JPS61259754A - Method and apparatus for treating sulfide-containing aqueous solution - Google Patents

Method and apparatus for treating sulfide-containing aqueous solution

Info

Publication number
JPS61259754A
JPS61259754A JP60100024A JP10002485A JPS61259754A JP S61259754 A JPS61259754 A JP S61259754A JP 60100024 A JP60100024 A JP 60100024A JP 10002485 A JP10002485 A JP 10002485A JP S61259754 A JPS61259754 A JP S61259754A
Authority
JP
Japan
Prior art keywords
activated carbon
reaction
catalyst
aqueous solution
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60100024A
Other languages
Japanese (ja)
Other versions
JPH0532100B2 (en
Inventor
Masayuki Suzuki
正幸 鈴木
Munekazu Nakamura
宗和 中村
Takeo Ono
健雄 小野
Hiroichi Hara
原 普一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP60100024A priority Critical patent/JPS61259754A/en
Publication of JPS61259754A publication Critical patent/JPS61259754A/en
Publication of JPH0532100B2 publication Critical patent/JPH0532100B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To improve gas-liquid-solid contact, by packing granular activated carbon wherein the volume of fine pores with a pore size of 100Angstrom or more is 0.25cc/g or more, the occupying ratio thereof to the total volume is 35% or more and the average particle size is 0.2-4mm. CONSTITUTION:Granular activated carbon, wherein the volume of fine pores with a pore size of 100Angstrom or more is 0.25cc/g or more, the occupying ratio of said fine pores to the total volume is 35% or more and an average particle size is 0.2-4mm, is prepared from a stock material such as coconut husk or coal. An aqueous solution containing sulfide is contacted with the granular activated carbon in the reaction region of the fixed bed packed with said activated carbon under such a condition that contact reaction temp. is 50-100 deg.C, reaction pressure is 0-10kg/cm<2> G and an air or oxygen/liquid ratio is 10-500Nl/l to perform redox treatment. A liquid supply amount or wt.-based space velocity can be appropriately selected corresponding to the activity of a catalyst, a reaction condition or the composition or amount of an objective reaction product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫化物含有水溶液を多硫化物含有水溶液に置
換するための処理方法及びその触媒に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a treatment method for replacing a sulfide-containing aqueous solution with a polysulfide-containing aqueous solution and a catalyst thereof.

〔従来技術の説明〕[Description of prior art]

本発明が関与するところのパルプ製紙工業において、パ
ルプの得率を向上せしめることは、原料として用いる天
然資源である木材の有効な活用を計ること、及び製品の
原価を下げるための工業的経済性向上の両面から非常に
重要であり、従来より、木材の蒸解に関する研究が種々
行われてきた。
In the pulp and paper industry to which the present invention relates, improving the yield of pulp means making effective use of wood, which is a natural resource used as a raw material, and achieving industrial economic efficiency to reduce the cost of products. It is extremely important from the standpoint of both improvement, and various studies have been conducted on wood cooking.

クラフト法における蒸解工程の役割は、パルプ原料の木
材中に含まれるセルロース類、ヘミセルロース類、リグ
ニン類のうち、リグニン類を除去するものであるが、リ
グニン類を除去する時、ヘミセルロース類のかなりの部
分が同時に除去されてしまい、パルプ収率が低下してし
まう、そのため、パルプ品質を低下させることなく、ヘ
ミセルロース類の減少をすくなくシ、バルブ収率を向上
させる方法の一つとして、多硫化ナトリウム蒸解法が古
くから研究されている。
The role of the cooking process in the Kraft method is to remove lignin from the cellulose, hemicellulose, and lignin contained in the wood used as the pulp raw material. Therefore, sodium polysulfide is one of the methods to minimize the loss of hemicelluloses and improve the pulp yield without degrading the pulp quality. Cooking methods have been studied for a long time.

多硫化ナトリウムは、硫化ナトリウムの水溶液に元素状
イオウを溶解することによって容易に得られるため、多
硫化ナトリウム蒸解法の最初の工業化は、この方法によ
って行われてきた。しかしながら、この方法はナトリウ
ムと硫黄のバランス維持が困難であることや、硫黄の添
加量がかさみ。
Since sodium polysulfide is easily obtained by dissolving elemental sulfur in an aqueous solution of sodium sulfide, the first industrialization of the sodium polysulfide cooking process was done by this method. However, with this method, it is difficult to maintain the balance between sodium and sulfur, and the amount of sulfur added is large.

加えて、硫化物による悪臭問題の解決が困難であったこ
となどから、広く採用されるにはいたらなかった。その
ため、クラフト法においてナトリウムと硫黄のバランス
を変えないで多硫化ナトリウムを生成する方法がその後
種々検討された(例えばUSP3216887号、 3
470061号、3653824号、特公昭53−25
043号公報、特開昭56−149304号公報等)、
これらはいずれも硫化ナトリウムを酸化する酸化剤等に
関するものである。
In addition, it was difficult to solve the problem of bad odors caused by sulfides, so it was not widely adopted. Therefore, various methods for producing sodium polysulfide without changing the balance of sodium and sulfur in the Kraft process were subsequently investigated (for example, USP 3,216,887, 3).
No. 470061, No. 3653824, Special Publication No. 53-25
No. 043, JP-A-56-149304, etc.),
These all relate to oxidizing agents that oxidize sodium sulfide.

さらにまた、上記以外で粉末状活性炭を触媒として使用
して硫化ナトリウムを酸化する方法も多く提案されてい
る。例えば、吉川(Netgusokutai8(1)
1981.2−5)らは、硫化ナトリウム水溶液に粉末
状カーボンブラックを分散して反応を行わせた結果、カ
ーボンブラックの表面官能基が硫化ナトリウム酸化反応
の促進に関与していることを報告している。
Furthermore, many methods other than those described above have been proposed for oxidizing sodium sulfide using powdered activated carbon as a catalyst. For example, Yoshikawa (Netgusokutai8(1)
1981.2-5) reported that the surface functional groups of carbon black were involved in promoting the sodium sulfide oxidation reaction by dispersing powdered carbon black in an aqueous sodium sulfide solution and conducting the reaction. ing.

