JPS61259716A - System for operational control of electroosmotic dehydrator - Google Patents

System for operational control of electroosmotic dehydrator

Info

Publication number
JPS61259716A
JPS61259716A JP10195885A JP10195885A JPS61259716A JP S61259716 A JPS61259716 A JP S61259716A JP 10195885 A JP10195885 A JP 10195885A JP 10195885 A JP10195885 A JP 10195885A JP S61259716 A JPS61259716 A JP S61259716A
Authority
JP
Japan
Prior art keywords
slurry
electroosmotic
dehydrated cake
water content
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10195885A
Other languages
Japanese (ja)
Inventor
Tadashi Kato
忠 加藤
Hiroshi Hoshikawa
星川 寛
Mikimasa Yamaguchi
山口 幹昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10195885A priority Critical patent/JPS61259716A/en
Publication of JPS61259716A publication Critical patent/JPS61259716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a dehydrated cake with constant water content in spite of the variation in the properties of sludge, by measuring the electric resistance of sludge by a current detection means and operating water content on the basis of the measured value to control voltage to be applied. CONSTITUTION:From the measured values of the currents supplied to the electrode segments positioned correspondingly to a mechanical press dehydration region I and an electroosmotic dehydration region II and the output voltage of a power source apparatus 9, the electric specific resistance of sludge at each point in a sludge feed passage 6 including an electroosmotic dehydration region is operated. Water content is operated from a preliminarily obtained experimental result by an operator 19 to be outputted to a controller 20. The controller 20 compares the operated value with an objective set value and, if the water content of a dehydrated cake is high, the voltage of a power source is raised and an electroosmotic current is increased to enhance dehydration capacity. Contrarily, if low, the voltage applied to an electrode is lowered to suppress current.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は例えば下水処理場で発生した汚泥等を対象に
泥漿を脱水処理してケーキ化する電気浸透脱水機の運転
制御方式に関する。
The present invention relates to an operation control system for an electroosmotic dehydrator that dehydrates sludge generated in a sewage treatment plant to form a cake.

【従来技術とその問題点】[Prior art and its problems]

