JPS61259406A - Anisotropic conductive sheet and manufacture thereof - Google Patents

Anisotropic conductive sheet and manufacture thereof

Info

Publication number
JPS61259406A
JPS61259406A JP10015685A JP10015685A JPS61259406A JP S61259406 A JPS61259406 A JP S61259406A JP 10015685 A JP10015685 A JP 10015685A JP 10015685 A JP10015685 A JP 10015685A JP S61259406 A JPS61259406 A JP S61259406A
Authority
JP
Japan
Prior art keywords
conductive sheet
sheet
holes
anisotropically conductive
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10015685A
Other languages
Japanese (ja)
Inventor
田村 正平
佐々木 貞光
武 佐々木
中本 啓次
宮武 宏
彰 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP10015685A priority Critical patent/JPS61259406A/en
Publication of JPS61259406A publication Critical patent/JPS61259406A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Landscapes

  • Adhesive Tapes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は、フレキシブル回路等の電気的接合材に用いる
異方導電性シートに関するものであり、特に導電材とし
て有機質導電材を用いた異方導電性シート及びその製造
方法に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an anisotropically conductive sheet used as an electrical bonding material for flexible circuits, etc., and particularly to an anisotropic conductive sheet using an organic conductive material as the conductive material. The present invention relates to a conductive sheet and a method for manufacturing the same.

(b)従来の技術 シートの厚み方向のみに導電性を有する異方導電性シー
トは、高密度コネクター、例えば、ブリ、  ント配線
基板と7ラツトケーブルとの接続、プリント配線基板と
LSIパッケージとの接続等に利用されている。
(b) Conventional technology Anisotropically conductive sheets that have conductivity only in the thickness direction of the sheet can be used for high-density connectors, such as connections between printed wiring boards and 7-rat cables, and connections between printed wiring boards and LSI packages. It is used for connections etc.

かかる異方導電性シートとしては、ゴム又は合成樹脂か
ら成る絶縁性シート中に導電性金属微粉末を当該シート
の厚さ方向に複数連設させた状態で分散させたもの、或
は導電性繊維をシートの厚さ方向に埋め込んだものが知
られている。
Such an anisotropically conductive sheet may be one in which a plurality of conductive metal fine powders are dispersed in an insulating sheet made of rubber or synthetic resin in a plurality of rows in the thickness direction of the sheet, or conductive fibers. It is known that the material is embedded in the thickness direction of the sheet.

(e)発明が解決しようとする問題点 前者の異方導電性シートにおいては、シートをプリント
基板等と接触させた場合、その圧力によってシート厚さ
方向に連設された金属微粉末相互の接触度合が異なり、
シート厚さ方向における電気抵抗の変動が大きく、しか
も導電材として金属を用いるから異方導電性シートの高
重量化は避けることができなかった。
(e) Problem to be solved by the invention In the former anisotropically conductive sheet, when the sheet is brought into contact with a printed circuit board, etc., the pressure causes contact between the fine metal powders arranged in the thickness direction of the sheet. different degrees,
Since the electric resistance fluctuates greatly in the sheet thickness direction, and metal is used as the conductive material, it is unavoidable that the weight of the anisotropically conductive sheet increases.

又、後者の異方導電性シートも電気抵抗の変動が大きい
という問題があった。このシートにおけるかかる問題は
その製法に由来するものと考えられる。このシートは硬
化前の絶縁性素材に導電性繊維を分散させ、これを配向
させた後、該絶縁性素材を硬化させ、この硬化物を導電
性繊維の配向方向を横断するようにスライスする方法に
より得られている。スライス作業は、スライス面におけ
る各繊維を数面に対して直立させるため、導電性繊維の
配向方向に対して垂直に行うのが好ましいが、実際の作
業に際しては多少の傾斜は避けられないものである。従
って、この方法によって得られる異方導電性シートにお
いては、スライス面において導電性繊維の露出度合が不
均一であったり、該繊維が傾斜していたりするので、電
気抵抗の変動が大きいのである。又、上記製法では、導
電性繊維の配゛合・配向並びに硬化物のスライスが困難
であるばかりでなく、複雑な装置を要する上、生産性が
悪いというHIMもあった。
Furthermore, the latter anisotropically conductive sheet also has a problem of large fluctuations in electrical resistance. This problem with this sheet is thought to be due to its manufacturing method. This sheet is produced by dispersing conductive fibers in an insulating material before curing, orienting the conductive fibers, then curing the insulating material, and slicing the cured product across the orientation direction of the conductive fibers. It is obtained by It is preferable to perform the slicing operation perpendicular to the orientation direction of the conductive fibers in order to make each fiber in the slicing plane upright with respect to several planes, but some inclination is unavoidable in actual operations. be. Therefore, in the anisotropically conductive sheet obtained by this method, the degree of exposure of the conductive fibers on the slice plane is uneven, or the fibers are inclined, resulting in large fluctuations in electrical resistance. Furthermore, in the above manufacturing method, it is not only difficult to arrange and orient the conductive fibers and to slice the cured product, but also requires complicated equipment, and there are some HIMs in which productivity is poor.

更に、この種の異方導電性シートにおいては、その取扱
い中或は加工の際に導電性amが折損し易いため、一般
に機械的強度が大である金属製導電性繊維が採用されて
いるから、このシートの高重量化を避けることができな
い。
Furthermore, in this type of anisotropic conductive sheet, the conductive am is easily broken during handling or processing, so metal conductive fibers with high mechanical strength are generally used. , it is impossible to avoid increasing the weight of this sheet.