しかし、工業的規模で使用することを考えた場合、硫化
物イオン含有水溶液に粉末状活性炭を添加し、攪拌しな
がら空気あるいは酸素をバブリングさせながら吹き込み
、酸化還元反応を行わせる方法は、粉末状活性炭を分離
回収し再使用することが非常に困難であり、工業的方法
ということができない。
However, when considering use on an industrial scale, there is a method in which powdered activated carbon is added to an aqueous solution containing sulfide ions, and air or oxygen is bubbled into the solution while stirring to cause a redox reaction. It is very difficult to separate and recover activated carbon and reuse it, and it cannot be called an industrial method.

一方、粉末状活性炭を工業的に使用した場合の上記欠点
を取り除き、かつ硫化物を効率的に酸化することを目的
とした方法も提案されている。
On the other hand, a method has also been proposed that aims to eliminate the above-mentioned drawbacks when powdered activated carbon is used industrially and to efficiently oxidize sulfides.

即ち、触媒23巻第4号P293〜295(1981年
4月発行)には、ポリテトラフルオロエチレン、ポリエ
チレン等の非水溶性物質により活性炭を疎水化し、その
疎水化活性炭を用いることにより、活性炭の分離回収が
容易になると同時にその触媒活性も向上することが記載
されている。
That is, in Catalyst Vol. 23, No. 4, pages 293-295 (published in April 1981), activated carbon is hydrophobized with a water-insoluble substance such as polytetrafluoroethylene or polyethylene, and the hydrophobized activated carbon is used to make activated carbon. It is described that separation and recovery become easier and at the same time, the catalytic activity is improved.

また、特公昭50−40395号公報によれば、炭素あ
るいは活性炭をポリテトラフルオロエチレン、ポリエチ
レン、ポリスチレン、弗化炭素樹脂などの疎水性物質で
部分的に疎水化処理し、それを触媒として用いて硫化ナ
トリウム、水硫化ナトリウムから多硫化ナトリウムと水
酸化ナトリウムを製造する方法について提示されている
Furthermore, according to Japanese Patent Publication No. 50-40395, carbon or activated carbon is partially hydrophobicized with a hydrophobic substance such as polytetrafluoroethylene, polyethylene, polystyrene, or fluorocarbon resin, and then used as a catalyst. A method for producing sodium polysulfide and sodium hydroxide from sodium sulfide and sodium bisulfide is presented.

(発明が解決しようとする問題点〕 一般に、活性炭は高表面積を有し、耐蝕性に優れ、かつ
、電気導電性があることから、前記したように、従来よ
り種々な硫化物の酸化還元用触媒として利用されている
(Problems to be Solved by the Invention) In general, activated carbon has a high surface area, excellent corrosion resistance, and electrical conductivity. Used as a catalyst.

ここで、硫化物水溶液の酸化還元用触媒に求められる好
ましい条件を検討すると、以下の様に考えられる。即ち
、 (1)硫化ナトリウムの酸化反応活性が大きいこと。
Here, when considering the preferable conditions required for a catalyst for redox of a sulfide aqueous solution, the following can be considered. That is, (1) The oxidation reaction activity of sodium sulfide is high.

(2)触媒表面への酸素の供給が十分確保されること。(2) Ensuring sufficient supply of oxygen to the catalyst surface.

(3)硫化ナトリウムの酸化反応が電子の移動を伴う酸
化還元反応であるため触媒に電気伝導性があること。
(3) The catalyst has electrical conductivity because the oxidation reaction of sodium sulfide is a redox reaction that involves the movement of electrons.

(4)バルブ蒸解白液を処理する場合、それは強ア  
    1ルカリ性であるため耐アルカリ性であること
。      V(5)工業的な使用を考えた場合、触
媒の特別な分離1回収、再生操作を必要としないこと。
(4) When processing bulb cooking white liquor, it must be
1.It must be alkaline resistant because it is alkaline. V(5) When considering industrial use, special separation, recovery, and regeneration operations of the catalyst are not required.

(6)触媒の経済的入手が容易であること。(6) The catalyst is easily economically available.

これらのうち、前記条件(3)、(4)及び(6)に関
しては、従来の活性炭で十分満足され、(5)に関して
は上記の疎水処理した活性炭によってほぼ解決されてい
た。しかし、疎水処理した活性炭を酸化還元用触媒とし
て用いる場合、触媒表面の活性点への酸素の供給が問題
となる。酸素供給を円滑にするためには、活性炭に施す
疎水処理は部分的なものでなければならない。一方その
部分的疎水処理は特殊であり、その部分疎水化効果を均
一に発揮させ得るかは明確でない、さらに、硫化物の酸
化還元反応において、触媒上の反応表面に酸素を十分に
供給させ得る条件の下では、疎水処理は活性炭触媒表面
の活性点を疎水性物質でつぶしてしまうおそれがあり、
好ましくなく、前記(1)の点については、かえって阻
害することになる。また、疎水化を部分的に施す場合、
疎水性物質量によっては触媒の外表面さえも被ってしま
い、活性炭の細孔内表面が有効に利用できず、この場合
には前記(2)で示した酸素供給に問題が生ずる。
Among these conditions, conditions (3), (4), and (6) are sufficiently satisfied by conventional activated carbon, and condition (5) is almost solved by the above-mentioned hydrophobically treated activated carbon. However, when hydrophobically treated activated carbon is used as a redox catalyst, supply of oxygen to the active sites on the catalyst surface becomes a problem. In order to facilitate oxygen supply, the hydrophobic treatment applied to activated carbon must be partial. On the other hand, the partial hydrophobization process is special, and it is not clear whether the partial hydrophobization effect can be exerted uniformly.Furthermore, in the redox reaction of sulfides, it is not possible to sufficiently supply oxygen to the reaction surface on the catalyst. Under certain conditions, hydrophobic treatment may crush the active sites on the activated carbon catalyst surface with hydrophobic substances.
This is not preferable, and the above-mentioned point (1) will be hindered. In addition, when partially applying hydrophobization,
Depending on the amount of the hydrophobic substance, it may even cover the outer surface of the catalyst, making it impossible to effectively utilize the inner surface of the pores of the activated carbon, and in this case, the problem described in (2) above regarding oxygen supply will occur.