頭記した汚泥等を対象に電気浸透を応用して泥漿を連続
処理する電気浸;sWA*装置として第4図のごとき構
成のものが従来より実施されている。 第4図において、lはその外周に電極2を配備した陽極
側の回転ドラム、3は前記回転ドラムlの周域に対向し
てスプロケット間に張架された陰極側の電極部材を兼ね
たプレスベルト、4はプレスベルト3の周面に重ね合わ
せて張架された濾布なyハ1ノ11. /j^・+1.
 L  C: l中にオL L爪19尿ムt−h哨あり
、前記回転ドラム1とフィルタベルト4との対向面域に
泥漿搬送通路6が形成され、さらに通路6の入口側には
泥漿供給ホッパ7を設置し、これ等で電気浸透脱水装置
の本体を構成している。 なお前記の通路6はその入口側から出口側に向けて通路
幅が漸次狭まるように形成されている。また前記ホッパ
7に向けてその人口側には泥漿供給用のベルトコンベア
8が配備され、さらに前記のプレスベルト3を接地側と
してこれに対向する回転ドラム1には直流電源装置9の
プラス側端子が給電刷子、集電用スリップリングを介し
て接続されている。なお10は脱水機本体内でフィルタ
ベルト4の下方に配備した濾水光は皿、11は脱水ケー
キの回収容器、12はフィルタベルト4に付着している
脱水ケーキを剥離して掻き落とすスクレーパである。 かかる構成で駆動モータ5を運転し、かつ電源装置9よ
り電極2とプレスベルト3との間に電圧を印加した状態
で、泥漿供給用のベルトコンベア8を経てホッパ7より
泥漿搬送通路6へ被脱水処理物としての泥iAを供給す
ると、泥漿は回転ドラム1とプレスベルト3との間にサ
ンドウィッチ状に挟まれて矢印P方向にベルトa送され
、この搬送過程で機械的な圧搾力に加えて対向電極間に
形成された電場の作用を受けるようになる。これにより
泥漿Aは通路内の入口側に近い領域では主として機械的
な圧搾力により脱水が進行し、その後部の領域では電場
による電気浸透作用で脱水が進行する。ここで前記の電
気浸透脱水領域では泥漿の含有水は正に帯電されて陰極
プレスベルト3側に流動し、この電極部材に放電すると
ともにフィルタベルト4を透過して汚泥から分離脱水さ
れ、通路内前域の圧搾脱水部から脱水された濾水ととも
に濾水光は皿10に滴下して系外に排水される。 なおこの場合に電気浸透作用にょる濾水の移動量(脱水
量)は泥宋内を通流する電流に比例する。 一方、搬送通路6内に残った汚泥は前記の脱水動作によ
り濃縮してケーキ化され、低含水率の脱水ケーキBとな
って通Ia6の出口より送出されスクレーパ12により
フィルタベルト4から剥離されて回収容器ll内に回収
される。なお、下水−処理場で発生した汚泥の脱水処理
により生成した脱水ケーキは通常焼却処分あるいはコン
ポスト化して肥料として再生される。 ところで、頭記した下水処理場等で発生する汚泥はその
性状、特にその濃度は常に一定ではなく状況により様々
に変動する。したがってこの汚泥を電気浸透脱水機で脱
水処理する場合には、その運転条件を一定のままにして
運転を行うと汚泥の性状変動に伴って脱水ケーキの含水
率が変化することになる。一方、電気浸透脱水機を通じ
て生成された汚泥の脱水ケーキはその後の処理を考慮し
て含水率がほぼ一定であることが望まれる。しかして電
気浸透脱水機を一定条件のまま運転を続けると、汚泥の
濃度が通常の状態より低くなった場合には脱水処理過程
で充分に脱水し切れずに脱水ケーキの含水率が高くなり
、その後に脱水ケーキを例えば焼却処理する際に支障を
来す、逆に汚泥の濃度が高い場合にはこのままでは過剰
脱水となh−’It慣;J!:*m6嗣ン7TIT’F
l’F、iJ、亜1>J+−/71Mt→1メ’、’r
bMkすることになり不経済な運転となる。 この観点から電気浸透脱水機の効率的な運転と、泥漿の
性状変動にかかわらず常に安定した所望含水率の脱水ケ
ーキを得るためには、脱水機の稼働中に脱水ケーキの含
水率を測定監視し、この含水率が目標設定値からはずれ
た際には脱水ケーキの含水率測定値と目標設定値との偏
差をフィードバッタ信号として電極間の印加電圧を変え
るよつにして電気浸透脱水機を運転制御することが必要
となる。一方、物質の含水率を測定する一般的な手段と
しては赤外線式含水率計が従来よりよく知られているが
、この赤外線式含水率計を脱水ケーキ測定用として電気
浸透脱水機に通用する場合には次記のような問題が派生
する。すなわら電気浸透脱水機では脱水処理の過程で電
流の通流に伴う発熱があり、脱水処理後の脱水ケーキか
ら多くの蒸気が発生する。このために脱水機の出口側の
地点   パ; で脱水ケーキを前記赤外線式含水率計により測定   
。 しようとすると、脱水ケーキから発生する蒸気が   
□測定光を吸収する等して測定の外乱要因となるために
含水率を正しく測定すること力く極めて困難となる。ま
た電気浸透脱水機から搬出される脱水ケーキはその表面
が凹凸な団塊状を呈しており、赤外線式含水率計で測定
するには一旦脱水ケーキの表面を成る程度まで平滑面に
均らすして整形す、乙操作が必要である。しカルこの操
作は面倒でありこのことが赤外線式含水率計の適用を一
層困難にしている。
An electric immersion (sWA*) apparatus that continuously processes sludge by applying electroosmosis to the above-mentioned sludge, etc., has been conventionally implemented with a configuration as shown in FIG. 4. In FIG. 4, 1 is a rotating drum on the anode side with an electrode 2 arranged on its outer periphery, and 3 is a press that also serves as an electrode member on the cathode side and stretched between sprockets facing the circumferential area of the rotating drum 1. The belt 4 is a filter cloth stretched over the circumferential surface of the press belt 3. /j^・+1.
LC: There is an OLL claw 19 in the l, a slurry conveying passage 6 is formed in the area where the rotating drum 1 and the filter belt 4 face each other, and a slurry conveying passage 6 is formed on the entrance side of the passage 6. A supply hopper 7 is installed, and these constitute the main body of the electroosmotic dewatering apparatus. Note that the passage 6 is formed so that the passage width gradually narrows from the inlet side to the outlet side. Further, a belt conveyor 8 for supplying slurry is provided on the population side facing the hopper 7, and a positive terminal of a DC power supply 9 is connected to the rotary drum 1 facing the press belt 3 on the ground side. are connected via a power supply brush and a current collector slip ring. In addition, 10 is a dish for the filtration light installed below the filter belt 4 in the main body of the dehydrator, 11 is a collection container for the dehydrated cake, and 12 is a scraper for peeling off and scraping off the dehydrated cake adhering to the filter belt 4. be. When the drive motor 5 is operated with this configuration and a voltage is applied between the electrode 2 and the press belt 3 from the power supply 9, the slurry is supplied from the hopper 7 to the slurry transport path 6 via the slurry supply belt conveyor 8. When the slurry iA as a dewatered product is supplied, the slurry is sandwiched between the rotary drum 1 and the press belt 3 and conveyed by the belt a in the direction of the arrow P, and during this conveyance process, it is subjected to mechanical squeezing force. It comes to be affected by the electric field formed between the opposing electrodes. As a result, dehydration of the slurry A progresses mainly in the region near the entrance side of the passageway due to mechanical squeezing force, and dehydration progresses in the region behind it due to electroosmotic action caused by the electric field. In the electroosmotic