又、上述の両異方導電性シートはいずれも部分的に当該
シートを形成する母材によって被覆されている箇所があ
り、この結果、その箇所において、厚さ方向の導通が完
全に失われる等の問題があった。
In addition, both of the anisotropically conductive sheets mentioned above have parts that are partially covered by the base material forming the sheet, and as a result, conductivity in the thickness direction is completely lost in those parts. There was a problem.

(d)問題点を解決するための手段 本発明者らは、特殊な装置や技術を要することなく簡単
に製造できると共に生産性が良く、しかもシートの厚さ
方向の抵抗が当該シートとプリント配線基板等との接触
圧力が変化しても略一定である異方導電性シートについ
て鋭意検討を重ねて慇だ。
(d) Means for Solving the Problem The present inventors have discovered that the sheet can be manufactured easily without requiring any special equipment or technology, has good productivity, and that the resistance in the thickness direction of the sheet is the same as that of the printed wiring. We have worked hard to develop an anisotropically conductive sheet that remains almost constant even when the contact pressure with a substrate changes.

その結果、厚さ方向に多数の貫通孔を有する多孔質シー
トの当該貫通孔に、電気化学的或は化学的に生成した有
機質導電材を保持させて形成した異方導電性シートは軽
量で、しかも電気抵抗が安定していることを見い出し、
本発明を完成するに至ったものである。
As a result, an anisotropically conductive sheet formed by holding an electrochemically or chemically generated organic conductive material in the through holes of a porous sheet having a large number of through holes in the thickness direction is lightweight; Moreover, they discovered that the electrical resistance was stable.
This has led to the completion of the present invention.

即ち、本発明の第一の要旨は厚さ方向に多数の貫通孔を
有する多孔質シートには当該貫通孔内に有機質導電材を
当該シートの厚さ方向に保持させたことを特徴とするも
のである。
That is, the first gist of the present invention is that a porous sheet having a large number of through holes in the thickness direction has an organic conductive material held in the through holes in the thickness direction of the sheet. It is.

本発明に用いる多孔質シートとは、電気的に絶縁性で、
しから厚さ方向に多数の貫通孔を有するシートであり、
その素材としては、シート状に形成しうるちのであれば
、特に限定されるものではなく、合成樹脂、ゴム等の有
機材料の池、ガラス、セラミック等の無機材料が用いら
れる。
The porous sheet used in the present invention is electrically insulating,
It is a sheet with many through holes in the thickness direction,
The material is not particularly limited as long as it can be formed into a sheet, and organic materials such as synthetic resins and rubber, and inorganic materials such as glass and ceramics can be used.

上記ゴムには、天然ゴム、又は各種合成ゴム、例えば、
ポリブタノエンゴム、ニトリルブタジェンゴム、スチレ
ンブタジェンゴム、シリコーン系樹脂、ポリウレタン系
樹脂、などが挙げられる。
The above rubber includes natural rubber or various synthetic rubbers, such as
Examples include polybutanoene rubber, nitrile butadiene rubber, styrene butadiene rubber, silicone resin, polyurethane resin, and the like.

又、上記合成樹脂としては、熱可塑性樹脂及び熱硬化性
樹脂の両方を含み、例えば、ポリオレフィン、ポリエチ
レンテレフタレート、ポリアクリロニトリル、ポリアク
リロニトリル、ポリ塩化ビニル、ポリエステル樹脂、ア
クリル樹脂、ポリアミド、ポリカーボネート樹脂、ポリ
7セタール樹脂、ポリスチレン樹脂、ABS樹脂、ポリ
テトラフルオロエチレン(以下、PTFEと称す)に代
表される7フ化オレフイン、ポリ7ツ化ビニリデン、不
飽和ポリエステル樹脂、7エ/−ル樹脂、尿素樹脂、メ
ラミン樹脂、グアナミン系樹脂等が挙げられる。
The synthetic resins include both thermoplastic resins and thermosetting resins, such as polyolefin, polyethylene terephthalate, polyacrylonitrile, polyacrylonitrile, polyvinyl chloride, polyester resin, acrylic resin, polyamide, polycarbonate resin, and polyester resin. 7-cetal resin, polystyrene resin, ABS resin, 7-fluorinated olefin represented by polytetrafluoroethylene (hereinafter referred to as PTFE), polyvinylidene heptadide, unsaturated polyester resin, 7-ether resin, urea resin , melamine resin, guanamine resin, etc.

上記多孔質シートの製造方法としては、溶出法、溶媒−
非溶媒法、エマルジョン法、放射線照射法、焼結法、延
伸法等、公知の多孔質シートの製造方法のうち使用する
材料に応じて最も好適な方法を採用すればよいのである
The method for manufacturing the above porous sheet includes elution method, solvent-
Among known porous sheet manufacturing methods such as a non-solvent method, an emulsion method, a radiation irradiation method, a sintering method, and a stretching method, the most suitable method may be employed depending on the material used.

多孔質シートの孔径としては0.01〜1000μm、
好ましくは1〜100μmとするのが望ましい。
The pore diameter of the porous sheet is 0.01 to 1000 μm,
The thickness is preferably 1 to 100 μm.

又、上記有機質導電材とは電気化学的或は化学的に製造
した有機質導電性物質をいう。
Further, the above-mentioned organic conductive material refers to an organic conductive substance produced electrochemically or chemically.