〔発明の目的〕[Purpose of the invention]

このため、本発明は、上記(1)〜(6)の条件の全て
を満足する硫化物含有水溶液の接触酸化還元処理用触媒
を提供すること、及びそれを用いた硫化物含有水溶液の
酸化還元処理方法を提供することを目的とする。
Therefore, the present invention provides a catalyst for catalytic redox treatment of a sulfide-containing aqueous solution that satisfies all of the conditions (1) to (6) above, and a catalyst for catalytic redox treatment of a sulfide-containing aqueous solution using the same. The purpose is to provide a processing method.

〔発明の構成〕[Structure of the invention]

本発明によれば、100Å以上のマクロ繕孔構造の細孔
容積が0.25cc/g以上で、全細孔容積に占めるそ
の割合が35%以上で、かつ、平均粒径が0.2〜4m
m1Ilである粒状活性炭からなることを特徴とする硫
化物含有水溶液の接触酸化還元処理用触媒及びそれを用
いた硫化物含有水溶液の処理方法が提供される。
According to the present invention, the pore volume of the macro pore structure of 100 Å or more is 0.25 cc/g or more, its proportion to the total pore volume is 35% or more, and the average particle size is 0.2 to 0.2. 4m
Provided are a catalyst for catalytic redox treatment of a sulfide-containing aqueous solution characterized by comprising granular activated carbon of m1Il, and a method of treating a sulfide-containing aqueous solution using the same.

本発明で用いる粒状活性炭は、ヤシガラ、木屑。The granular activated carbon used in the present invention is coconut shell, wood chips.

石炭、石油ピッチ等の種々の原料から製造したものを用
いることができる。しかし、これらの原料から製造した
活性炭は、触媒表面の活性点への酸素の供給を確保する
ため、以下に説明する物理的な性状を有していなければ
ならない。即ち、粒状活性炭は100Å以上のマクロの
細孔が0.25cc/g以上、より好ましくは0.35
cc/g以上あり、全細孔容積に対して占めるその割合
が35%以上゛あることが必要である。
Those manufactured from various raw materials such as coal and petroleum pitch can be used. However, activated carbon produced from these raw materials must have the physical properties described below in order to ensure the supply of oxygen to the active sites on the catalyst surface. That is, the granular activated carbon has macropores of 100 Å or more of 0.25 cc/g or more, more preferably 0.35 cc/g or more.
cc/g or more, and its proportion to the total pore volume must be 35% or more.

一般に、活性炭は数百〜数千i/gの高い比表面積を有
している。しかし、これらの高表面積を構成する大部分
の一次細孔は10〜20人の非常に小さなものである。
Generally, activated carbon has a high specific surface area of several hundred to several thousand i/g. However, most of the primary pores that make up these high surface areas are very small, with 10 to 20 pores.

一般に、この様な小さな細孔中への反応物質の拡散は非
常に困難なものである。加えて1本発明が対象とする反
応においては、硫化物含有水溶液中への酸素の溶解度が
低いため、その拡散は更に困難なものとなる。しかし、
100Å以上から数μ肩オーダーの非常に大きな活性炭
の二次あるいは三次細孔では、10〜20人の小さな細
孔に比べて反応物質の拡散は格段に容易になる。
Generally, it is very difficult to diffuse reactants into such small pores. In addition, in the reaction targeted by the present invention, the solubility of oxygen in the sulfide-containing aqueous solution is low, making its diffusion even more difficult. but,
In the very large secondary or tertiary pores of activated carbon, on the order of 100 Å or more to several microns, the diffusion of reactants becomes much easier than in the small pores of 10 to 20 Å.

従って、活性炭の細孔内に大きな細孔がある量存在すれ
ば、その大きな細孔を通して反応物質が容易に拡散する
。特に本発明触媒の場合には酸素が容易に拡散し、小細
孔中の触媒活性点に到達し反応が進行する。従って、1
00Å以上の細孔は多ければ多い程好ましいものである
が1本発明者らは、硫化物含有水溶液の処理用触媒の場
合、少なくともその100Å以上の細孔の絶対量が0.
25cc/g以上、好ましくは0.35cc/g以上あ
り、全細孔容積に対しては約1/3以上の35%以上あ
ることが必須であることを見出した。
Therefore, if there are a certain amount of large pores within the pores of activated carbon, the reactant will easily diffuse through the large pores. Particularly in the case of the catalyst of the present invention, oxygen easily diffuses and reaches the catalytic active sites in the small pores, where the reaction proceeds. Therefore, 1
The greater the number of pores with a diameter of 100 Å or more, the better; however, the present inventors found that in the case of a catalyst for treating a sulfide-containing aqueous solution, the absolute amount of pores with a diameter of 100 Å or more is at least 0.
It has been found that it is essential that the amount is 25 cc/g or more, preferably 0.35 cc/g or more, and about 1/3 or more, or 35% or more, of the total pore volume.

さらに説明すると、100Å以上の細孔が多い粒状活性
炭はその全細孔容積も大きくなる傾向があり、その結果
として、粒状活性炭の充填密度も小さくなる。従って1
本発明においては、この充填密度が0 、5g/cc以
下の粒状活性炭の使用が好ましい傾向にある。
To explain further, granular activated carbon with many pores of 100 Å or more tends to have a large total pore volume, and as a result, the packing density of the granular activated carbon also becomes small. Therefore 1
In the present invention, it is preferable to use granular activated carbon having a packing density of 0.5 g/cc or less.

また1本発明で使用する粒状活性炭の平均粒子径は、0
.2〜4mmの範囲が好ましく、より好ましくは0.5
〜2IIIIIlの範囲のものである。本発明において
は、粒状活性炭の100Å以上の細孔を多くすることに
よって、触媒表面への酸素の拡散を確保できるが、その
平均粒子径が4■mを超えるようになると、酸素の拡散
が阻害され、触媒の活性が低下する。また、平均粒子径
が0.2ms+より小さな粒状活性炭は酸素の拡散の面
では好ましいが、工業規模で固定床に充填して使用する
時、触媒層の圧力損失や、処理液中の浮遊物(以下SS
とする)による目詰まりなどの面で好ましくない。特に
、パルプ工場における白波はSSが多く含まれており、
操業上問題となる。
Furthermore, the average particle diameter of the granular activated carbon used in the present invention is 0.
.. The range is preferably 2 to 4 mm, more preferably 0.5
~2IIIIIIl. In the present invention, oxygen diffusion to the catalyst surface can be ensured by increasing the number of pores of 100 Å or more in the granular activated carbon, but if the average particle size exceeds 4 μm, oxygen diffusion is inhibited. and the activity of the catalyst decreases. Granular activated carbon with an average particle diameter of less than 0.2 ms+ is preferable in terms of oxygen diffusion, but when used in a fixed bed on an industrial scale, pressure loss in the catalyst bed and suspended matter in the processing liquid ( SS below
This is undesirable in terms of clogging caused by In particular, the white water produced in pulp mills contains a lot of SS,
This poses an operational problem.

