JPS61258791A - Black color thermal transfer recording sheet - Google Patents

Black color thermal transfer recording sheet

Info

Publication number
JPS61258791A
JPS61258791A JP60099863A JP9986385A JPS61258791A JP S61258791 A JPS61258791 A JP S61258791A JP 60099863 A JP60099863 A JP 60099863A JP 9986385 A JP9986385 A JP 9986385A JP S61258791 A JPS61258791 A JP S61258791A
Authority
JP
Japan
Prior art keywords
thermal transfer
layer
ink
transfer layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60099863A
Other languages
Japanese (ja)
Other versions
JPH0714664B2 (en
Inventor
Tadao Kobashi
小橋 忠雄
Hiroshi Ezaki
江崎 弘
Hiroshi Onishi
宏 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60099863A priority Critical patent/JPH0714664B2/en
Publication of JPS61258791A publication Critical patent/JPS61258791A/en
Publication of JPH0714664B2 publication Critical patent/JPH0714664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To facilitate controlling an ink for forming a thermal transfer layer and enhance uniformity of thermal transfer, a coated layer and a black color, by using a graphite powder as an ink coloring material and an ink carrier material. CONSTITUTION:The thermal transfer layer 40 comprising a hot-melt binder material 20 and a graphite powder 30 is provided on a surface 11 of a heat-resistant base 10. The weight percentage of the amount of the graphite powder 32, 32a penetrating through layer 40 in the thickness direction and protruding from the surface 41 of the layer 40 to form a rugged surface based on the amount of the powder 30, 30a may be so set that at least one, preferably at least four, particles 32, 32a are present per unit recording picture element. A mixed suspended liquid for forming the thermal transfer layer is dissolved in a solvent while heating it to a temperature not lower than the melting or boiling point of the hot-melt binder material, followed by agitating and grinding while precipitating fine particles in a cold condition. The precipitated and suspended liquid is applied to the surface 41 of the base by solvent coating, and the coated layer is heated to a temperature not lower than the melting or softening point of the precipitated hot-melt particles to completely evaporate off the solvent and melt the particles, whereby a uniform thermal transfer layer 40 is provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サーマル記録ヘッド等を用いて昇温記録制御
し、非塗工紙、塗工紙、プラスチックフィルム等の記録
媒体(受像体)に連続階調濃度で黒色インク材料を熱転
写記録する黒色熱転写記録シートに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a thermal recording head or the like to control temperature increase and record continuously on a recording medium (image receptor) such as uncoated paper, coated paper, or plastic film. The present invention relates to a black thermal transfer recording sheet that thermally transfers and records black ink material in gradation density.

従来の技術 ホリエチレンテレフタレート(PET)フィルムやコン
デンサー紙などのシート状の耐熱性基体面上に、色材と
ホットメルト材を含有し、昇温記録制御によってその粘
性が減少制量され、記録媒体への転写性が付与される関
係にあるインク材料と、このインク材料から成る層の厚
さよシも大なる粒径を少くとも含むと共に、その融点、
軟化点化2分解温度の少くとも何れかがホットメルトバ
インダ材よりも高い常温固形粒子をインクキャリヤとし
てインク材料に混入分散配置し、この常温固形粒子をも
って凹凸表面を形成させた熱転写層を成層した熱転写記
録シートによると、昇温記録制御に対応して熱転写記録
濃度が連続的に制輝され、中間調画像の記録が行える(
特願昭59−227155号明細書参照)。
Conventional technology A coloring material and a hot-melt material are contained on a sheet-like heat-resistant substrate surface such as a polyethylene terephthalate (PET) film or capacitor paper, and the viscosity of the material is reduced and controlled by heating recording control, and the recording medium The ink material in a relationship that imparts transferability to
Room-temperature solid particles having at least one of the softening point and decomposition temperature higher than the hot-melt binder material are mixed and dispersed in the ink material as an ink carrier, and a thermal transfer layer is formed by forming an uneven surface with the room-temperature solid particles. According to the thermal transfer recording sheet, the thermal transfer recording density is continuously controlled in response to temperature rising recording control, and halftone images can be recorded (
(Refer to the specification of Japanese Patent Application No. 59-227155).