そして有機質導電材を形成する方法としては、電気化学
的或は化学的に酸化型・縮合、ラジカル重・縮合、カチ
オン重・縮合、アニオン重・縮合等によって製造した物
質をいうが、特に、共役系高分子物質が電気的特性に優
れるから好ましい。
Methods for forming organic conductive materials include substances produced electrochemically or chemically by oxidation/condensation, radical polycondensation, cationic polycondensation, anionic polycondensation, etc., but in particular, conjugated Polymeric materials are preferred because they have excellent electrical properties.

上記共役系高分子物質には、例えばポリアセチレン、ポ
リ(1,6−ヘプタジイン)、ポリピロール、ホリチェ
ニレン、ボリフェニシン、ポリ(パラ−フェニレンビニ
レン)、ポリ(パラ−7二二レンスルフイト)、ポリ(
メタ−フェニレンスルフィド)、ポリ(パラ−フェニレ
ンオキシド)、ポリフラン及1これらの誘導体が挙げら
れる。
Examples of the above-mentioned conjugated polymer substances include polyacetylene, poly(1,6-heptadiyne), polypyrrole, folychenylene, polyphenylene, poly(para-phenylenevinylene), poly(para-7-22lene sulfite), poly(
(meta-phenylene sulfide), poly(para-phenylene oxide), polyfuran and derivatives thereof.

本発明に用いる有機質導電材としては、特に上記有機質
導電材に電子受容性又は電子供与性試薬を添加(ドーピ
ング)したものが好ましい。
The organic conductive material used in the present invention is particularly preferably one in which an electron-accepting or electron-donating reagent is added (doped) to the above-mentioned organic conductive material.

電子受容性試薬には、例えばハロゲン(C12゜Br2
.I 2.I CZ、I C1−1I Br)、P F
 s、A sF sr S bF sr A gC(1
04等の過塩素酸塩、AgBF =、B F−9B C
13−B B r−硫酸、ハロゲン化水素などが挙げら
れる。
Examples of electron-accepting reagents include halogen (C12°Br2
.. I 2. I CZ, I C1-1I Br), P F
s, A sF sr S bF sr A gC(1
Perchlorate such as 04, AgBF=, B F-9B C
13-B r-sulfuric acid, hydrogen halide, and the like.

ドーピングには上記試薬を上記有機質導電材(上記シー
ト中の導電材)と直接反応させてもよいが(いわゆるケ
ミカル・ドープ)、特に当該導電材を保持したシートを
1〜50重量%、好ましくは5〜20重量%の硫酸、ハ
ロゲン化水素やハロゲン化カリウム或は有機・無機系過
塩素酸塩溶液中で電気化学的にドープしたものが好まし
い。
For doping, the reagent may be directly reacted with the organic conductive material (the conductive material in the sheet) (so-called chemical doping), but in particular, the sheet holding the conductive material may be reacted with 1 to 50% by weight, preferably Preferably, it is doped electrochemically in a solution of 5 to 20% by weight of sulfuric acid, hydrogen halide, potassium halide, or organic/inorganic perchlorate.

又、電子供与性試薬としてはアルカリ金属、第4級アミ
ン等が挙げられる。
Further, examples of the electron-donating reagent include alkali metals, quaternary amines, and the like.

ドーピングには、先ず、テトラヒドロフラン中でアルカ
リ金属と他の有機化合物(例えばナフタリン)と反応さ
せて有8!錯体(ナフタリン錯体)を合成し、この中に
上記有機質導電材を保持させたシートを浸漬するなどの
方法が好適に採用される。
Doping involves first reacting an alkali metal with another organic compound (eg naphthalene) in tetrahydrofuran. Preferably, a method is employed in which a complex (naphthalene complex) is synthesized and a sheet holding the organic conductive material is immersed in the complex.

本発明の第二の要旨は電気化学的に異方導電性シートを
製造する方法に関するものである。以下、これについて
詳細に説明する。
The second gist of the present invention relates to a method of electrochemically manufacturing an anisotropically conductive sheet. This will be explained in detail below.

即ち、本発明の第二の要旨は、溶媒中に電気化学的に活
性なモノマーを溶解し、この溶液中において、作用電極
板に、厚さ方向に多数の貫通孔を有する多孔質性シート
を接当させ、参照電極を基準として対極を設けて電解し
、これによって上記貫通孔内で電気化学的に生成した有
機質導電材を当該貫通孔内に保持させたことを特徴とす
るものである。
That is, the second gist of the present invention is to dissolve an electrochemically active monomer in a solvent, and in this solution, a porous sheet having a large number of through holes in the thickness direction is formed on the working electrode plate. A counter electrode is provided with the reference electrode as a reference, and electrolysis is carried out, whereby the organic conductive material electrochemically generated within the through hole is held within the through hole.

本発明に用いる溶媒とは、電解液として使用するもので
、特に限定されるものではなく、例えば水、アルコール
類、ケトン類、ニトリル類、エステル類及びこれらのア
ルカリ金属塩又はこれらの混合物等が挙げられる。
The solvent used in the present invention is used as an electrolyte and is not particularly limited, and examples include water, alcohols, ketones, nitriles, esters, alkali metal salts thereof, or mixtures thereof. Can be mentioned.

本発明では、電解重・縮合の際の導電性を高めるために
反応系内に電解質を存在させるのが好ましい。
In the present invention, it is preferable that an electrolyte be present in the reaction system in order to improve conductivity during electrolytic polycondensation.

電解質としては、例えばハロゲン化合物、リチウム、ナ
トリウム、カリウム等の過塩素酸塩、炭酸塩、重炭酸塩
の他、メチラート、エチラート又はアミン塩等が挙げら
れる。
Examples of the electrolyte include halogen compounds, perchlorates, carbonates, and bicarbonates of lithium, sodium, and potassium, as well as methylates, ethylates, and amine salts.