なお、本発明では1粒状活性炭の全細孔容積及び100
Å以上の細孔容積は以下の様に測定し計算した。
In addition, in the present invention, the total pore volume of one granular activated carbon and 100
The pore volume of Å or more was measured and calculated as follows.

100Å以上の細孔は、米国Micromatrit、
ics社製の水銀圧入式ポロシメーターrAuto P
ore 9200Jを用いて35A以上の細孔分布を測
定し求めた。
Pores of 100 Å or more are manufactured by Micromatrit, USA.
Mercury intrusion porosimeter rAuto P manufactured by ics
The pore distribution of 35A or more was measured and determined using ore 9200J.

また、 100Å以下の細孔は、イタリア国力ルロエル
バ社製の自動気体吸脱着装置5orpt、o+nati
c 1800を用い窒素の等温吸説着曲線を測定し、C
ranston −″InkLY法によって計算した。
In addition, for pores of 100 Å or less, an automatic gas adsorption/desorption device 5orpt, o+nati manufactured by Italian National Power Co., Ltd.
Measure the nitrogen isothermal adsorption curve using C 1800,
ranston −″ Calculated by the InkLY method.

全編孔容積は両者の測定結果の100Å以下及び以上を
合計し求めた。
The total pore volume was determined by summing the two measurement results of 100 Å or less and 100 Å or more.

上記した本発明の粒状活性炭触媒を用いて、酸化還元反
応を行うのに適する硫化物含有水溶液としては、二硫化
ナトリウムや水硫化ナトリウムを含有する水溶液あるは
クラフトパルプ法におけるスメルトを弱液に溶解した緑
液及び緑液を苛性化処理して得られる白液等がある。
A sulfide-containing aqueous solution suitable for carrying out a redox reaction using the granular activated carbon catalyst of the present invention described above is an aqueous solution containing sodium disulfide or sodium hydrosulfide, or a smelt in a kraft pulping method is dissolved in a weak liquid. There are green liquor obtained by causticizing green liquor, and white liquor obtained by causticizing green liquor.

次に1本発明が対象とする硫化物含有水溶液の酸化還元
反応について、二硫化ナトリウムの場合を例にとって説
明する。この場合の主な反応は以下に示す多硫化物を生
成する酸化還元反応である主反応1と、チオ硫酸ナトリ
ウムを生成する副反応2及び3からなっている。
Next, the redox reaction of a sulfide-containing aqueous solution, which is the object of the present invention, will be explained using the case of sodium disulfide as an example. The main reactions in this case consist of main reaction 1, which is an oxidation-reduction reaction that produces a polysulfide, and side reactions 2 and 3 that produce sodium thiosulfate.

4Na zs+o z +2Hzo=2Na 252 
+4NaOH(1)2Na2S+202+H20WNa
zS203+2NaOH(2)2Na2S2+302=
2Na2S203      (3)なお、上式におい
て、多硫化ナトリウムを二硫化ナトリウム(NazSz
)として示したが、一般にはNa2Sxの式で表すされ
、X=2〜5の範囲の化合物が存在するものと考えられ
ている。
4Na zs+o z +2Hzo=2Na 252
+4NaOH(1)2Na2S+202+H20WNa
zS203+2NaOH(2)2Na2S2+302=
2Na2S203 (3) In the above formula, sodium polysulfide is replaced by sodium disulfide (NazSz
), but it is generally expressed by the formula Na2Sx, and it is thought that compounds in which X=2 to 5 exist.

上記式かられかるように、硫化物含有水溶液を酸化還元
反応処理する場合、多硫化ナトリウムが生成する(1)
式の反応と、チオ硫酸ナトリウムが生成する(2)式の
反応とが同時に起こる。また、生成した多硫化ナトリウ
ムが、更に酸化されチオ硫酸ナトリウムを副生ずる(3
)式の反応も重要である。つまり、硫化ナトリウムの空
気°又は酸素酸化によって、多硫化ナトリウムを得るた
めには。
As can be seen from the above formula, when a sulfide-containing aqueous solution is subjected to redox reaction treatment, sodium polysulfide is produced (1)
The reaction of the formula and the reaction of the formula (2) in which sodium thiosulfate is produced occur simultaneously. In addition, the generated sodium polysulfide is further oxidized to produce sodium thiosulfate as a by-product (3
) reaction is also important. That is, to obtain sodium polysulfide by air or oxygen oxidation of sodium sulfide.

上記三つの反応のうち、(1)式の反応を進め、(2)
と(3)式の反応を抑制することが必要である。前記反
応式により明らかなように、硫化ナトリウムに対する酸
素の比が(2)と(3)の式の反応では大きいので1反
応条件を適切に選ぶことにより、多硫化ナトリウムの選
択性をある程度増加させることができる。
Among the above three reactions, proceed with the reaction of formula (1), and proceed with (2)
It is necessary to suppress the reaction of formula (3). As is clear from the above reaction formula, the ratio of oxygen to sodium sulfide is large in the reactions of formulas (2) and (3), so by appropriately selecting the reaction conditions, the selectivity for sodium polysulfide can be increased to some extent. be able to.

つまり、相対的に少量の酸素の存在下で(1)式の主反
応を効率良く進めること、及び多硫化ナトリウムが生成
した領域では酸素が存在しない状態にすることである。
In other words, the main reaction of formula (1) is to proceed efficiently in the presence of a relatively small amount of oxygen, and the region where sodium polysulfide is produced is free from oxygen.

