JPS61260108A - Three-dimensional measuring method - Google Patents

Three-dimensional measuring method

Info

Publication number
JPS61260108A
JPS61260108A JP10148385A JP10148385A JPS61260108A JP S61260108 A JPS61260108 A JP S61260108A JP 10148385 A JP10148385 A JP 10148385A JP 10148385 A JP10148385 A JP 10148385A JP S61260108 A JPS61260108 A JP S61260108A
Authority
JP
Japan
Prior art keywords
sine wave
laser
striped pattern
signal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10148385A
Other languages
Japanese (ja)
Other versions
JPH0473523B2 (en
Inventor
Shigeru Kawai
滋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10148385A priority Critical patent/JPS61260108A/en
Publication of JPS61260108A publication Critical patent/JPS61260108A/en
Publication of JPH0473523B2 publication Critical patent/JPH0473523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a method capable of easy automatic measurement and having high contrast by scanning an object to be measured with the aid of a sine wave mode intensity modulated light beam having a constant modulation frequency and creating a striped pattern on the object. CONSTITUTION:The light oscillated from a semiconductor laser 1 scans the object 6 through the hologram lens 5 of a holographic laser scanner 4. At this time an encoder 12 fetches the rotational frequency signal of the scanner into an arithmetic controller 11. Receiving an encoder output synchronizing signal, the controller 11 transmits a control signal so as to output the sine wave having the decided frequency to a waveform forming device 10. After the output signal of the device 10 is converted into a sufficient current to drive the laser 1 by an amplifier 9, the laser 1 is modulated to a sine wave. Then a television camera 7 picks up the image of a sine wave-like fringe deformed on the surface of the object. The striped pattern corresponding to a signal generated by the device 10 is previously inputted to an image processor 8, is overlapped with the image picked up by the camera 7, thereby creating a moire fringe.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、特にモアレトポグラフィに代表されるよう
な、縞を利用した3次元計測に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to three-dimensional measurement using stripes, particularly as typified by moire topography.

(従来技術とその問題点) モアレトポグラフィは、物理面上に縞模様を投影し、物
体の形状により変型した縞模様と基準の縞模様とを重ね
合わせ、その差周波数として生じるモアレ縞を解析する
ことにより、物体の形状を測定する方法である。詳しく
は、例えば、雑誌「アプライド・オプティックスJ (
Applied 0ptics)。
(Prior art and its problems) Moiré topography projects a striped pattern onto a physical surface, superimposes the striped pattern deformed by the shape of the object and the standard striped pattern, and analyzes the moiré fringes that occur as the difference frequency. This is a method of measuring the shape of an object. For more information, see the magazine ``Applied Optics J (
Applied 0ptics).

9巻、 1970年、 1467〜1472ページに記
載の論文「モアレ・トポグラフィ(Moir! Top
ography月に述べられている。この方法には、第
5図に示すような物体23の直前に置いた格子22を点
光源21によって照射する。
9, 1970, pages 1467-1472, the paper “Moir! Top
stated in the month of ography. In this method, a point light source 21 illuminates a grating 22 placed directly in front of an object 23 as shown in FIG.

格子照射型と、第6図に示すように光学系の中に設置し
た格子24の像を物体面上に結像今せる格子投影型があ
る。両方法を比較した場合、操作性において、後者のほ
うに柔軟性があり、応用範囲が広い。格子投影型モアレ
トポグラフィについては、例えば雑誌「アプライド・オ
プティックス(AppliedOptics)22巻、
 1983年、 850〜855ページに記載の論文[
自動3次元トポグラフィにおける移動格子法を用いた投
影法モアレ(Projection Mo1r6 wi
th movinggrantings for an
tomated 3−D topography) J
に詳しく述べられている。一般に、モアレ計測では高次
のモアレ縞が生じるために縞を自動解析する際には、所
望のモアレ縞と分離することが困難であった。この高次
のモアレ縞を除去するために、観測中に格子を移動させ
高次のモアレ縞を平均化する移動格子法が開発された。
There are a grating irradiation type and a grating projection type in which an image of a grating 24 installed in an optical system is formed on the object plane as shown in FIG. When comparing both methods, the latter is more flexible and has a wider range of applications in terms of operability. Regarding grid projection type moiré topography, for example, see the magazine "Applied Optics, Vol. 22,
1983, paper on pages 850-855 [
Projection Moire using moving grid method in automatic 3D topography (Projection Mo1r6 wi
th moving grants for an
tomated 3-D topography) J
is described in detail. In general, moire measurement produces high-order moire fringes, so when automatically analyzing the fringes, it is difficult to separate them from desired moire fringes. In order to remove these high-order moiré fringes, a moving grid method was developed that averages out the high-order moiré fringes by moving the grating during observation.

