 第4図は、電圧によりヘリカル構造を解く型のDOBA
MBCを用いた素子の各種赤外波長での印加電圧とコン
トラストの関係を示すグラフ、第5図は、TSM型(過
渡散乱型)を用いた素子の各種赤外波長での印加電圧と
コントラストの関係を示すグラフである。 1m1 (a) 第2図 Ω先会  (am−〇 第3図 課表cμm) ;1&物 (cm−リ 第4図 卯IIo曝圧(V) 第5図 0       50        too    
   150即加@ヱ(V)
FIG. 1 is a drawing showing the basic structure of a specific example of an infrared control element using ferroelectric liquid crystal that can be used to implement the method of the present invention. (a) When a polarizer is not used; (a) When a polarizer is used 1: An electrode that is transparent to infrared rays (if a reflective type is used, only one side needs to be transparent). 2: Ferroelectric liquid crystal 3: Polarizer 4: Drive power supply Figure 2 shows the infrared absorption spectrum of DOBAMBC, Figure 3 shows the infrared absorption spectrum of biphenyl mixed ferroelectric liquid crystal, and Figure 4 shows the voltage. A type of DOBA that solves the helical structure by
Figure 5 is a graph showing the relationship between applied voltage and contrast at various infrared wavelengths for an element using MBC, and Figure 5 shows the relationship between applied voltage and contrast at various infrared wavelengths for an element using TSM type (transient scattering type). It is a graph showing a relationship. 1m1 (a) Figure 2 Ω previous meeting (am-〇 Figure 3 section table cμm); 1&thing (cm-Re Figure 4 UIIo pressure (V) Figure 5 0 50 too
150 immediate addition @ヱ(V)

Claims (5)

【特許請求の範囲】[Claims] (1)強誘電性液晶を電極間に挟み、この電極間に電圧
を印加する事により赤外光の透過或いは反射を制御する
方法。
(1) A method of controlling the transmission or reflection of infrared light by sandwiching a ferroelectric liquid crystal between electrodes and applying a voltage between the electrodes.
(2)赤外光の透過或いは反射が印加電圧の極性反転に
伴う激しい分子運動による過渡光散乱により制御される
事を特徴とする特許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the transmission or reflection of infrared light is controlled by transient light scattering due to intense molecular motion accompanying polarity reversal of applied voltage.
(3)赤外光の透過或いは反射が印加電圧の逆転による
分子配向の変化に伴う複屈折の変化により制御される事
を特徴とする特許請求の範囲第(1)項記載の方法。
(3) The method according to claim (1), wherein the transmission or reflection of infrared light is controlled by a change in birefringence accompanying a change in molecular orientation due to a reversal of applied voltage.
(4)赤外光の透過或いは反射が、電圧印加による強誘
電性液晶のヘリカル構造消失に伴う光散乱の変化により
制御される事を特徴とする特許請求の範囲第(1)項記
載の方法。
(4) The method according to claim (1), wherein the transmission or reflection of infrared light is controlled by a change in light scattering due to the disappearance of the helical structure of the ferroelectric liquid crystal due to the application of a voltage. .
(5)強誘電性液晶が、単体強誘電性液晶、混合強誘電
性液晶、または不純物を含む液晶である、特許請求の範
囲第(1)項〜第(4)項のいずれか1項記載の方法。
(5) Claims 1 to 4, wherein the ferroelectric liquid crystal is a single ferroelectric liquid crystal, a mixed ferroelectric liquid crystal, or a liquid crystal containing impurities. the method of.
JP60103154A 1985-05-15 1985-05-15 Infrared light controlling method using ferroelectric liquid crystal Pending JPS61260227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103154A JPS61260227A (en) 1985-05-15 1985-05-15 Infrared light controlling method using ferroelectric liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103154A JPS61260227A (en) 1985-05-15 1985-05-15 Infrared light controlling method using ferroelectric liquid crystal

Publications (1)

Publication Number Publication Date
JPS61260227A true JPS61260227A (en) 1986-11-18

Family

ID=14346584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103154A Pending JPS61260227A (en) 1985-05-15 1985-05-15 Infrared light controlling method using ferroelectric liquid crystal

Country Status (1)

Country Link
JP (1) JPS61260227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661583A2 (en) * 1993-12-28 1995-07-05 Shimadzu Corporation Light modulator using a liquid crystal thick cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661583A2 (en) * 1993-12-28 1995-07-05 Shimadzu Corporation Light modulator using a liquid crystal thick cell
EP0661583A3 (en) * 1993-12-28 1996-07-24 Shimadzu Corp Light modulator using a liquid crystal thick cell.
US5670978A (en) * 1993-12-28 1997-09-23 Shimadzu Corporation Light modulator using an asymetrically-driven ferroelectric liquid crystal thick cell

Similar Documents

Publication Publication Date Title
US4367924A (en) Chiral smectic C or H liquid crystal electro-optical device
EP0032362B1 (en) Chiral smectic liquid crystal electro-optical device and process of making the same
Fünfschilling et al. Fast responding and highly multiplexible distorted helix ferroelectric liquid‐crystal displays
KR930003252B1 (en) Lcd memory device and manufacturing method
CA1284373C (en) Electro-optic modulator
EP0091661B1 (en) Liquid crystal optical modulation element
Lee et al. An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter
SE509569C2 (en) Liquid crystal shutter construction
Oh et al. A cholesteric liquid crystal smart window with a low operating voltage
Lan et al. Bistable smart window based on ionic liquid doped cholesteric liquid crystal
Cheng et al. Electrically switchable and permanently stable light scattering modes by dynamic fingerprint chiral textures
WO1987006021A1 (en) Smectic liquid crystal devices
US20020084442A1 (en) Liquid crystal mixture and liquid crystal cell for LCDs and use of a dye with a dipole for a liquid crystal mixture
Yoshino et al. Transient light scattering by domain switching in ferroelectric liquid crystal and its application as fast opto-electronics device
Oka et al. Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching
JPH06105332B2 (en) Ferroelectric liquid crystal optical shutter
Li et al. 43‐1: Tri‐stable Cholesteric Liquid Crystal Smart Window
JPS61260227A (en) Infrared light controlling method using ferroelectric liquid crystal
Sussman Electrooptic liquid crystal devices: principles and applications
Zyryanov et al. Light modulation by a planar-oriented film of a polymer-encapsulated ferroelectric liquid crystal
JPS62135808A (en) Method for modulating infrared rays using liquid crystal
Karppinen et al. Electrically controlled optical attenuators and switches with ferroelectric liquid crystals
JP3055275B2 (en) Liquid crystal display device
RU2273040C2 (en) Bi-stable liquid-crystalline element and method for controlling the same
JPH03192324A (en) Polymer dispersion type liquid crystal display device