流通式反応管を使用する場合、このことは気液の接触を
効率的に行うと共に、高活性触媒の使用によって可能と
なる。
When using flow-through reaction tubes, this is made possible by efficient gas-liquid contact and the use of highly active catalysts.

上述のことから、本発明では、硫化物含有水溶液と空気
又は酸素を接触させる場合の接触方法は。
From the above, in the present invention, the contact method when bringing the sulfide-containing aqueous solution into contact with air or oxygen is as follows.

固定床式反応容器に粒状活性炭を充填し、気・液を反応
器上部から供給する並流のトリクルフローが好ましい。
A cocurrent trickle flow method in which a fixed bed type reaction vessel is filled with granular activated carbon and gas and liquid are supplied from the top of the reactor is preferred.

硫化物含有水溶液を本発明の粒状活性炭触媒を充填した
固定床式反応器に空気又は酸素と共に上方から並流的に
接触させて反応させる場合の好適な酸化還元反応処理条
件について以下に述べる。
Suitable redox reaction treatment conditions when a sulfide-containing aqueous solution is brought into contact with air or oxygen cocurrently from above in a fixed bed reactor filled with the granular activated carbon catalyst of the present invention from above will be described below.

反応は50〜100℃の温度範囲で行われる。クラフト
法回収工程の白波及び緑液の温度は一般に70〜100
℃の範囲である。従って1反応をそのままの温度で行え
ば1反応させるために特別な加熱や冷却を行なう必要が
なく、経済的である。また。
The reaction is carried out at a temperature range of 50-100°C. The temperature of white water and green liquor in the Kraft method recovery process is generally 70 to 100.
℃ range. Therefore, if one reaction is carried out at the same temperature, there is no need for special heating or cooling for one reaction, which is economical. Also.

反応圧力条件はθ〜10kg/aLGの範囲が好ましい
The reaction pressure conditions are preferably in the range of θ to 10 kg/aLG.

特に本発明では酸素の供給が粒状活性炭触媒の100Å
以上のマクロ細孔を通して行われるため、反応圧力は高
い方が好ましい、しかし、前記で示した反応(2)によ
るチオ硫酸ナトリウムの生成あるいは副反応(3)によ
る多硫化ナトリウムの消滅反応などのために、不必要に
反応圧力を高くすることは好ましくない。
In particular, in the present invention, the supply of oxygen is 100 Å by the granular activated carbon catalyst.
Since the reaction is carried out through the macropores mentioned above, the higher the reaction pressure, the better. However, it is undesirable to increase the reaction pressure unnecessarily.

空気又は酸素/液比は、固定床式反応器入口基準で10
〜50ON m / 1の範囲が好ましい、空気又は酸
素l液比が大きいほど反応容器中での酸素供給量を多く
することができるが、むやみに大きくすることは副反応
の進行が促進され好ましくない。
The air or oxygen/liquid ratio is 10 based on the fixed bed reactor inlet.
A range of ~50ON m/1 is preferable.The larger the air or oxygen/liquid ratio, the greater the amount of oxygen supplied in the reaction vessel, but unnecessarily increasing it is undesirable as it promotes the progress of side reactions. .

液供給量あるいは重量基準液空間速度は、触媒の活性1
反応条件及び目的とする生成物の組成や量によって適宜
選択される。
The liquid supply amount or weight-based liquid hourly space velocity is determined by the catalyst activity 1
It is appropriately selected depending on the reaction conditions and the composition and amount of the desired product.

〔実施例〕〔Example〕

以上本発明について説明したが、本発明をさらに詳細に
説明するために実施例をもって以下に説明する。
The present invention has been described above, and in order to explain the present invention in further detail, examples will be described below.

実施例1 直径26■腸φ、高さ50c■のガラス製固定床反応器
をもつ小型流通式反応装置で、表−1に示す各種サイズ
及び性状の粒状活性炭の活性試験を実施した。活性試験
は表−2に示す試験条件で行い、供給原料は表−3に示
す組成の調製白液を特級試薬を用いて調合し使用した。
Example 1 Activity tests were carried out on granular activated carbon of various sizes and properties shown in Table 1 in a small flow reactor equipped with a glass fixed bed reactor with a diameter of 26 cm and a height of 50 cm. The activity test was conducted under the test conditions shown in Table 2, and the raw material used was prepared white liquor having the composition shown in Table 3, which was prepared using special grade reagents.

なお、表−1において、活性炭原料の欄で示す符号は次
のことを意味する。
In addition, in Table 1, the symbols shown in the activated carbon raw material column mean the following.

A・・・石炭 B・・・ヤシガラ C・・・ピッチ D・・・ポリテトラフルオロエチレン 表−2活性試験条件 表−3調製白液組成 第1図に硫化ナトリウムの転化率と多硫化ナトリウムの
選択率の関係を示し、第2図に粒子サイズと触媒活性の
関係を活性状結果として示した。
A... Coal B... Coconut shell C... Pitch D... Polytetrafluoroethylene Table-2 Activity test conditions table-3 Preparation white liquor composition Figure 1 shows the conversion rate of sodium sulfide and the sodium polysulfide conversion rate. The relationship between selectivity is shown, and the relationship between particle size and catalyst activity is shown in Figure 2 as an activity result.

なお、触媒活性は硫化ナトリウムの減少速度を2次反応
として、重量基準液空気速度で反応速度定数を計算し示
した。
The catalytic activity is shown by calculating the reaction rate constant using the weight-based liquid air velocity, with the rate of decrease of sodium sulfide as a secondary reaction.

比較例1 本発明で規定した100Å以上の細孔容積が0.25c
c/gより少ない活性炭触媒について、実施例1と同様
に試験し、試験結果を同じく第1図及び第2図に示した
。試験した活性炭触媒の物性は表−1に同じく示した。
Comparative Example 1 The pore volume of 100 Å or more defined in the present invention is 0.25 c
Activated carbon catalyst with less than c/g was tested in the same manner as in Example 1, and the test results are also shown in FIGS. 1 and 2. The physical properties of the tested activated carbon catalysts are also shown in Table-1.