発明が解決しようとする問題点 上記熱転写記録シートにおいて、通常、インクキャリヤ
としての常温固形粒子の熱伝導率はホットメルトバイン
ダ材よシも大に選ばれ、例えば平均粒径が2.6〜10
μm程度のアルミナ粉末が用いられる。また常温固形粒
子の少くとも一部分がインク材料層を貫通し、熱転写層
表面に突出して凹凸表面を形成する必要から、ホットメ
ルトバインダ材は常温で溶剤可溶性材料が選択され、多
量の溶剤を含んだソルベントコーティング法で熱転写層
が塗布され、その溶剤の蒸発によってインク材料層の厚
さを常温固形粒子の少くとも一部の粒径粒子よシも小に
構成している。黒色熱転写記録シートの構成においては
、顔料色材として二次粒子径が1μm以下の微細なカー
ボンブラック粉末が用いられるが、これらに比較して大
粒径のアルミナ粒子を含んで、ホットメルトバインダと
共に多量の溶剤含有の下に熱転写層形成用インクを製作
すると、大なる比重のアルミナ粒子は沈積を起こし易く
インク材料の管理に難があシ、またンルベントコーティ
ングにおける成層時に均一な分散配置が阻害され易い。
Problems to be Solved by the Invention In the above-mentioned thermal transfer recording sheet, the thermal conductivity of the room-temperature solid particles as the ink carrier is usually selected to be higher than that of the hot melt binder material, for example, the average particle size is 2.6 to 10.
Alumina powder of about μm size is used. In addition, since it is necessary for at least a portion of the solid particles at room temperature to penetrate the ink material layer and protrude onto the surface of the thermal transfer layer to form an uneven surface, a material that is soluble in a solvent at room temperature is selected as the hot melt binder material and contains a large amount of solvent. The thermal transfer layer is applied by a solvent coating method, and the evaporation of the solvent makes the thickness of the ink material layer smaller than at least some of the room-temperature solid particles. In the construction of a black thermal transfer recording sheet, fine carbon black powder with a secondary particle size of 1 μm or less is used as a pigment coloring material, but it contains alumina particles with a larger particle size than these, and is used together with a hot melt binder. When an ink for forming a thermal transfer layer is manufactured with a large amount of solvent contained, alumina particles with a large specific gravity tend to settle, making it difficult to manage the ink material, and also hindering uniform dispersion during layering in wet coating. easy to be

加えてアルミナ粒子は白色であるため、この不均一分散
は、本来の熱転写記録の黒色均一性を阻害し易い。
In addition, since alumina particles are white, this non-uniform dispersion tends to impede the original black uniformity of thermal transfer recording.

斯くして従来の黒色熱転写記録シートにおいては、熱転
写層形成用インクの管理、塗布成層均一性、黒色均一熱
転写記録性に改良すべき余地を残している。
Thus, in the conventional black thermal transfer recording sheet, there remains room for improvement in the management of the ink for forming the thermal transfer layer, the uniformity of coating layer formation, and the black uniform thermal transfer recording performance.

本発明は、か\る問題点に鑑みてなされたもので、有用
な黒色熱転写記録シートの提供を目的とする。
The present invention was made in view of the above problems, and an object of the present invention is to provide a useful black thermal transfer recording sheet.

問題点を解決するための手段 本発明においては、シート状の耐熱性基体面上に、昇温
記録制御によってその粘性が減少制量され、記録媒体へ
の転写性が付与されるバインダ材と、黒鉛粉末粒子とを
含む熱転写層が成層され、且つこの黒鉛粉末は粒度分布
をもち、その一部の粉末粒子は前記熱転写層の厚み方向
を貫通して前記熱転写層表面に突出し、前記熱転写層に
凹凸表面を形成して黒色熱転写記録シートが構成される
Means for Solving the Problems In the present invention, a binder material whose viscosity is reduced and controlled by temperature increase recording control and imparts transferability to a recording medium is placed on a sheet-like heat-resistant substrate surface; A thermal transfer layer containing graphite powder particles is laminated, and this graphite powder has a particle size distribution, and some of the powder particles penetrate through the thickness direction of the thermal transfer layer and protrude onto the surface of the thermal transfer layer. A black thermal transfer recording sheet is constructed by forming an uneven surface.

この場合、黒鉛粉末として人工黒鉛を用いるとその粒径
は、鱗片状黒鉛や土状黒鉛に比較してよシ球形に近く良
好な黒色熱転写画像が得られる。
In this case, when artificial graphite is used as the graphite powder, its particle size is more spherical than that of flaky graphite or earthy graphite, and a good black thermal transfer image can be obtained.

作用 本発明にか〜る黒色熱転写記録シートにおいては、小粒
径にして色材を形成する黒色々材と、大粒径にしてイン
クキャリヤたる常温固形粒子は共に黒鉛粉末で構成され
る。従って従来の如く色材と常温固形粒子の比重差によ
る沈積現象が改善されると共に同一色彩であるため、前
記の熱転写層形成用インクの管理、塗布成層均一性、黒
色均一熱転写性等が改良されることになる。
Function: In the black thermal transfer recording sheet according to the present invention, both the small-sized black material forming the coloring material and the large-sized room-temperature solid particles serving as the ink carrier are composed of graphite powder. Therefore, the conventional sedimentation phenomenon due to the difference in specific gravity between the coloring material and the solid particles at room temperature is improved, and since the color is the same, the management of the ink for forming the thermal transfer layer, the uniformity of coating layer formation, the uniform black thermal transferability, etc. are improved. That will happen.