詳しくは例えば前記雑誌(アプライド・オプティ・ソシ
ス(Applied 0ptics) J9巻、 19
70年、 1467〜1472ページに記載の論文「モ
アレトポグラフィ(Moir6Topography)
 Jに述べられている。
For details, see the above magazine (Applied Optics), Volume J9, 19.
1467-1472, the paper “Moir6Topography”
It is stated in J.

(発明が解決しようとする問題点) 従来の移動格子法では格子を移動させる機械的な動作が
必要であるために自動計測が難しく高次のモアレ縞を平
均化するために、所望のモアレ縞のコントラストが低く
なる欠点があった。
(Problems to be Solved by the Invention) The conventional moving grating method requires mechanical movement to move the grating, making automatic measurement difficult. The disadvantage was that the contrast was low.

(発明の目的) この発明の目的は、格子を移動させることなく高次のモ
アレ縞を消去し、自動計測が容易で、かつ所望のモアレ
縞としてコントラストの高いものの得られる3次元計測
方法を提供することにある。
(Objective of the Invention) The object of the present invention is to provide a three-dimensional measurement method that eliminates high-order moiré fringes without moving the grating, facilitates automatic measurement, and obtains desired moiré fringes with high contrast. It's about doing.

(問題を解決するための手段) この発明は、変調周波数が一定の正弦波状の強度変調光
で被測定物体上を・走査して、物体面上に縞模様を生成
し、物体の形状により変形した縞模様と前記強度変調光
と同一の周波数の正弦波状の基準縞模様と重ね合わせる
ことを特徴とする3次元゛計測方法である。
(Means for solving the problem) This invention scans an object to be measured with sinusoidal intensity modulated light having a constant modulation frequency, generates a striped pattern on the object surface, and deforms it depending on the shape of the object. This three-dimensional measurement method is characterized in that the striped pattern is superimposed on a reference striped pattern in the form of a sine wave having the same frequency as the intensity modulated light.

(作用・原理) ホログラフィックレーザスキャナに代表されるホログラ
フィックレーザビーム走査装置においては、いくつかの
ホログラムをディスクの円周上に配置固定し、それを高
速回転することによりレーザビームを走査する。ホログ
ラフィックレーザスキャナの前置光学系において、走査
ビームが物体面上で走査方向に収束、副走査方向に発散
するように調整すれば、副走査方向のビーム幅により、
走査長として決められ長さを一面に走査する。この時、
レーザを変調することにより走査方向に縞模様を作製で
きる。従来用いられている振幅透過率が0または1の矩
形状の格子を考える。、次のような周期関数f(x)を
定義する。
(Operation/Principle) In a holographic laser beam scanning device such as a holographic laser scanner, several holograms are arranged and fixed on the circumference of a disk, and the laser beam is scanned by rotating the holograms at high speed. If the front optical system of a holographic laser scanner is adjusted so that the scanning beam converges in the scanning direction on the object plane and diverges in the sub-scanning direction, the beam width in the sub-scanning direction
The length determined as the scan length is scanned over the entire surface. At this time,
By modulating the laser, a striped pattern can be created in the scanning direction. Consider a conventionally used rectangular grid with amplitude transmittance of 0 or 1. , define a periodic function f(x) as follows.

以下余白 (1)式をフーリエ級数に展開すると となる。(2)式により、白黒比に1:1の単純矩形状
格子の振幅透過関数は である。(3)式で、P、■はそれぞれX方向、X方向
の空間周波数を表わす。(3)式をフーリエ変換すると
Xtxp(CxE、+y11))dxdy=L会δ(+
y)”A(δ(X−λfp、y−λfv)十δ(2+λ
h、y+λfV司一−(δ(ニー3入fp、y−3人f
v)+8cx+3λ/)1.31 +3λ/Y))n ・・+n2       ・・・(4)となる。ただし
、λは波長、fはフーリエ変換レンズの焦点距離を表わ
す。(4)式の第2項は±1次のモアレ縞を表わし、第
3項以降は、不要な高次のモアレ縞を表わす。
Below, the formula (1) is expanded into a Fourier series. According to equation (2), the amplitude transmission function of a simple rectangular grid with a black-to-white ratio of 1:1 is. In equation (3), P and ■ represent spatial frequencies in the X direction and the X direction, respectively. When formula (3) is Fourier transformed, Xtxp (CxE, +y11)) dxdy = L meeting δ (+
y)”A(δ(X-λfp, y-λfv) ten δ(2+λ
h, y + λf
v)+8cx+3λ/)1.31 +3λ/Y))n...+n2...(4). However, λ represents the wavelength, and f represents the focal length of the Fourier transform lens. The second term in equation (4) represents ±1-order moire fringes, and the third and subsequent terms represent unnecessary higher-order moire fringes.