比較例2 実施例1で試験した触媒番号4の活性炭1kgにポリテ
トラフルオロエチレン60gを含むエマルジョン溶液5
00gを攪拌しながら混合し、含浸させた。
Comparative Example 2 Emulsion solution 5 containing 60 g of polytetrafluoroethylene in 1 kg of activated carbon of catalyst number 4 tested in Example 1
00g was mixed and impregnated with stirring.

その後、熱風乾燥機に入れ190℃の乾燥温度で水分を
乾燥除去した。この乾燥活性炭を触媒として使用し、実
施例1と同様に試験した。ポリテトラフルオロエチレン
含有活性炭の物性を表−1に示し、その活性試験結果を
第1図及び第2図に示した。
Thereafter, it was placed in a hot air dryer and the moisture was removed by drying at a drying temperature of 190°C. The dry activated carbon was used as a catalyst and tested in the same manner as in Example 1. The physical properties of the polytetrafluoroethylene-containing activated carbon are shown in Table 1, and the activity test results are shown in FIGS. 1 and 2.

第1図に示した活性試験結果から、硫化ナトリウムの空
気酸化反応は前述の反応式(1)〜(3)で示した反応
並発遂次反応であることが認められ、硫化ナトリウムの
転化率が大きくなると多硫化ナトリウムの選択率は悪く
なることを示している。実流側1と比較例1の触媒を比
較すると同一転化率では本発明触媒が選択率で優れてい
る。また、比較例2のポリテトラフルオロエチレンを含
浸した触媒は同じく選択性の面で劣る結果が得られてい
る。
From the activity test results shown in Figure 1, it is recognized that the air oxidation reaction of sodium sulfide is a parallel sequential reaction shown in the reaction formulas (1) to (3) above, and the conversion rate of sodium sulfide is This shows that as the value increases, the selectivity of sodium polysulfide worsens. Comparing the catalysts of Actual Flow Side 1 and Comparative Example 1, the catalyst of the present invention is superior in selectivity at the same conversion rate. Furthermore, the catalyst impregnated with polytetrafluoroethylene of Comparative Example 2 similarly gave inferior results in terms of selectivity.

また、第2図に示した結果から、同一触媒サイズの触媒
では、活性面において本発明触媒が優れていることが判
る。
Moreover, from the results shown in FIG. 2, it can be seen that the catalyst of the present invention is superior in terms of activity among catalysts of the same catalyst size.

実施例2 直径1.25インチ、長さ50cmのステンレス製固定
床式反応器をもつ小型流通式反応装置で、実施例1に示
す触媒番号2の粒状活性炭を用い各種反応条件で触媒活
性を試験した。供給原料は表−4に示す組成p工場実白
液を用い、空気との並流トリクルフローとして接触させ
た。その試験結果を表−5にまとめて示した。なお粒状
活性炭の反応器への充填量は45gであった。
Example 2 Catalytic activity was tested under various reaction conditions using granular activated carbon of catalyst number 2 shown in Example 1 in a small flow reactor equipped with a stainless steel fixed bed reactor with a diameter of 1.25 inches and a length of 50 cm. did. The feedstock used was factory white liquor having the composition shown in Table 4, and was brought into contact with air in a cocurrent trickle flow. The test results are summarized in Table-5. The amount of granular activated carbon charged into the reactor was 45 g.

表−5の結果から、反応温度、反応圧力及び気/液比が
大きい程触媒の活性は大きくなっており、この反応が酸
素供給速度律速であることを示していた。しかし、実用
上は必ずしも高温・高圧、気/液比が大きい条件が適し
ているものとはいえず。
From the results in Table 5, the activity of the catalyst increased as the reaction temperature, reaction pressure, and gas/liquid ratio increased, indicating that this reaction was rate-limiting of oxygen supply. However, in practice, conditions such as high temperature, high pressure, and large gas/liquid ratio are not necessarily suitable.

これらの反応条件は目的とする多硫化物の量や工業装置
としての運転のしやすさ及び経済性などの面から総合的
に判断して決められる。
These reaction conditions are determined comprehensively from the viewpoints of the desired amount of polysulfide, ease of operation as an industrial device, economic efficiency, etc.

表−4工場実白液組成 Na 2 S    (g/ Q 、 Na 20換算
)  31.4Nail    (pl    )  
74.8NazCO3(1’    )  17.6N
azSzO3(g/Q、S換算)3.0Na2SO3(
n   )    0.855     (vt pp
m)       140表−5各種反応条件での試験
結果 実施例3 表−4に示した組成の工場実白液を濾過し、SSをlO
%It ppmとして、供給液量を300cc/Hrと
し、空気/液比を4ON Q / fiとした他は表−
2の活性試験条件で、実施例1の触媒番号2の触媒及び
装置を用いて約550時間の触媒活性試験を実施した。
Table-4 Factory white liquor composition Na2S (g/Q, Na20 conversion) 31.4 Nail (pl)
74.8NazCO3(1') 17.6N
azSzO3 (g/Q, S conversion) 3.0Na2SO3 (
n ) 0.855 (vt pp
m) 140 Table-5 Test results under various reaction conditions Example 3 Factory white liquor with the composition shown in Table-4 was filtered, and the SS was
%It ppm, the supply liquid amount was 300cc/Hr, and the air/liquid ratio was 4ON Q/fi.
A catalytic activity test was conducted for about 550 hours using the catalyst and apparatus of catalyst number 2 of Example 1 under the activity test conditions of No. 2.

触媒活性及び多硫化物の生成量を反応時間に対しプロッ
トし、活性試験結果として第3図に示した。
The catalytic activity and the amount of polysulfide produced were plotted against the reaction time and are shown in FIG. 3 as the activity test results.

比較例3 実施例1で使用した触媒番号2の粒状活性炭に、比較例
2と同じくポリテトラフルオロエチレンを含浸して触媒
を調製した。その物性を表−1に示す。この触媒を、供
給液量をmWiした他は実施例3の結果と同じ条件及び
装置を用い、約170時間の触媒活性試験を実施した。
Comparative Example 3 As in Comparative Example 2, the granular activated carbon of catalyst number 2 used in Example 1 was impregnated with polytetrafluoroethylene to prepare a catalyst. Its physical properties are shown in Table-1. This catalyst was subjected to a catalytic activity test for about 170 hours using the same conditions and equipment as in Example 3, except that the amount of liquid supplied was mWi.