dewatering area, the water contained in the sludge is positively charged and flows toward the cathode press belt 3, where it is discharged to this electrode member and passes through the filter belt 4 to be separated and dehydrated from the sludge, and is then inside the passage. The filtrate water and the filtrate water dehydrated from the compression dewatering section in the front area drip onto the dish 10 and are drained out of the system. In this case, the amount of filtrate transferred (dehydration amount) due to electroosmosis is proportional to the current flowing through the mud. On the other hand, the sludge remaining in the conveyance passage 6 is concentrated and caked by the above-mentioned dewatering operation, becomes a dehydrated cake B with a low water content, is sent out from the outlet of the passage Ia6, and is peeled off from the filter belt 4 by the scraper 12. It is collected in the collection container 11. Note that the dehydrated cake produced by dehydrating sludge generated at a sewage treatment plant is usually incinerated or composted to be recycled as fertilizer. By the way, the properties of the sludge generated in the above-mentioned sewage treatment plants and the like, especially its concentration, are not always constant and vary depending on the situation. Therefore, when this sludge is dehydrated using an electroosmotic dehydrator, if the operating conditions are kept constant, the water content of the dehydrated cake will change as the properties of the sludge change. On the other hand, it is desirable that the water content of the dewatered cake of sludge produced through the electroosmotic dehydrator is approximately constant in consideration of subsequent processing. However, if the electroosmotic dehydrator continues to operate under certain conditions, if the sludge concentration becomes lower than normal, the water content of the dehydrated cake will increase due to insufficient dehydration during the dehydration process. If the sludge concentration is high, it will cause problems when the dehydrated cake is then incinerated, for example, and if the sludge concentration is high, it will result in excessive dewatering. :*m6 Tsugu'n7TIT'F
l'F, iJ, sub1>J+-/71Mt→1me', 'r
bMk, resulting in uneconomical driving. From this point of view, in order to operate the electroosmotic dehydrator efficiently and to obtain a dehydrated cake with a stable desired moisture content regardless of changes in the properties of the slurry, it is necessary to measure and monitor the moisture content of the dehydrated cake while the dehydrator is operating. However, when this water content deviates from the target set value, the electroosmotic dehydrator is activated by using the deviation between the measured water content of the dehydrated cake and the target set value as a feed batter signal to change the voltage applied between the electrodes. It is necessary to control the operation. On the other hand, infrared moisture content meters have long been well known as a general means of measuring the moisture content of substances, but when this infrared moisture content meter is used for measuring dehydrated cakes in an electroosmotic dehydrator, The following problems arise. In other words, in an electroosmotic dehydrator, heat is generated due to the passage of electric current during the dehydration process, and a large amount of steam is generated from the dehydrated cake after the dehydration process. For this purpose, the dehydrated cake is measured using the infrared moisture content meter at a point on the outlet side of the dehydrator.
. When you try to do this, the steam generated from the dehydrated cake
□It becomes extremely difficult to measure the water content correctly because it absorbs the measurement light and becomes a disturbance factor in the measurement. In addition, the dehydrated cake discharged from the electroosmotic dehydrator has a lump-like surface with uneven surfaces, so in order to measure it with an infrared moisture content meter, the surface of the dehydrated cake must be leveled to a smooth surface. Formatting and operations are required. However, this operation is troublesome, which makes it even more difficult to apply an infrared moisture content meter.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、脱
水ケーキの含水率を前記した赤外線式含水率計等で直接
計測することなく、電気浸透脱水機の機内給電回路の通
電状態を検出することGこより間接的に脱水ケーキの含
水率を的確に把握し、これを基に泥漿の性状変動に対応
した最適運転制御が行えるようにした電気浸透脱水機の
運転t!l制御方式を提供することを目的とする。