特にこれらのうちハロゲン化合物及び過塩素酸塩はドー
プ剤としても作用するから好ましい。
Among these, halogen compounds and perchlorates are particularly preferred since they also act as doping agents.

又電気化学的に活性なモノマーとは、電気化学的に重・
縮合反応を起こすモノマーであり、アセチレン、ピロー
ル、アニリン、チオフェン、フラン、インドール、アズ
レン及びこれらの誘導体が挙げられ゛る。
Also, electrochemically active monomers are electrochemically active monomers.
Monomers that cause condensation reactions include acetylene, pyrrole, aniline, thiophene, furan, indole, azulene, and derivatives thereof.

次に、本発明に用いる電極材料について説明する。Next, the electrode material used in the present invention will be explained.

先ず、作用極材料としては、例えばニッケル、ニッケル
合金、ステンレス鋼、炭素、二酸化鉛、RuOx型酸化
物陽極、白金、白金合金等が挙げられるが、所望により
鉛や鉛合金、更に鉄・鉄合金等も使用でき、特にこれら
のうち電気化学的安定性の点から白金及び白金合金が最
も好ましい。
First, working electrode materials include, for example, nickel, nickel alloys, stainless steel, carbon, lead dioxide, RuOx type oxide anodes, platinum, platinum alloys, and if desired, lead, lead alloys, and even iron/iron alloys. Among these, platinum and platinum alloys are most preferred from the viewpoint of electrochemical stability.

又、対極としては、例えばニッケル、ニッケル合金、ス
テンレス鋼、鉄、鉄合金、チタン、白金、白金合金等各
種の金属材料が採用できるが、特に電気化学的安定性の
点から白金及び白金合金が最も好ましい。
In addition, various metal materials such as nickel, nickel alloy, stainless steel, iron, iron alloy, titanium, platinum, and platinum alloy can be used as the counter electrode, but platinum and platinum alloy are particularly preferred from the viewpoint of electrochemical stability. Most preferred.

上記電解重・縮合用電源としては、定電圧電源、定電流
電源のいずれも使用でき、又所望により電位走査型電源
も使用できる。
As the power source for electrolytic heavy condensation, either a constant voltage power source or a constant current power source can be used, and if desired, a potential scanning type power source can also be used.

又電解条件としては、電流密度が通常0.01〜101
00O/ co+2、好ましくは1〜50LllA/C
1112で行な2われ、電解液の温度は通常O〜50℃
、好ましくは0〜25℃の範囲で行なわれる。
As for the electrolytic conditions, the current density is usually 0.01 to 101
00O/co+2, preferably 1-50LllA/C
The temperature of the electrolyte is usually O~50℃.
, preferably at a temperature of 0 to 25°C.

本発明の電解重・縮合に用いる電解槽としては、通常の
有機電極反応に用いられるものを広く使用でき、例えば
ビーカー型や箱型の電解槽でもより1゜このようにして
得た異方導電性シートが充分な電気的特性を有さない場
合、或は所望により当該シートに上記の電子受容性物質
或は電子供与性物質を上述の方法でドープして電気的特
性(電気抵抗の低下)を向上するのが好ましい。
As the electrolytic cell used for the electrolytic polycondensation of the present invention, a wide variety of those used for ordinary organic electrode reactions can be used.For example, beaker-shaped or box-shaped electrolytic cells can also If the electrostatic sheet does not have sufficient electrical properties, or if desired, the sheet may be doped with the above-mentioned electron-accepting substance or electron-donating substance by the above-mentioned method to improve the electrical properties (lower electrical resistance). It is preferable to improve

本発明の第三の要旨は、上記第二の発明における電気化
学的な方法に代えて、化学的に異方導電性シートを製造
する方法に関するものである。
The third aspect of the present invention relates to a method of chemically manufacturing an anisotropically conductive sheet instead of the electrochemical method in the second invention.

即ち、本発明の第三の要旨は、厚さ方向に多数の貫通孔
を有する多孔質シートには当該各貫通孔内に、化学的に
重・縮合可能なモノマーを含浸させ、次いで、上記モノ
マーの反応助剤を添加して上記貫通孔内で化学的に生成
した有機質導電材を当該貫通孔内に保持させたことを特
徴とするものである。
That is, the third gist of the present invention is that a porous sheet having a large number of through holes in the thickness direction is impregnated with a chemically polycondensable monomer into each of the through holes, and then the monomer is The present invention is characterized in that an organic conductive material chemically produced within the through-hole by adding a reaction aid is retained within the through-hole.

以下、これについて詳細に説明する。This will be explained in detail below.

この発明に用いる化学的に重・縮合可能なモノマーとは
アニリン塩酸塩、ピロール、アセチレン、ベンゼンビフ
ェニール、パラ−ターフェニル等が挙げられる。
Examples of chemically polycondensable monomers used in this invention include aniline hydrochloride, pyrrole, acetylene, benzene biphenyl, and para-terphenyl.

又、上記反応助剤としては、上記モノマーを重・縮合反
応させる機能を有する物質で、例えば触媒、反応開始剤
、反応促進剤などがある。
Further, the reaction aid is a substance having a function of causing the monomer to undergo a polycondensation reaction, and includes, for example, a catalyst, a reaction initiator, and a reaction promoter.