この結果を同じく第3図に実施例3と比較して示した。The results are also shown in FIG. 3 in comparison with Example 3.

第3図に示した長時間活性試験結果から、本発明の触媒
は工場実白液を用いた試験においても長時間安定な活性
を示し、多硫化ナトリウムを選択的に生成していること
が判った。比較例3の触媒は本発明で規定した物性を満
足する活性炭に疎水処理をほどこしたものであるが、活
性試験結果は本発明の触媒に比べて劣っていた。これは
疎水処理効果が現れていないこと及び疎水処理によって
触媒層内での気・液・固の接触が不十分になったためと
考えらる。
From the long-term activity test results shown in Figure 3, it was found that the catalyst of the present invention exhibited stable activity for a long time even in tests using factory white liquor, and selectively produced sodium polysulfide. Ta. The catalyst of Comparative Example 3 was obtained by subjecting activated carbon to hydrophobic treatment that satisfied the physical properties specified in the present invention, but the activity test results were inferior to the catalyst of the present invention. This is thought to be because the hydrophobic treatment effect was not apparent and the contact between gas, liquid, and solid within the catalyst layer was insufficient due to the hydrophobic treatment.

特に反応初期において触媒活性が著しく低いのは、気・
液・固の接触が悪いためと実験的に観察された。これは
、本発明で規定した様に100Å以上の細孔が多ければ
、反応に必要な酸素は十分に供給されるので活性炭に疎
水処理の様な特別の処理をほどこさなくとも優れた触媒
が得られることを示している。
Particularly in the early stage of the reaction, the catalyst activity is extremely low due to
It was experimentally observed that this was due to poor contact between liquid and solid. This is because, as specified in the present invention, if there are many pores of 100 Å or more, oxygen necessary for the reaction will be sufficiently supplied, so an excellent catalyst can be produced even without special treatment such as hydrophobic treatment on the activated carbon. It shows that you can get it.

〔発明の効果〕〔Effect of the invention〕

硫化物含有水溶液の空気又は酸素酸化において、本発明
で規定した粒状活性炭を用いる方法が公知の諸方法に比
べ特に優れている点は以下の通りである°。
In air or oxygen oxidation of a sulfide-containing aqueous solution, the method using granular activated carbon defined in the present invention is particularly superior to known methods in the following points.

100Å以上のマクロ細孔を多く存在させ、かつ触媒粒
子径を規定することによって、触媒細孔表面への酸素の
供給が十分行えるようになり、その結果活性炭を粉状に
したり、疎水処理をして使用する必要が無くなり、更に
疎水処理をしていないために触媒層での気・液・固の接
触が良好になり、触媒細孔の細孔表面を有効に利用でき
、触媒活性や選択活性を向上させることができた。
By creating a large number of macropores of 100 Å or more and regulating the catalyst particle diameter, oxygen can be sufficiently supplied to the surface of the catalyst pores, and as a result, activated carbon can be powdered or hydrophobically treated. In addition, since no hydrophobic treatment is used, the contact between gas, liquid, and solid in the catalyst layer is improved, and the pore surface of the catalyst pores can be used effectively, increasing catalytic activity and selective activity. was able to improve.

また、従来公知の二酸化マンガンやキノン類を利用した
方法に比較して賦活のための再生処理や分離回収操作を
不要とした。
Furthermore, compared to conventional methods using manganese dioxide or quinones, this method eliminates the need for regeneration treatment or separation and recovery operations for activation.

さらにまた、活性炭はパルプ蒸解白液のように高アルカ
リ性でも耐蝕性がある。
Furthermore, activated carbon is corrosion resistant even in highly alkaline conditions such as pulp cooking white liquor.

上記の通り1本発明で用いる活性炭触媒は、特別な処理
をほどこす必要がなく、容易に大量入手でき、極めて工
業的で、かつ経済的である。
As mentioned above, the activated carbon catalyst used in the present invention requires no special treatment, is easily available in large quantities, and is extremely industrial and economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、硫化ナトリウムの転化率と多硫化ナトリウム
の選択率の関係を示し、第2図は粒子サイズと触媒活性
の関係を示す。 第3図は反応時間と二硫化物の生成量との関係及び反応
時間と触媒活性との関係を示す。 第  1  図 転  換  率  (チ) 第  2  図 平均粒子サイズ (W) 第  3  図 処理時間(Hr)
FIG. 1 shows the relationship between the conversion rate of sodium sulfide and the selectivity of sodium polysulfide, and FIG. 2 shows the relationship between particle size and catalytic activity. FIG. 3 shows the relationship between reaction time and the amount of disulfide produced, and the relationship between reaction time and catalyst activity. Figure 1 Conversion rate (H) Figure 2 Average particle size (W) Figure 3 Processing time (Hr)

Claims (3)

【特許請求の範囲】[Claims] (1)100Å以上の細孔容積が0.25cc/g以上
で、全細容積に占めるその割合が35%以上で、かつ、
平均粒径が0.2〜4mmである粒状活性炭からなるこ
とを特徴とする硫化物含有水溶液の接触酸化還元処理用
触媒。
(1) The volume of pores of 100 Å or more is 0.25 cc/g or more, and its proportion to the total pore volume is 35% or more, and
A catalyst for catalytic redox treatment of a sulfide-containing aqueous solution, characterized by comprising granular activated carbon having an average particle size of 0.2 to 4 mm.
(2)硫化物含有水溶液を粒状活性炭の存在下で空気又
は酸素と接触させて処理する方法において、100Å以
上の細孔容積が0.25cc/g以上で、全細孔容積に
占める割合が35%以上で、かつ、平均粒径が0.2〜
4mmである粒状活性炭を充填した固定床反応域で該水
溶液と空気又は酸素とを接触させることを特徴とする硫
化物含有水溶液の処理方法。
(2) In a method of treating a sulfide-containing aqueous solution by contacting it with air or oxygen in the presence of granular activated carbon, the volume of pores of 100 Å or more is 0.25 cc/g or more, and the proportion of the total pore volume is 35 % or more, and the average particle size is 0.2~
A method for treating a sulfide-containing aqueous solution, which comprises bringing the aqueous solution into contact with air or oxygen in a fixed bed reaction zone filled with 4 mm granular activated carbon.
(3)接触反応温度を50〜100℃、反応圧力が0〜
10kg/cm^2・G、及び空気又は酸素/液比が1
0〜500Nl/lである特許請求の範囲第(2)項記
載の方法。
(3) Contact reaction temperature is 50~100℃, reaction pressure is 0~
10kg/cm^2・G, and air or oxygen/liquid ratio is 1
The method according to claim (2), wherein the amount is 0 to 500 Nl/l.
JP60100024A 1985-05-11 1985-05-11 Method and apparatus for treating sulfide-containing aqueous solution Granted JPS61259754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100024A JPS61259754A (en) 1985-05-11 1985-05-11 Method and apparatus for treating sulfide-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100024A JPS61259754A (en) 1985-05-11 1985-05-11 Method and apparatus for treating sulfide-containing aqueous solution