This invention has been made in consideration of the above points, and it is an object of the present invention to detect the energization state of the in-machine power supply circuit of an electroosmotic dehydrator without directly measuring the moisture content of a dehydrated cake with the above-mentioned infrared moisture content meter or the like. Operation of an electro-osmotic dewatering machine that allows the moisture content of the dehydrated cake to be accurately grasped indirectly from G, and based on this, optimal operation control can be performed in response to changes in the properties of the slurry. The purpose is to provide a control method.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明もま機内における
電極への給電回路に電流検出手段を備え、該電流検出手
段を介して前記泥漿搬送通路内における電気浸透脱水領
域を含む各地点での泥漿の電気抵抗を測定してこの測定
値から脱水ケーキの含水率を演算して求め、この演算値
と脱水ケーキ含水率の目標設定値との偏差をフィードバ
ック信号として電極間に加える印加電圧を制御するよう
にしたものである。 すなわち先記した電気浸透脱水機を使用して行った泥漿
の脱水処理実験から得た知見によれば、機内泥!!i搬
送通路内における主として圧搾脱水が行われる人口側に
近い圧搾脱水領域で例えば80%の含水率であった泥漿
が電気浸透脱水工程を経て70%の含水率まで低下する
と、この間に泥漿の電気的な比抵抗は泥漿の性状にもよ
るが2.3〜3倍に上昇するなど、電気浸透脱水の進行
に伴って泥漿の電気抵抗が抗が上昇することが確認され
ている。なおこの場合の機内脱水区分と泥漿の電気抵抗
との関係を表す特性の一例を示すと第3図のごとくであ
り、図中の区分子、n、I[lはそれぞれ後述するよう
に機械的な圧搾脱水碩域、電2気浸透脱水領域、および
脱水ケーキの搬送領域を示しても為る。したがって泥漿
の性状が大幅に変動しない範囲では泥漿搬送通路内で電
気浸透脱水領域を含む各地点での泥漿の電気抵抗を測定
し、これを基に前記の実験で確認されている泥漿の電気
抵抗と脱水ケーキの含水率との間の関係の特性と対比し
て逆算子ることによりその時の運転で得られる脱水ケー
キの含水率が間接的に把握できることになる。 しかも脱水処理工程における泥漿の電気抵抗変化の様子
は泥漿搬送通路内の各地点に対応する電極部分の通流電
流を検出することにより、この電流測定値と電極印加電
圧との比に計測地点の泥漿搬送通路寸法、および計測位
置によって定まる常数等を加えて演算することによって
容易に求められる。このようにして間接的に求めた脱水
ケーキの含水率を所望の含水率目標設定値と比較し、そ
の偏差をフィードバック信号として電極への印加電極を
制御することにより、泥漿の性状変動にかかわらず常に
含水率一定の脱水ケーキを得るととも++  ILL 
+L−Pム八す+へ由^檜弗尤仰4す、α違;冨ド楕(
行えるように電気浸透脱水機の運転を最適制御すること
ができる。
In order to achieve the above object, the present invention is equipped with a current detection means in the power supply circuit to the electrode in the machine, and the slurry is detected at each point including the electroosmotic dehydration area in the slurry transport passage through the current detection means. The electrical resistance of the dehydrated cake is measured and the moisture content of the dehydrated cake is calculated from this measured value, and the deviation between this calculated value and the target set value of the dehydrated cake moisture content is used as a feedback signal to control the applied voltage between the electrodes. This is how it was done. In other words, according to the knowledge obtained from the slurry dehydration experiment conducted using the electroosmotic dehydrator mentioned above, the mud inside the machine! ! i When the water content of the slurry, which was 80% in the compression dewatering area near the population side in the conveyance passage, is subjected to the electroosmotic dehydration process and is reduced to 70% during this period, the electricity of the slurry decreases to 70%. It has been confirmed that the electrical resistivity of the slurry increases as electroosmotic dehydration progresses, such as increasing by 2.3 to 3 times depending on the properties of the slurry. An example of the characteristics showing the relationship between the in-machine dehydration section and the electrical resistance of the slurry in this case is shown in Fig. 3, where the section numerators, n, and I [l in the figure are mechanical as will be described later. It is also possible to show the compressed dehydration area, the electrolytic osmosis dehydration area, and the dehydrated cake conveyance area. Therefore, within the range where the properties of the slurry do not change significantly, the electrical resistance of the slurry at each point including the electroosmotic dewatering area in the slurry transport passage is measured, and based on this, the electrical resistance of the slurry confirmed in the above experiment is used. By contrasting and calculating the characteristics of the relationship between and the moisture content of the dehydrated cake, the moisture content of the dehydrated cake obtained in the current operation can be indirectly grasped. Furthermore, changes in the electrical resistance of the slurry during the dehydration process can be determined by detecting the current flowing through the electrodes corresponding to each point in the slurry transport passage, and by calculating the ratio of this current measurement value to the voltage applied to the electrode at the measurement point. It can be easily determined by adding and calculating constants determined by the dimensions of the slurry conveying path and the measurement position. By comparing the moisture content of the dehydrated cake indirectly determined in this way with the desired moisture content target set value, and controlling the applied electrode to the electrode using the deviation as a feedback signal, the To obtain a dehydrated cake with constant moisture content ++ ILL
+L-P mu eights + to Yu ^ hinoki 弗尤 4su, α difference; Tomi do ellipse (
The operation of the electroosmotic dehydrator can be optimally controlled so that