この助剤の具体例としては、例えば重クロム酸カリウム
や重クロム酸ナトリウム等の重クロム酸塩の硫酸水溶液
、塩化第二鉄、二酸化クロム、硫酸セリウム、7エリシ
アン化カリウム、硫酸第二鉄、過硫酸カリウム、ベンゾ
キノン、H2P tC1,。
Specific examples of this auxiliary agent include sulfuric acid aqueous solutions of dichromates such as potassium dichromate and sodium dichromate, ferric chloride, chromium dioxide, cerium sulfate, potassium hepterythyanide, ferric sulfate, Potassium sulfate, benzoquinone, H2P tC1,.

Ti(OClHs)−A1(CzHs)i−AICb 
 CuCl2、AsF7等が挙げられるが、所望により
これらのうち2種類以上を使用してもよい。
Ti(OClHs)-A1(CzHs)i-AICb
Examples include CuCl2, AsF7, etc., and two or more of these may be used if desired.

そして上記多孔質シートを、上記モノマーの濃度が1〜
50重量%の溶液中に浸漬するか、或は上記モノマーの
溶液を多孔質シートに滴下してこのモノマーを多孔質シ
ートの各貫通孔内に含浸保持させる。次いで、このシー
トを上記反応促進剤中に投入するか、或は当該シートに
上記反応促進剤を滴下し、反応温度O〜50℃で10秒
〜5時間反応させた後、洗浄、乾燥して異方導電性シー
トを得る。
Then, the porous sheet is prepared such that the concentration of the monomer is 1 to 1.
The porous sheet is immersed in a 50% by weight solution or a solution of the above monomer is dropped onto the porous sheet to impregnate and retain the monomer in each through hole of the porous sheet. Next, this sheet is put into the reaction accelerator, or the reaction accelerator is dropped onto the sheet, and the sheet is reacted at a reaction temperature of 0 to 50°C for 10 seconds to 5 hours, and then washed and dried. Obtain an anisotropic conductive sheet.

更にこのようにして得た異方導電性シートに、所望によ
り上記と同様に電子受容性物質或は電子供与性物質をド
ープしてその電気的特性を向上させてもよいのである。
Furthermore, the anisotropically conductive sheet thus obtained may be doped with an electron-accepting substance or an electron-donating substance in the same manner as described above, if desired, to improve its electrical properties.

(e)作用 本発明の異方導電性シートは、有機質導電材を使用して
いるから至極軽量であり、又多孔質シートの各貫通孔に
有機質導電材を保持させたものであるから、当該導電材
が母材で被覆される恐れが全くなく、しかも微粒子状の
導電材がシートの厚さ方向に連接しているのではなく、
単一の有機質導電材が上記シートの各貫通孔内に保持さ
れているから異方導電性シートとプリント配線基板等の
電極群との接触圧力が変動しても厚さ方向の抵抗は略一
定なのである。
(e) Function The anisotropic conductive sheet of the present invention is extremely lightweight because it uses an organic conductive material, and since the organic conductive material is held in each through-hole of the porous sheet, There is no risk that the conductive material will be covered with the base material, and the conductive material in the form of fine particles is not connected in the thickness direction of the sheet.
Since a single organic conductive material is held in each through hole of the sheet, the resistance in the thickness direction is approximately constant even if the contact pressure between the anisotropic conductive sheet and the electrode group of the printed wiring board etc. changes. That's why.

(f)実施例 以下、本発明の実施例を示すが、本発明はこれに限定さ
れるものではない。
(f) Examples Examples of the present invention will be shown below, but the present invention is not limited thereto.

実施例1 容jl 500m1の箱型無隔膜電解槽内に、アニリン
塩酸塩水溶液(溶液中のアニリンの濃度が10重量%)
を400m1投入する。
Example 1 Aniline hydrochloride aqueous solution (concentration of aniline in the solution was 10% by weight) was placed in a box-shaped non-diaphragm electrolytic cell with a volume of 500 m1.
Pour 400ml of

多孔質シートとして孔径0.2μm1厚み10μmのポ
リカーボネート膜(GE社製、商品名ニュークリボア)
を5c+n角に切断したものを用い、このシートを厚さ
0.5mmの白金板(5、OcmX 5 、Ocm)に
接当、密着させて上記電解槽内に挿入する。
A polycarbonate membrane with a pore diameter of 0.2 μm and a thickness of 10 μm as a porous sheet (manufactured by GE, trade name: Nuclebore)
The sheet was cut into 5c+n squares, and this sheet was brought into contact with a platinum plate (5, Ocm x 5, Ocm) with a thickness of 0.5 mm, and the sheet was inserted into the electrolytic cell.

これを作用極とし、一方向金板を対極とし、温度25℃
にてマグネチックスクーラーで攪拌しながら定電流条件
下(電流密度5mA/am2)で30分間電解を行なっ
て上記貫通孔内に有機質導電材を保持させた後、水洗、
乾燥した。
This was used as the working electrode, and the unidirectional metal plate was used as the counter electrode, at a temperature of 25°C.
Electrolysis was carried out for 30 minutes under constant current conditions (current density 5 mA/am2) while stirring with a magnetic cooler to retain the organic conductive material in the through holes, and then washed with water.
Dry.

作用極の通電面積は25cm+”とした。The current-carrying area of the working electrode was 25 cm+''.

このようにして得た異方導電性シートの電気的特性を第
1表に示す。
The electrical properties of the anisotropically conductive sheet thus obtained are shown in Table 1.

実施例2 実施例1におけるアニリン塩酸塩水溶液に代えて、アニ
リン塩酸塩−メタノール溶?[l(溶液中のアニリンの
濃度が10重量%)を用いた以外実施例1と同様の方法
で異方導電性シートを得た。
Example 2 Aniline hydrochloride-methanol solution instead of the aniline hydrochloride aqueous solution in Example 1? An anisotropically conductive sheet was obtained in the same manner as in Example 1 except that [l (the concentration of aniline in the solution was 10% by weight) was used.