一方、正弦波状の単純格子の振幅透過関数は、である。On the other hand, the amplitude transmission function of a sinusoidal simple grating is.

(5)式をフーリエ変換すると(6)式は(4)式と比
較して、高次のモアレ縞の生じないことがわかる。以上
の議論は一般の格子についても成立する。従って、レー
ザを正弦波状に変調して物体に投影することにより、高
次のモアレ縞の生じない計測を実現できる。
When formula (5) is Fourier transformed, it can be seen that formula (6) does not produce higher-order moiré fringes compared to formula (4). The above discussion also holds true for general grids. Therefore, by modulating the laser into a sinusoidal waveform and projecting it onto the object, measurement without high-order moiré fringes can be achieved.

(実施例) 第1図は、半導体レーザ1とホログラフィックレーザス
キャナ4によって構成されるモアレトポグラフィに、こ
の発明の方法を適用した一実施例である。半導体レーザ
1から発振された光は、コリメーティングレンズ2によ
ってコリメートされた後、円筒レンズ3により楕円ビー
ムに変換された後、ホログラフィックレーザスキャナ4
のホログラムレンズ5によって、物体6を走査する。こ
の時、第2図に示すタイミングチャートのようにエンコ
ーダ12によって、スキャナの回転周期信号(a)をG
P−IBインタフェイスを有するマイコンなどの演算制
御装置11に取り入れる。演算制御装置11はエンコー
ダ出力同期信号(a)を受けて、例えば、GP−IBイ
ンタフェイスを有するファンクションジェネレータなど
の波形形成装置10に対して決められた周波数の正弦波
(e)を出力するように制御信号(b)を送る。決めら
れた周波数は、スキャナの回転速度をWrpm、スキャ
ナに配置されているレンズの数をn、物体面に走査した
い縞の数をtとしたとき、(n+w)/60Hzとなる
。波形形成装置10の出力信号(C)は、増幅器9によ
り半導体レーザ1を駆動するのに十分な電流(d)にさ
れた後レーザを正弦波状に変調する。波形形成装置の出
力例を第3図に示す。物体面で変型した正弦波状の縞を
光の蓄積できるTV右カメラ撮像する。複数のフレーム
メモリとGP−IB不シンタフェイス有し、画像間の積
算、加減算機能を有する多階調の画像処理装置8に、あ
らかじめ波形形成装置10によって発生した信号に対応
する縞模様を演算制御装置11より入力しておき、TV
カメラ7によって撮像した画像と重ね合わせることによ
り、モアレ縞を発生させる。画像処理装置8にあらかじ
め入力しておく縞模様の例を第4図に示す。画像の四則
演算とは画像の階調をデジタル表現し、ドツト毎に階調
の演算をおこなうことである。縞に中間調が存在するた
めモアレ縞にも中間調があり、画像処理装置として、多
階調の演算のできるものが必要である。この画像処理装
置で、作用・原理の項で説明した演算を行いモアレ縞を
生成する。
(Example) FIG. 1 shows an example in which the method of the present invention is applied to moiré topography configured by a semiconductor laser 1 and a holographic laser scanner 4. The light emitted from the semiconductor laser 1 is collimated by a collimating lens 2, converted into an elliptical beam by a cylindrical lens 3, and then sent to a holographic laser scanner 4.
An object 6 is scanned by a hologram lens 5. At this time, as shown in the timing chart shown in FIG. 2, the encoder 12 converts the rotation period signal (a) of the scanner into
It is incorporated into an arithmetic and control device 11 such as a microcomputer having a P-IB interface. The arithmetic and control device 11 receives the encoder output synchronization signal (a) and outputs a sine wave (e) of a predetermined frequency to a waveform forming device 10 such as a function generator having a GP-IB interface. A control signal (b) is sent to. The determined frequency is (n+w)/60 Hz, where Wrpm is the rotational speed of the scanner, n is the number of lenses arranged in the scanner, and t is the number of stripes to be scanned on the object plane. The output signal (C) of the waveform forming device 10 is made into a current (d) sufficient to drive the semiconductor laser 1 by the amplifier 9, and then modulates the laser into a sinusoidal waveform. An example of the output of the waveform forming device is shown in FIG. The TV right camera, which can accumulate light, images the sinusoidal stripes deformed on the object plane. A multi-gradation image processing device 8, which has multiple frame memories and a GP-IB unsintered face, and has inter-image integration, addition and subtraction functions, calculates and controls the striped pattern corresponding to the signal generated in advance by the waveform forming device 10. Input from device 11, and then
Moiré fringes are generated by superimposing the image with the image captured by the camera 7. FIG. 4 shows an example of a striped pattern that is input in advance to the image processing device 8. The four arithmetic operations for images are to digitally represent the gradation of an image and perform gradation calculations for each dot. Since there are intermediate tones in the stripes, there are also intermediate tones in the moiré fringes, and an image processing device that can perform multi-gradation calculations is required. This image processing device performs the calculations described in the section on operation and principle to generate moiré fringes.