【発明の実施例] 第1図および第2図はそれぞれこの発明の異なる実施例
の運転制御系統図を示すものであり、第4図に対応する
部材には同じ符合が付しである。 まず第1図の実施例において、回転ドラム10周1上に
装備した陽極側の電極2はドラム周上に並べて分割配備
された多数の電極セグメント2aからなり、かつ各電極
セグメン)2aの相互間は絶縁体2bで絶縁隔離されて
いる。一方、前記の各電極セク′メント2aはドラム側
に設置した分割形の集電用スリップリング13の各セグ
メント13aと1対1で対応するようにリード線14を
介して相互接続されている。またスリップリング13に
対向してその同上における所定の位置には符合15で示
す分割形の給電刷子が配備されており、かつ該給電刷子
の刷子セグメント15aから個々に引き出したリード線
16が詳細を後述するiit選択選択スフチ装置17の
スイーノ千接市を介して′@源装置9のプラス側端子に
接続され、これらで給電回路を構成している。ここで前
記した通電選択スイッチ装置17は外部からの指令で泥
漿搬送通路6内における電気浸透脱水領域の幅を指定す
るものでり、その指令に対応する電極セグメント2aを
選択してその給電回路のスイッチ接点を投入することに
より泥漿搬送通路6内に指定した電気浸透脱水領域幅が
調節される。図示例では陽極側電極2の各電極セグメン
)2aについて符合a w hで表した電極セグメント
のうちd〜hの電極セグメント位置に対応する回路に介
挿した通電選択スイッチ装W17のスイッチ接点をオン
、残りの電極セグメント位置に対応するスイッチ接点を
オフとしてd−hの範囲に電気浸透脱水領域を指定して
運転を行っている状態を示している。これにより泥漿搬
送通路6の内部では、符合dの電極セグメントを境に区
分■で表した入口側に近い領域では機械的な圧搾力によ
る脱水が行われ、区分■で表したd−hの電極セグメン
ト範囲の領域では電気浸透脱水が行われることになる。 また符合りの電極セグメントより後方の出口側区分■は
脱水ケーキの搬送領域を表している。なお第4図に示し
た駆動モーフ5の駆動操作によりプレスベルト3および
回転ドラム1が矢印方向に移動するが、給電刷子15を
通じて通電される電極セグメントの位置は変わらないの
で泥漿通路6内に指定された電気浸透脱水領域は同じ位
置に形成されることになる。 かかる構成に対して、前記した給電刷子15の各刷子セ
グメントと電源との間を個々に結ぶ給電回路のリード線
16に介装した電流検出器18と、符合19、20で示
す演算器、制御器でこの発明による電気浸透脱水機の運
転制御系統が構成されている。 ここで演算器19に対し前記した通電選択スイッチ装置
17からは通電電極セグメントの選択信号が、また各電
流検出器18からは泥漿搬送通路6の各位置に対応する
電極セグメン)2aに流れる電極電流の測定値が、さら
に電圧検出器21より電源装置9の出力電圧が入力され
る。またこれら入力情報を基に演算器19では、脱水区
分■に対応する符合a   ′の電極セグメントの通!
電流(を極セグメントaは電流測定のために短時間だけ
通電選択スイッチ装置17の接点がオンされる)、およ
び区分■の電気浸透脱水領域に対応位置する符合d−h
の各電極セグメントの通流電流の測定値と電源装置9の
出力電圧とからそれぞれ電気浸透脱水領域を含む泥漿搬
送通路6における各地点での泥漿の電気的な比抵抗を演
算し、さらにあらかしめ実験結果を基に演算器19に書
き込んである泥漿の抵抗と脱水ケーキの含水率との関係
の特性データと前記の演算値とを対比して脱水ケーキの
含水率を演算した上で、この含水率信号をフィードパ・
ツク信号Xとして制御器20に出力する。一方、制御器
20には脱水ケーキ含水率の目標設定値yが与えられ、
前記のフィードバンク信号Xとの偏差を制御信号2とし
て電源装置9の出力電圧を制御する。すなわち脱水ケー
キ含水率の演算値が目標設定値よりも高含水率であれば
′を源電圧を高めて電気浸透の電流の増大して脱水能力
を高める。一方、供給泥漿の濃度が上昇変動するなど泥
漿の性状変化により脱索ルー4.の47+/家先り宇イ
直上め117氏〈だ−た過剰1脱水の状態になれば、逆
に電極への印加電圧を低めて電流を抑え、余分な電力を
消費しないように   ;運転制御を行う。 なお泥漿搬送通路の各地点に対応する電極の通   □
電電流を検出する方式として、図示例のように複数の電
流検出器を用いずに1台の電流検出器を共通な給電回路
に介装し、通電選択スイッチ装置によるスイッチ接点切
換え操作で順に各電極セグメントの通流電流を検出する
方法、ないしは電流検出を別な測定電源で行う等の方法
の実施も可能で   ′ある。 このように泥漿搬送通路的各地点の泥漿抵抗を測定して
電源電圧を制御することにより、電気浸透脱水機から搬
出される脱水ケーキの含水率を赤外線式含水率計等を用
いて直接測定することなく、系内で容易に測定できる電
極電流を検出信号とし   □て脱水検出の含水率が常
に一定となるように電気浸透脱水機の最適制御が行える
ようになる。 次に第2図にこの発明の別な実施例を示す。第2図の実
施例は先記した第1図の実施例における通電選択スイッ
チ装置17の代わりに、回転ドラム側の集電用スリップ
リング13に対向する電源側の給電刷子15が複数のス
リ・ノプリングセク″メントに跨る幅を持った移動式の
刷子として構成れており、刷子移動機構22によりスリ
ップリング13の同上を移動することにより通電すべき
電極セグメン1−2aの選択、したがって泥漿搬送通路
内における電気浸透脱水領域の指定位置を調整するよう
に構成されている。かかる構成に対し各電極セグメント
2aとスリップリング13との間を個々に相互接続する
リード線14に電流検出器18が介装されていおり、こ
の電流検出器18.演算器19および制御器20とで運
転制御系統を構成している。ここで電流検出器18の出
力信号、前記した給電刷子15の移動位置を検出する位
置検出器23の出力信号、および電源電圧検出器21の
出力信号が演算器19に与えられ、この入力信号を基に
前記実施例と同様に演算器19が脱水ケーキの含水率を
演算する。さらに演算器19で求めた含水率をフィード
バック信号Xとして制御器20に出力され、この制御器
20で電源装置9の出力電圧制御を行う。 なお上記各実施例は第4図に示した回転ドラムとプレス
ベルトとの組合せによる連続処理式の電気浸透脱水機を
例示したが、回転ドラムの代わりに陽極側の電極部材を
ベルト式として構成したものについても同様に実施でき
ることは勿論である。 【発明の効果】 以上述べたようにこの発明によれば、機内における電極
への給電回路に電流検出手段を備え、該電流検出手段を
介して前記泥3[送通路内における電気浸透脱水領域を
含む各地点での泥漿の電気抵抗を測定してこの測定値か
ら脱水ケーキの含水率を演算して求め、この演算値と脱
水ケーキ含水率の目標設定値との偏差をフィードバック
信号として電極間に加える印加電圧を制御することによ
り、電気浸透脱水機への適用が困難な赤外線式含水率計
等を用いて脱水ケーキの含水率を直接測定することなく
、系内の給電回路より容易に測定できる泥漿搬送通路の
各地点に対応する電極の通電電流を検出値として、脱水
ケーキ含水率の一定維持と併せて薬分な電力消費を抑え
るように電気浸透脱水機を最適制御することができる。
Embodiments of the Invention FIGS. 1 and 2 each show operation control system diagrams of different embodiments of the invention, and members corresponding to those in FIG. 4 are given the same reference numerals. First, in the embodiment shown in FIG. 1, the anode side electrode 2 installed on the rotating drum 10 circumference 1 consists of a large number of electrode segments 2a arranged and divided on the drum circumference, and between each electrode segment 2a. are insulated and isolated by an insulator 2b. On the other hand, each of the electrode segments 2a is interconnected via a lead wire 14 in a one-to-one correspondence with each segment 13a of a divided current collecting slip ring 13 installed on the drum side. Further, a split-type power supply brush indicated by reference numeral 15 is disposed at a predetermined position on the same side facing the slip ring 13, and lead wires 16 drawn out individually from the brush segments 15a of the power supply brush are shown in detail. It is connected to the positive side terminal of the source device 9 via a switch of the IIT selection selection device 17, which will be described later, and constitutes a power supply circuit. The above-mentioned energization selection switch device 17 is used to specify the width of the electroosmotic dehydration region in the slurry transport passage 6 by an external command, and selects the electrode segment 2a corresponding to the command to control the power supply circuit. By turning on the switch contact, the specified width of the electroosmotic dewatering region in the slurry conveying passage 6 is adjusted. In the illustrated example, for each electrode segment 2a of the anode side electrode 2, the switch contact of the energization selection switch W17 inserted in the circuit corresponding to the electrode segment position d to h among the electrode segments indicated by the symbols a w h is turned on. , shows a state in which operation is performed with the switch contacts corresponding to the remaining electrode segment positions turned off and the electroosmotic dehydration region specified in the range dh. As a result, inside the slurry conveying passage 6, dewatering is performed by mechanical squeezing force in the area near the inlet side, which is represented by the section ■, with the electrode segment marked d as the border, and the electrodes d-h, which are shown by the section ■, are dehydrated. Electroosmotic dehydration will take place in the area of the segment area. In addition, the exit side section 2 behind the electrode segment with the same symbol represents the conveyance area of the dehydrated cake. Although the press belt 3 and the rotating drum 1 are moved in the direction of the arrow by the drive operation of the drive morph 5 shown in FIG. The electroosmotic dehydration area will be formed at the same location. For such a configuration, a current detector 18 interposed in the lead wire 16 of the power supply circuit that individually connects each brush segment of the power supply brush 15 and the power supply, and arithmetic units and control units indicated by numerals 19 and 20 are provided. The operation control system of the electroosmotic dehydrator according to the present invention is configured by the device. Here, a selection signal for the energized electrode segment is sent to the calculator 19 from the energization selection switch device 17, and an electrode current flows from each current detector 18 to the electrode segment 2a corresponding to each position of the slurry transport path 6. Further, the output voltage of the power supply device 9 is inputted from the voltage detector 21 . Based on these input information, the calculator 19 calculates the result of the electrode segment with the code a' corresponding to the dehydration category ■!