この異方導電性シートの電気的特性をfJIJ1表に示
す。
The electrical properties of this anisotropic conductive sheet are shown in Table fJIJ1.

実施例3 実施例1におけるアニリン塩酸塩水溶液に代えて、ピロ
ール−アセトニトリル溶液(溶液中のピロールの濃度が
5重量%)を用い、これにテトラブチルアンモニウムバ
ークロライドを添加して電解液全体中のテトラブチルア
ンモニウムバークロライドの濃度が0.1重1%になる
ように調整した以外、実施例1と同様の方法で異方導電
性シートを得た。
Example 3 In place of the aniline hydrochloride aqueous solution in Example 1, a pyrrole-acetonitrile solution (the concentration of pyrrole in the solution was 5% by weight) was used, and tetrabutylammonium verchloride was added to this to increase the concentration of pyrrole in the entire electrolyte solution. An anisotropic conductive sheet was obtained in the same manner as in Example 1, except that the concentration of tetrabutylammonium verchloride was adjusted to 0.1% by weight.

この異方導電性シートの電気的特性を第1表に示す。The electrical properties of this anisotropically conductive sheet are shown in Table 1.

実施例4 多孔質シートとして、孔径50μm1厚み25μmのポ
リテトラプルオロエチレンシート (以下PTFEシー
トという)を用いる以外、実施例2と同様の方法で異方
導電性シートを得た。
Example 4 An anisotropic conductive sheet was obtained in the same manner as in Example 2, except that a polytetrafluoroethylene sheet (hereinafter referred to as PTFE sheet) with a pore diameter of 50 μm and a thickness of 25 μm was used as the porous sheet.

この異方導電性シートの電気化学的特性を第1表に示す
The electrochemical properties of this anisotropically conductive sheet are shown in Table 1.

実施例5 容量500+nff1の箱型容器内にアニリン塩酸塩−
二タノール溶液(溶液中のアニリンの濃度が10重世%
)を200m1投入する。
Example 5 Aniline hydrochloride in a box-shaped container with a capacity of 500+nff1
Nitethanol solution (the concentration of aniline in the solution is 10%)
).

多孔質シートとして孔径50μm1厚さ25μmPTF
Eシートを5ca+角に切断したものを用い、これを上
記容器内に投入して上記溶液を含浸させた後、このシー
トを取り出し、これに下記重クロム酸カリウムの硫酸水
溶液を滴下して温度25℃で10分間反応させることに
より上記シートの貫通孔に有機質導電材を保持させた。
PTF as a porous sheet with a pore diameter of 50 μm and a thickness of 25 μm
Cut the E sheet into 5 ca + square pieces, put it into the above container and impregnate it with the above solution, then take out the sheet, drop the following sulfuric acid aqueous solution of potassium dichromate, and heat it to a temperature of 25 The organic conductive material was retained in the through-holes of the sheet by reacting at .degree. C. for 10 minutes.

配合比(重量比) 重クロム酸カリウム       5 硫酸            15 水                     75こ
のようにして得た異方導電性シートの電気的′特性を第
1表に示す。
Blend ratio (weight ratio) Potassium dichromate 5 Sulfuric acid 15 Water 75 The electrical properties of the anisotropically conductive sheet thus obtained are shown in Table 1.

第1表 注1)シート厚さ方向の抵抗 電極としての黄銅平面板上に各実施例品の異方導電性シ
ートを載置し、該シート表面に4点プローグ(針電極太
さ0.75mm、針電極間距離3 I’ll、直列)を
当接し、1本の針電極と黄銅平面板電極をデジタルマル
チメーター(タケグ理研(株)製TR6855)に接続
して、抵抗を読み取る。次に、上記針電極とメーターと
の接続を外し、他の針電極を〆一グーに接続し、抵抗を
読み取る。このようにして1試料について4点測定する
。試料数は各実施例品とも5個とした。
Table 1 Note 1) The anisotropic conductive sheet of each example was placed on a flat brass plate as a resistance electrode in the sheet thickness direction, and a 4-point probe (needle electrode thickness 0.75 mm) was placed on the surface of the sheet. , distance between needle electrodes 3 I'll, in series), connect one needle electrode and a brass flat plate electrode to a digital multimeter (TR6855 manufactured by Takegu Riken Co., Ltd.), and read the resistance. Next, disconnect the needle electrode from the meter, connect the other needle electrode to the terminal, and read the resistance. In this way, four points are measured for one sample. The number of samples was five for each example product.

注2)面方向の電気抵抗 銅箔エポキシプリント基板にエツチングにより幅lll
l11の絶縁ギャップを設け、このうえに各実施例品の
異方導電性シートを載置し、その上に、1kgの荷重下
でプラスチック平面板を当接し、デジタルマルチメータ
ーに接続して抵抗値を測定した。
Note 2) Electrical resistance in the plane direction Width lll is etched on the copper foil epoxy printed circuit board.
An insulating gap of l11 is provided, the anisotropically conductive sheet of each example product is placed on top of this, a flat plastic plate is brought into contact with it under a load of 1 kg, and the resistance value is measured by connecting it to a digital multimeter. was measured.

(g)発明の効果 本発明の異方導電性シートは有機質導電材を使用したも
のであり、有機質導電材は軽量で、しかも母材となじみ
易いから高密度化を簡単に図ることができる。
(g) Effects of the Invention The anisotropically conductive sheet of the present invention uses an organic conductive material, and since the organic conductive material is lightweight and is easily compatible with the base material, it can be easily increased in density.