Publications (2)

Publication Number Publication Date
JPS61259754A true JPS61259754A (en) 1986-11-18
JPH0532100B2 JPH0532100B2 (en) 1993-05-14

Family

ID=14262969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100024A Granted JPS61259754A (en) 1985-05-11 1985-05-11 Method and apparatus for treating sulfide-containing aqueous solution

Country Status (1)

Country Link
JP (1) JPS61259754A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174692A (en) * 1987-12-28 1989-07-11 Mitsubishi Paper Mills Ltd Method for bleaching lignocellulose substance with oxygen
JP2003334571A (en) * 2002-03-11 2003-11-25 Nippon Shokubai Co Ltd Method for treating drain
WO2010137535A1 (en) 2009-05-26 2010-12-02 日本製紙株式会社 Method for digesting lignocellulosic material
JP2011031228A (en) * 2009-08-06 2011-02-17 Shimizu Corp Method and apparatus for removing dissolved sulfide
JP2013223860A (en) * 2012-03-22 2013-10-31 Shimizu Corp Apparatus and method for removing dissolved sulfide
MD4214C1 (en) * 2012-06-18 2013-11-30 Институт Химии Академии Наук Молдовы Process for modifying the porous structure of activated coal impregnated with Cu(II) and its use for the treatment of underground waters from hydrogen sulfide and sulfides
WO2014054815A1 (en) 2012-10-01 2014-04-10 日本製紙株式会社 Continuous electrolysis method by means of electrolytic bath for polysulfide manufacturing, and electrolysis device for implementing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506085B2 (en) * 2003-03-18 2010-07-21 日本製紙株式会社 Cleaning method of activated carbon catalyst for white liquor oxidation and white liquor oxidation apparatus equipped with the washing mechanism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174692A (en) * 1987-12-28 1989-07-11 Mitsubishi Paper Mills Ltd Method for bleaching lignocellulose substance with oxygen
JP2003334571A (en) * 2002-03-11 2003-11-25 Nippon Shokubai Co Ltd Method for treating drain
WO2010137535A1 (en) 2009-05-26 2010-12-02 日本製紙株式会社 Method for digesting lignocellulosic material
JP2011031228A (en) * 2009-08-06 2011-02-17 Shimizu Corp Method and apparatus for removing dissolved sulfide
JP2013223860A (en) * 2012-03-22 2013-10-31 Shimizu Corp Apparatus and method for removing dissolved sulfide
MD4214C1 (en) * 2012-06-18 2013-11-30 Институт Химии Академии Наук Молдовы Process for modifying the porous structure of activated coal impregnated with Cu(II) and its use for the treatment of underground waters from hydrogen sulfide and sulfides
WO2014054815A1 (en) 2012-10-01 2014-04-10 日本製紙株式会社 Continuous electrolysis method by means of electrolytic bath for polysulfide manufacturing, and electrolysis device for implementing same
US9951432B2 (en) 2012-10-01 2018-04-24 Nippon Paper Industries Co., Ltd. Continuous electrolysis method with electrolytic bath for polysulfide production and electrolysis device for implementing the same

Also Published As

Publication number Publication date
JPH0532100B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
US5082526A (en) Process of producing kraft pulping liquor by the oxidation of white liquor in the presence of lime mud
KR100599882B1 (en) Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide
US4024229A (en) Production of polysulfide with PTFE coated catalyst
JP4847949B2 (en) A highly efficient method for the recovery of sulfur from acid gas streams.
US5045522A (en) Absorption composition comprising zinc titanate for removal of hydrogen sulfide from fluid streams
AU610296B2 (en) A process for the removal of hydrogen sulfide from gases
US4489047A (en) Process for removing hydrogen sulphide from process gases using solid acceptors, process for cyclic regenerating the used acceptors at high temperature, as well as process for preparing acceptors, which are suitable for this process
JPS61259754A (en) Method and apparatus for treating sulfide-containing aqueous solution
CN109863115B (en) Catalytic conversion of DSO in the presence of water
EP0134594B2 (en) Process for the oxidation of hydrogen sulphide to elemental sulphur and/or sulphur dioxide
AU660787B2 (en) Polysulfide production in white liquor
FI65079B (en) FOERFARANDE FOER AVMETALLISERING AV KOLVAETEOLJOR
RU2103058C1 (en) Catalyst and method for treating gases containing sulfur compounds
US3201343A (en) Desiccant manufacture and the use of such desiccants in the conversion of hydrocarbons
CN108246298A (en) A kind of method of nano lamellar solid base removing carbonyl sulfur
US5151257A (en) Removal of hydrogen sulfide from fluid streams
EP1332108A2 (en) Hydrodehalogenation process using a catalyst containing nickel
EP0910545A1 (en) Process for the recovery of sulfur from so 2? containing gases
FI64634C (en) PROCEDURE FOR THE EXHAUST OF METALS AND PISTON OILS
CN107694321B (en) Normal-temperature loaded manganese hydrogen sulfide fine remover, and preparation method and application thereof
SU1093739A1 (en) Method of preparing polysulfide of alkali metal for digesting cellulose-containing primary material
JPH01174692A (en) Method for bleaching lignocellulose substance with oxygen
FI59118C (en) FOERFARANDE FOER KATALYTISK HYDROAVSVAVLING AV RESTKOLVAETEOLJOR
JPH05237344A (en) Treatment of off gas
US2586812A (en) Zinc acetate on devolatilized coal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term