current (the contact of the energization selection switch device 17 is turned on for a short time in the pole segment a for current measurement), and the sign d-h located corresponding to the electroosmotic dehydration region of the segment
The electrical resistivity of the slurry at each point in the slurry transport passage 6 including the electroosmotic dehydration region is calculated from the measured value of the current flowing through each electrode segment and the output voltage of the power supply device 9, and further a summary is obtained. After calculating the moisture content of the dehydrated cake by comparing the characteristic data of the relationship between the resistance of the slurry and the moisture content of the dehydrated cake written in the calculator 19 based on the experimental results with the above-mentioned calculated value, feed rate signal
It is output to the controller 20 as a turn signal X. On the other hand, the target setting value y of the dehydrated cake moisture content is given to the controller 20,
The output voltage of the power supply device 9 is controlled using the deviation from the feed bank signal X as the control signal 2. That is, if the calculated value of the water content of the dehydrated cake is higher than the target setting value, the source voltage is increased to increase the electroosmotic current and improve the dewatering ability. On the other hand, due to changes in the properties of the slurry, such as an increase in the concentration of the supplied slurry, the derobing route 4. 47+/Mr. Iezaki Ui Naokami 117〈If excessive dehydration occurs, the voltage applied to the electrodes should be lowered to suppress the current and avoid consuming excess power; operation control. I do. In addition, the electrodes corresponding to each point on the slurry transport path □
As a method of detecting the current, instead of using multiple current detectors as shown in the figure, one current detector is installed in a common power supply circuit, and each current detector is sequentially detected by switching the switch contact with the energization selection switch device. It is also possible to implement a method of detecting the current flowing through the electrode segment, or a method of detecting the current using a separate measurement power source. By measuring the slurry resistance at each point along the slurry conveyance path and controlling the power supply voltage in this way, the moisture content of the dehydrated cake being carried out from the electroosmotic dehydrator can be directly measured using an infrared moisture content meter, etc. By using the electrode current, which can be easily measured within the system, as a detection signal, the electroosmotic dehydrator can be optimally controlled so that the moisture content detected by dehydration is always constant. Next, FIG. 2 shows another embodiment of the present invention. In the embodiment shown in FIG. 2, instead of the energization selection switch device 17 in the embodiment shown in FIG. The brush is configured as a movable brush having a width that spans the nopling segment, and is moved over the slip ring 13 by the brush moving mechanism 22 to select the electrode segment 1-2a to be energized, and therefore to select the electrode segment 1-2a to be energized, and therefore to select the electrode segment 1-2a to be energized, and therefore to select the electrode segment 1-2a to be energized. For such a configuration, a current detector 18 is interposed in the lead wire 14 interconnecting each electrode segment 2a and the slip ring 13 individually. The current detector 18, the arithmetic unit 19, and the controller 20 constitute an operation control system.Here, the output signal of the current detector 18 and the position at which the movement position of the feed brush 15 described above is detected. The output signal of the detector 23 and the output signal of the power supply voltage detector 21 are given to the calculator 19, and based on these input signals, the calculator 19 calculates the moisture content of the dehydrated cake in the same manner as in the previous embodiment. The moisture content determined by the calculator 19 is output as a feedback signal X to the controller 20, and the controller 20 controls the output voltage of the power supply device 9.In addition, each of the above embodiments uses the rotating drum shown in FIG. Although a continuous treatment type electroosmotic dehydrator in combination with a press belt has been exemplified, it goes without saying that the present invention can also be implemented in the same manner with a belt-type electrode member on the anode side instead of a rotating drum. [Effects] As described above, according to the present invention, a current detection means is provided in the power supply circuit to the electrodes in the machine, and the current detection means is used to detect the mud 3 [at each point including the electroosmotic dehydration area in the conveyance path]. The electrical resistance of the slurry is measured and the water content of the dehydrated cake is calculated from this measured value, and the deviation between this calculated value and the target set value of the water content of the dehydrated cake is used as a feedback signal to apply the applied voltage between the electrodes. By controlling the water content of the dehydrated cake, the slurry conveyance path can be easily measured from the power supply circuit in the system, without directly measuring the water content of the dehydrated cake using an infrared water content meter, etc., which is difficult to apply to electroosmotic dehydrators. Using the current flowing through the electrodes corresponding to each point as the detected value, the electroosmotic dehydrator can be optimally controlled to maintain a constant water content of the dehydrated cake and to significantly reduce power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の実施例による
電気浸透脱水機の運転制御系統図、第3図は電気浸透脱
水処理工程の進行に伴う泥漿の電気抵抗の変化の様子を
示す特性図、第4図は連続処理式の電気浸透脱水機の構
成図である。図において、 2:陽極側の電極部材、2a:電極セグメント、3:陰
極側の電極部材を兼ねたプレスベルト、4:フィルタベ
ルト、6:泥漿搬送通路、9:電源装置、18:電流検
出器、19:含水率の演算器、2o:制御器、A:泥漿
、B:脱水ケーキ。 、(Jfi人〕t−,2二 山 口   互第3図
Figures 1 and 2 are operational control system diagrams of an electroosmotic dehydrator according to an embodiment of the present invention, and Figure 3 is a characteristic diagram showing changes in electrical resistance of slurry as the electroosmotic dehydration process progresses. , FIG. 4 is a block diagram of a continuous processing type electroosmotic dehydrator. In the figure, 2: electrode member on the anode side, 2a: electrode segment, 3: press belt that also serves as the electrode member on the cathode side, 4: filter belt, 6: slurry conveyance path, 9: power supply device, 18: current detector , 19: water content calculator, 2o: controller, A: slurry, B: dehydrated cake. , (Jfi person) t-, 22 Yamaguchi mutual figure 3