(発明の効果) 以上詳述したように、この発明の3次元計測方法によれ
ば、従来の格子移動法のように、格子を移動させること
なく、高次のモアレ縞として、コントラストの高いもの
が得られる。
(Effects of the Invention) As detailed above, according to the three-dimensional measurement method of the present invention, high-contrast images can be obtained as high-order moire fringes without moving the grating, unlike the conventional grating movement method. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す図、第2図はシス
テムの信号のタイミングチャートを示す図、第3図は実
施例における半導体レーザに注入する電流波形を示す図
、第4図は実施例において、画像処理装置に記憶させる
基準縞の濃度分布の例を表わす図、第5図は格子照射型
モアレトポグラフィの従来例を示す図、第6図は格子投
影型モアレトポグラフィの従来例を示す図である。 図において 1・・・半導体レーザ 2・・・コリメーティングレンズ 3・・・円筒レンズ
4・・・ホログラフィックレーザスキャナ5・・・ホロ
グラムレンズ 6・・・物体7・・・TV右カメラ  
  8・・・画像処理装置9・・・増幅器      
10・・・波形形成装置11・・・演算制御装置   
12・・・エンコーダ21・・・光源       2
2・・・格子23・・・物体       24・・・
格子工業技1.;τ院長。 亭  2  図 亭 3 図 位  I 茎 4  a !n i ギ   5   図 季   乙   図 χ
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a timing chart of system signals, FIG. 3 is a diagram showing a current waveform injected into a semiconductor laser in the embodiment, and FIG. In the example, FIG. 5 is a diagram showing an example of the density distribution of the reference stripes stored in the image processing device, FIG. 5 is a diagram showing a conventional example of grating irradiation type moire topography, and FIG. 6 is a diagram showing a conventional example of grating projection type moire topography. FIG. In the figure, 1... Semiconductor laser 2... Collimating lens 3... Cylindrical lens 4... Holographic laser scanner 5... Hologram lens 6... Object 7... TV right camera
8... Image processing device 9... Amplifier
10... Waveform forming device 11... Arithmetic control device
12...Encoder 21...Light source 2
2... Lattice 23... Object 24...
Lattice industrial technology 1. ;Director τ. Pavilion 2 Pavilion 3 Pavilion I Stem 4 a! n i gi 5 picture season otsu picture χ

Claims (1)

【特許請求の範囲】[Claims] 変調周波数が一定の正弦波状の強度変調光で被測定物体
上を走査して、物体面上に縞模様を生成し、物体の形状
により変形した縞模様と前記強度変調光と同一の周波数
の正弦波状の基準縞模様とを重ね合わせることを特徴と
する3次元計測方法。
A striped pattern is generated on the object surface by scanning the object to be measured with a sinusoidal intensity modulated light having a constant modulation frequency, and a striped pattern deformed depending on the shape of the object and a sine wave having the same frequency as the intensity modulated light are generated. A three-dimensional measurement method characterized by overlapping a wavy reference striped pattern.
JP10148385A 1985-05-15 1985-05-15 Three-dimensional measuring method Granted JPS61260108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10148385A JPS61260108A (en) 1985-05-15 1985-05-15 Three-dimensional measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148385A JPS61260108A (en) 1985-05-15 1985-05-15 Three-dimensional measuring method