又、本発明の異方導電性シートは、絶縁性多孔質シート
の貫通孔に有機質導電材を保持させたものであるから、
当該導電材が絶縁性の母材で被覆されることが全くなく
、この結果、導通不良等の問題が生じないのであり、又
導電材が単一の導電性高分子物質で構成されているから
接触圧力が変動しても異方導電性シートの厚さ方向の抵
抗は略一定になるのであり、結局両者相俟って電気的特
性が安定するのである。
Further, since the anisotropically conductive sheet of the present invention has an organic conductive material held in the through holes of the insulating porous sheet,
The conductive material is not covered with an insulating base material at all, and as a result, problems such as poor conductivity do not occur, and the conductive material is composed of a single conductive polymer substance. Even if the contact pressure fluctuates, the resistance in the thickness direction of the anisotropic conductive sheet remains approximately constant, and ultimately the electrical characteristics are stabilized by the combination of the two.

又、本発明の異方導電性シートは、従来のような複雑な
装置や技術を要することなく、電気化学的或は化学的に
簡単に製造できるのであり、又当該シートの電気抵抗は
電気化学的或は化学的に電子受容性物質又は電子供与性
物質をドープすることにより着しく低下するのである。
In addition, the anisotropically conductive sheet of the present invention can be easily produced electrochemically or chemically without the need for conventional complicated equipment or techniques, and the electrical resistance of the sheet can be easily produced by electrochemical or chemical methods. It can be significantly reduced by doping with an electron-accepting substance or an electron-donating substance, either selectively or chemically.

特に異方導電性シートを電気化学的に製造する方法にお
いては、有機質導電材の生成と、当該導電材へのドーピ
ングが同時に行えるから至極経済的である。
In particular, the method of electrochemically manufacturing an anisotropically conductive sheet is extremely economical because the generation of an organic conductive material and the doping of the conductive material can be performed simultaneously.

Claims (10)

【特許請求の範囲】[Claims] (1)厚さ方向に多数の貫通孔を有する多孔質シートに
は当該貫通孔内に有機質導電材を当該シートの厚さ方向
に保持させたことを特徴とする異方導電性シート。
(1) An anisotropic conductive sheet characterized in that a porous sheet having a large number of through holes in the thickness direction has an organic conductive material held in the through holes in the thickness direction of the sheet.
(2)上記多孔質シートが、合成樹脂、ゴムなどの有機
材料或はセラミクス、ガラスなどの無機材料で形成され
ていることを特徴とする特許請求の範囲第1項記載の異
方導電性シート。
(2) The anisotropically conductive sheet according to claim 1, wherein the porous sheet is made of an organic material such as synthetic resin or rubber, or an inorganic material such as ceramics or glass. .
(3)上記有機質導電材が共役系高分子物質で形成され
ていることを特徴とする特許請求の範囲第1項記載の異
方導電性シート。
(3) The anisotropically conductive sheet according to claim 1, wherein the organic conductive material is made of a conjugated polymer substance.
(4)上記共役系高分子物質がポリアセチレン、ポリ(
1,6−ヘプタジイン)、ポリピロール、ポリチエニレ
ン、ポリフェニレン、ポリ(パラ−フェニレンスルフィ
ド)、ポリ(メタ−フェニレンスルフィド)、ポリ(パ
ラ−フェニレンオキシド)、ポリフランから成る群より
選ばれた1種である特許請求の範囲第3項記載の異方導
電性シート。
(4) The above conjugated polymer substance is polyacetylene, poly(
1,6-heptadiyne), polypyrrole, polythienylene, polyphenylene, poly(para-phenylene sulfide), poly(meta-phenylene sulfide), poly(para-phenylene oxide), and polyfuran. An anisotropically conductive sheet according to claim 3.
(5)上記共役系高分子物質が電子受容性物質或は電子
供与性物質をドープされたものであることを特徴とする
特許請求の範囲第4項記載の異方導電性シート。
(5) The anisotropically conductive sheet according to claim 4, wherein the conjugated polymer substance is doped with an electron-accepting substance or an electron-donating substance.
(6)溶媒中に電気化学的に活性なモノマーを溶解し、
この溶液中において、作用電極板に、厚さ方向に多数の
貫通孔を有する多孔質性シートを接当させ、参照電極を
基準として対極を設けて電解し、これによって上記貫通
孔内で電気化学的に生成した有機質導電材を当該貫通孔
内に保持させたことを特徴とする異方導電性シートの製
造方法。
(6) dissolving an electrochemically active monomer in a solvent;
In this solution, a porous sheet having many through holes in the thickness direction is brought into contact with the working electrode plate, a counter electrode is provided with the reference electrode as a reference, and electrolysis is carried out. 1. A method for manufacturing an anisotropically conductive sheet, characterized in that an organic conductive material produced by the method is held in the through-holes.
(7)上記モノマーがアセチレン、ピロール、アニリン
、チオフェン、フラン、インドール、アズレン及びこれ
らの誘導体である特許請求の範囲第6項記載の異方導電
性シートの製造方法。
(7) The method for producing an anisotropically conductive sheet according to claim 6, wherein the monomer is acetylene, pyrrole, aniline, thiophene, furan, indole, azulene, or a derivative thereof.
(8)厚さ方向に多数の貫通孔を有する多孔質シートに
は当該各貫通孔内に、化学的に重・縮合可能なモノマー
を含浸させ、次いで、上記モノマーの反応助剤を添加し
て上記貫通孔内で化学的に生成した有機質導電材を当該
貫通孔内に保持させたことを特徴とする異方導電性シー
トの製造方法。
(8) A porous sheet having a large number of through holes in the thickness direction is impregnated with a chemically polycondensable monomer into each of the through holes, and then a reaction aid for the above monomer is added. A method for manufacturing an anisotropically conductive sheet, characterized in that an organic conductive material chemically generated within the through-holes is retained within the through-holes.
(9)上記モノマーがアニリン塩酸塩である特許請求の
範囲第8項記載の異方導電性シートの製造方法。
(9) The method for producing an anisotropically conductive sheet according to claim 8, wherein the monomer is aniline hydrochloride.
(10)上記反応促進剤が重クロム酸塩の硫酸水溶液で
ある特許請求の範囲第9項記載の異方導電性シートの製
造方法。
(10) The method for producing an anisotropically conductive sheet according to claim 9, wherein the reaction accelerator is an aqueous sulfuric acid solution of dichromate.
JP10015685A 1985-05-10 1985-05-10 Anisotropic conductive sheet and manufacture thereof Pending JPS61259406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10015685A JPS61259406A (en) 1985-05-10 1985-05-10 Anisotropic conductive sheet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10015685A JPS61259406A (en) 1985-05-10 1985-05-10 Anisotropic conductive sheet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61259406A true JPS61259406A (en) 1986-11-17