Claims (1)

【特許請求の範囲】 1)相対向して配置された陽極側の電極部材と陰極側の
電極部材との間に泥漿搬送通路を形成し、前記対向電極
の間に直流電源装置より電圧を印加した状態で系内の泥
漿搬送通路へ供給した泥漿の含有水を電気浸透脱水作用
により系外に分離脱水して泥漿を脱水ケーキ化する電気
浸透脱水機において、機内における電極への給電回路に
電流検出手段を備え、該電流検出手段を介して前記泥漿
搬送通路内における電気浸透脱水領域を含む各地点での
泥漿の電気抵抗を測定してこの測定値から脱水ケーキの
含水率を演算して求め、この演算値と脱水ケーキ含水率
の目標設定値との偏差をフィードバック信号として電極
間に加える印加電圧を制御することを特徴とする電気浸
透脱水機の運転制御方式。 2)特許請求の範囲第1項記載の運転制御方式において
、陽極側の電極が泥漿搬送通路に沿って分割された電極
セグメント列よりなり、かつ電流検出手段を介して各電
極セグメントと電源との間を個々に結ぶ給電回路の通流
電流を検出するようにしたことを特徴とする電気浸透脱
水機の運転制御方式。
[Claims] 1) A slurry transport path is formed between an anode side electrode member and a cathode side electrode member that are arranged to face each other, and a voltage is applied between the opposing electrodes from a DC power supply device. In an electroosmotic dewatering machine, the water contained in the slurry supplied to the slurry conveyance passage in the system is separated and dehydrated outside the system by electroosmotic dehydration to turn the slurry into a dehydrated cake. A detection means is provided, and the electric resistance of the slurry is measured at each point including the electroosmotic dehydration area in the slurry transport passage through the current detection means, and the water content of the dehydrated cake is calculated from the measured value. An operation control method for an electroosmotic dehydrator, characterized in that the applied voltage applied between the electrodes is controlled using the deviation between the calculated value and the target set value of the water content of the dehydrated cake as a feedback signal. 2) In the operation control method described in claim 1, the electrode on the anode side is composed of a row of electrode segments divided along the slurry transport path, and each electrode segment is connected to a power source via a current detection means. An operation control method for an electro-osmotic dehydrator, characterized in that the current flowing through a power supply circuit that connects the individual parts is detected.
JP10195885A 1985-05-14 1985-05-14 System for operational control of electroosmotic dehydrator Pending JPS61259716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195885A JPS61259716A (en) 1985-05-14 1985-05-14 System for operational control of electroosmotic dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195885A JPS61259716A (en) 1985-05-14 1985-05-14 System for operational control of electroosmotic dehydrator