Publications (2)

Publication Number Publication Date
JPS61260108A true JPS61260108A (en) 1986-11-18
JPH0473523B2 JPH0473523B2 (en) 1992-11-24

Family

ID=14301956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148385A Granted JPS61260108A (en) 1985-05-15 1985-05-15 Three-dimensional measuring method

Country Status (1)

Country Link
JP (1) JPS61260108A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032668A1 (en) * 2010-09-07 2012-03-15 大日本印刷株式会社 Scanner device and device for measuring three-dimensional shape of object
JP2012058226A (en) * 2011-03-15 2012-03-22 Dainippon Printing Co Ltd Scanner device and apparatus for measuring three-dimensional shape of object
JP2013080024A (en) * 2011-10-03 2013-05-02 Nikon Corp Scanning microscope
US8727543B2 (en) 2010-09-07 2014-05-20 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
JP2014178323A (en) * 2014-04-16 2014-09-25 Dainippon Printing Co Ltd Linear illumination device
US8848267B2 (en) 2010-09-07 2014-09-30 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source
PL424332A1 (en) * 2018-01-22 2019-07-29 Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Method for classification of poultry carcasses

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156732B2 (en) 2010-09-07 2018-12-18 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US9348149B2 (en) 2010-09-07 2016-05-24 Dai Nippon Printing Co., Ltd. Image display module
US8727543B2 (en) 2010-09-07 2014-05-20 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US9423546B2 (en) 2010-09-07 2016-08-23 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source
US8848267B2 (en) 2010-09-07 2014-09-30 Dai Nippon Printing Co., Ltd. Illuminating device using coherent light source
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US10523902B2 (en) 2010-09-07 2019-12-31 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US11953857B2 (en) 2010-09-07 2024-04-09 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US9341760B2 (en) 2010-09-07 2016-05-17 Dai Nippon Printing Co., Ltd. Illuminating method using coherent light source
US10051243B2 (en) 2010-09-07 2018-08-14 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
WO2012032668A1 (en) * 2010-09-07 2012-03-15 大日本印刷株式会社 Scanner device and device for measuring three-dimensional shape of object
JP2012058226A (en) * 2011-03-15 2012-03-22 Dainippon Printing Co Ltd Scanner device and apparatus for measuring three-dimensional shape of object
JP2013080024A (en) * 2011-10-03 2013-05-02 Nikon Corp Scanning microscope
JP2014178323A (en) * 2014-04-16 2014-09-25 Dainippon Printing Co Ltd Linear illumination device
PL424332A1 (en) * 2018-01-22 2019-07-29 Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Method for classification of poultry carcasses

Also Published As

Publication number Publication date
JPH0473523B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
US4895431A (en) Method of processing endoscopic images
JP3471556B2 (en) Phase shift digital holography device
JPH0616799B2 (en) Optical probe for three-dimensional survey of teeth in the oral cavity
JP5352763B2 (en) Complex amplitude in-line hologram generation method and image recording apparatus using the method
KR101304695B1 (en) Hologram recording apparatus
JP6721698B2 (en) Imaging device
KR930007296A (en) 3D stereoscopic information acquisition device
JP5162733B2 (en) Holographic image recording apparatus and image recording method
WO2013133286A1 (en) Shape-measurement device, system for manufacturing structural object, scanning device, method for measuring shape, method for manufacturing structural object, and shape-measurement program
US4532422A (en) Electron holography microscope
JPS61260108A (en) Three-dimensional measuring method
JPH10504395A (en) Microscope inspection method of an object and interference microscope for achieving a resolution exceeding the diffraction limit (super-resolution)
US5450501A (en) Apparatus for the point-by-point scanning of an object
US3986160A (en) Visualization by ultrasonic detection
JP2538435B2 (en) Fringe phase distribution analysis method and fringe phase distribution analyzer
US11009830B2 (en) Apparatus and method for hologram image acquisition
JP2939944B2 (en) 3D object shape measurement device
JPH11142122A (en) Range finder
JP2001153612A (en) Three-dimensional image pickup device and method, and inteference light generating device
JPH0525044B2 (en)
JP2744494B2 (en) Speckle utilization measuring device
JPH0525043B2 (en)
JPH06235620A (en) Real-time measuring apparatus for shape of phase
Blatt et al. Application of acousto-optic cells and video processing to achieve signal-to-noise improvements in variable resolution moire profilometry
Schnars et al. CCD recording and numerical reconstruction of holograms and holographic interferograms

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term