Family

ID=14266456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10015685A Pending JPS61259406A (en) 1985-05-10 1985-05-10 Anisotropic conductive sheet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61259406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251116A (en) * 1985-08-28 1987-03-05 古河電気工業株式会社 Manufacture of anisotropically conducting film
JPS63205006A (en) * 1987-02-20 1988-08-24 株式会社 潤工社 Anisotropic conducting material
JPH06260234A (en) * 1993-03-04 1994-09-16 Yamaichi Electron Co Ltd Anisotropic conductive elastic connector
WO2001051580A1 (en) * 2000-01-13 2001-07-19 Nitto Denko Corporation Porous adhesive sheet, semiconductor wafer with porous adhesive sheet, and method of manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121202A (en) * 1980-02-29 1981-09-24 Sumitomo Electric Industries Conductive porous member and method of manufacturing same
JPS61224203A (en) * 1985-03-28 1986-10-04 株式会社リコー Anisotropic conducting film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121202A (en) * 1980-02-29 1981-09-24 Sumitomo Electric Industries Conductive porous member and method of manufacturing same
JPS61224203A (en) * 1985-03-28 1986-10-04 株式会社リコー Anisotropic conducting film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251116A (en) * 1985-08-28 1987-03-05 古河電気工業株式会社 Manufacture of anisotropically conducting film
JPS63205006A (en) * 1987-02-20 1988-08-24 株式会社 潤工社 Anisotropic conducting material
JPH06260234A (en) * 1993-03-04 1994-09-16 Yamaichi Electron Co Ltd Anisotropic conductive elastic connector
WO2001051580A1 (en) * 2000-01-13 2001-07-19 Nitto Denko Corporation Porous adhesive sheet, semiconductor wafer with porous adhesive sheet, and method of manufacture thereof
US7056406B2 (en) 2000-01-13 2006-06-06 Nitto Denko Corporation Porous adhesive sheet, semiconductor wafer with porous adhesive sheet and method of manufacture thereof

Similar Documents

Publication Publication Date Title
Inzelt et al. Electron and proton conducting polymers: recent developments and prospects
Chilton et al. Special polymers for electronics and optoelectronics
Syed et al. Polyaniline—A novel polymeric material
US7248461B2 (en) Conducting polymer composite and solid electrolytic capacitor using the same
US4582575A (en) Electrically conductive composites and method of preparation
CN100562538C (en) Polymer dielectric film, method for making and the fuel cell that comprises this film
CA2442633C (en) Solid polymer type fuel cell
JPS63138659A (en) Stable carbon-resin electrode and manufacture thereof
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
Ahlfield et al. Anion conducting ionomers for fuel cells and electrolyzers
US8088261B2 (en) CuC1 thermochemical cycle for hydrogen production
DE60313852T2 (en) ELECTROCATALYTIC DYE
JPS61259406A (en) Anisotropic conductive sheet and manufacture thereof
Litt et al. Poly (arylenesulfonic acids) with frozen-in free volume as hydrogen fuel cell membrane materials
CN1312193C (en) Proton-conducting electrolyte and fuel cell using the same
Wang et al. Ultrathin semi-interpenetrating network membranes based on perfluorinated sulfonic acid resin and polydivinylbenzene with declined hydrogen crossover for proton exchange membrane fuel cell
JPH08501653A (en) Ion exchange membranes with increased efficiency in the proton exchange method.
US4657985A (en) Multicomponent systems based on polythiophene
US20040232390A1 (en) Highly conductive carbon/inherently conductive polymer composites
JP2006291162A (en) Resin material, method for producing the same, fuel cell, power source and electronic equipment
Chen et al. Carbon-black-doped Polyimide-modified Glassy Carbon Electrode for Sensitive Nonenzymatic Amperometric Determination of Hydrogen Peroxide.
Zhang et al. Poly (biphenyl piperidine) anion exchange membranes with long hydrophilic side chains for water electrolysis
Audebert et al. New electrochemical synthesis of electronic and ionic conductive polymer composites
JPWO2006106726A1 (en) POLYMER ELECTROLYTE MEMBRANE, ELECTRODE, MEMBRANE ELECTRODE COMPLEX AND FUEL CELL
JPS624898A (en) Production of electrically conductive polymer film containing particle