Publications (1)

Publication Number Publication Date
JPS61259716A true JPS61259716A (en) 1986-11-18

Family

ID=14314376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195885A Pending JPS61259716A (en) 1985-05-14 1985-05-14 System for operational control of electroosmotic dehydrator

Country Status (1)

Country Link
JP (1) JPS61259716A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160593A (en) * 1987-03-31 1992-11-03 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5259940A (en) * 1987-03-31 1993-11-09 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5344533A (en) * 1987-03-31 1994-09-06 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5362371A (en) * 1987-03-31 1994-11-08 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5403455A (en) * 1987-03-31 1995-04-04 Candor; James T. Apparatus and method for removing liquid from liquid bearing material
JP2011509175A (en) * 2008-05-15 2011-03-24 コリア ウォーター テクノロジー アイエヌシー. Phase-controlled electrophoretic electroosmosis dehydrator using a three-phase AC power supply.
CN102608292A (en) * 2012-03-09 2012-07-25 北京建筑工程学院 Sludge specific resistance measuring apparatus
JP2015527180A (en) * 2012-06-05 2015-09-17 ファイン インコーポレイテッドFine Inc. Electric energy saving voltage input device for electroosmosis dehydrator
EP3696082A1 (en) * 2019-02-14 2020-08-19 The Boeing Company Moisture control systems and methods for controlling moisture in an aircraft
KR20210155212A (en) * 2020-06-15 2021-12-22 (주)한국워터테크놀로지 Control method of electric osmosis sludge dewatering device using machine learning

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160593A (en) * 1987-03-31 1992-11-03 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5259940A (en) * 1987-03-31 1993-11-09 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5344533A (en) * 1987-03-31 1994-09-06 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5362371A (en) * 1987-03-31 1994-11-08 Candor James T Apparatus and method for removing liquid from liquid bearing material
US5403455A (en) * 1987-03-31 1995-04-04 Candor; James T. Apparatus and method for removing liquid from liquid bearing material
JP2011509175A (en) * 2008-05-15 2011-03-24 コリア ウォーター テクノロジー アイエヌシー. Phase-controlled electrophoretic electroosmosis dehydrator using a three-phase AC power supply.
CN102608292A (en) * 2012-03-09 2012-07-25 北京建筑工程学院 Sludge specific resistance measuring apparatus
CN102608292B (en) * 2012-03-09 2014-07-23 北京建筑大学 Sludge specific resistance measuring apparatus
JP2015527180A (en) * 2012-06-05 2015-09-17 ファイン インコーポレイテッドFine Inc. Electric energy saving voltage input device for electroosmosis dehydrator
EP3696082A1 (en) * 2019-02-14 2020-08-19 The Boeing Company Moisture control systems and methods for controlling moisture in an aircraft
US11548609B2 (en) 2019-02-14 2023-01-10 The Boeing Company Moisture control systems and methods for controlling moisture in an aircraft
KR20210155212A (en) * 2020-06-15 2021-12-22 (주)한국워터테크놀로지 Control method of electric osmosis sludge dewatering device using machine learning

Similar Documents

Publication Publication Date Title
JPS61259716A (en) System for operational control of electroosmotic dehydrator
JP4446257B2 (en) In situ electrocleaning of electrically improved contaminated soil
DE2444903A1 (en) SLUDGE TREATMENT DEVICE
US4755305A (en) Continuous dewatering method
US4671874A (en) Continuous dewatering apparatus
CA2180365A1 (en) A method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
CS209515B2 (en) Method of dehydration of the solid particles suspension in the carrying liquid and device for executing the same
JP2007528284A5 (en)
NL8203237A (en) METHOD FOR ELECTRODIALYZING A LIQUID AND APPARATUS FOR CARRYING OUT THE METHOD IN NUMBER OF STAGES
US3401068A (en) Method and apparatus for uniformly etching printed circuits by control of the conveyor speed
US3755804A (en) Liquid level sensing system and apparatus
US4287044A (en) Silver recovery apparatus
JPS61259709A (en) System for operation control of electroosmotic dehydrator
KR101291734B1 (en) System and method for controlling electro-penetrative dehydrator
JPS6118410A (en) Operation controlling system for electroosmotic dehydrator
NO152705B (en) PROCEDURE FOR REGULATING THE ELECTRODE DISTANCE IN AN ELECTRICAL CELL
JPS61268310A (en) Electroosmotic dehydrator
JP2015147193A (en) Electro-osmotic dehydrator and method of operating the same
EP0578032A3 (en) Sewage treatment plant working process and device for injecting phosphates precipitation products
US2479615A (en) Amalgamator, including electrical precipitation means
ATE23579T1 (en) MONITORING AND CONTROL DEVICE FOR CHLORAL-ALKALI ELECTROLYTIC CELLS WITH MERCURY CATHODE.
JPS61259711A (en) Electroosmotic dehydration apparatus
JPS63256113A (en) Electroosmotic dehydrator
SU772516A1 (en) Device for protein coagulation
JPS6068019A (en) Operation system of electroosmotic dehydrator