一般に熱転写記録は、記録シートの耐熱性基体裏面側に
サーマル記録ヘッド、記録媒体裏面側に記録プラテンを
配し、熱転写層表面に記録媒体表面を圧接し、耐熱性基
体を通して熱転写層をサーマルヘッドで昇温記録制御す
る。
Generally, in thermal transfer recording, a thermal recording head is placed on the back side of a heat-resistant substrate of a recording sheet, a recording platen is placed on the back side of a recording medium, the surface of the recording medium is pressed against the surface of the thermal transfer layer, and the thermal transfer layer is transferred through the heat-resistant substrate using the thermal head. Control temperature rise recording.

今、熱転写層を構成するホットメルトバインダ材に混入
される黒鉛粉末の粒径が、熱転写層の厚さに比較して充
分小なる微粉末で構成され、熱転写層は均一な厚さを有
し、平坦な表面を有するいわゆる単なる黒色のインク層
である場合を想定して見る。
Now, the graphite powder mixed in the hot melt binder material constituting the thermal transfer layer is composed of fine powder whose particle size is sufficiently small compared to the thickness of the thermal transfer layer, and the thermal transfer layer has a uniform thickness. , assume that it is a simple black ink layer with a flat surface.

昇温記録制御によって、ホットメルトバインダ材、すな
わちインク層は、その裏面側(すなわち耐熱性基体表面
側)からその加熱々量に応じて融解熱を吸収しつつ溶融
、低粘性化する。
By the temperature increase recording control, the hot melt binder material, that is, the ink layer, is melted and reduced in viscosity while absorbing heat of fusion from the back side (that is, the front side of the heat-resistant substrate) according to the amount of heating.

然し、インク層表面はその温度がホットメルトバインダ
材の融点以下で未溶融、固体状態にあるので、インク材
料は記録媒体には付着、転写し得ない。インク材料の記
録媒体への付着、転写は、インク層の厚み方向への溶融
の進行がインク層表面部に進達するに必要な加熱々量が
サーマルヘッドから供給されて初めて生じる。この場合
、インク層の厚み方向の溶融低粘性化したインクは一度
に記録媒体に付着、転写されてしまうため記録濃度は二
値的で、昇温記録制御に対応して記録濃度が制御される
いわゆる連続階調の熱転写記録は困難である。
However, since the surface of the ink layer is unmelted and in a solid state at a temperature below the melting point of the hot melt binder material, the ink material cannot adhere to or be transferred to the recording medium. The adhesion and transfer of the ink material to the recording medium occurs only when the thermal head supplies the amount of heat necessary for the progress of melting of the ink layer in the thickness direction to reach the surface portion of the ink layer. In this case, the ink that has melted and become less viscous in the thickness direction of the ink layer is attached to and transferred to the recording medium all at once, so the recording density is binary, and the recording density is controlled in response to temperature increase recording control. So-called continuous tone thermal transfer recording is difficult.

然るに本発明にか\る黒色熱転写記録シートの如く、犬
なる粒径の黒鉛粉末を有し、これが上述のインク層に分
散配置され、上述のインク層の厚み方向を貫通し、イン
ク層表面に突出している場合を考えて見る。
However, the black thermal transfer recording sheet according to the present invention has graphite powder with a dog particle size, which is dispersed in the above-mentioned ink layer, penetrates the above-mentioned ink layer in the thickness direction, and is coated on the surface of the ink layer. Let's take a look at the cases that stand out.

通常用いられるホットメルト材の熱伝導率は低<6〜9
X10 ca17cm、Sec、°Cであるのに対しテ
、黒鉛は1.4 X 1O−2cal/crA、sec
、°Cの高熱伝導率をもち、且つその融点は3500’
Cでホットメルトバインダ材の融点(通常6o〜ao’
c)に対して遥かに高い値をもつ。
The thermal conductivity of commonly used hot melt materials is low < 6 to 9
X10 cal17cm, Sec, °C, while graphite is 1.4 X 1O-2cal/crA, sec
It has a high thermal conductivity of , °C, and its melting point is 3500'
Melting point of hot melt binder material (usually 6o~ao'
c) has a much higher value.

従って昇温記録制御に対して大粒径の黒鉛粉末は、イン
ク層の厚み方向に貫通する熱伝導媒体としての役割をも
ち、その表面に付着乃至は隣接するインク材料を溶融、
低粘性化する。
Therefore, for temperature increase recording control, large particle diameter graphite powder has the role of a heat conductive medium that penetrates the ink layer in the thickness direction, and melts the ink material attached to or adjacent to the surface of the ink layer.
Reduces viscosity.

従って、昇温記録による加熱々量が小さく、たとえイン
ク層がその裏面側しか溶融しない状態にあっても、大粒
径の黒鉛粉末部においては、その表面に沿ってインク層
の厚み方向に貫通してインク材料を溶融、低粘性化する
Therefore, even if the amount of heating due to temperature increase recording is small and the ink layer melts only on the back side, the graphite powder part with a large particle size will penetrate in the thickness direction of the ink layer along the surface. to melt the ink material and reduce its viscosity.

斯くして昇温記録制御に対応して溶融、低粘性化したイ
ンク材料は、ホットメルトバインダ材の溶融時の熱膨張
、記録媒体面を介しての押圧、記録媒体表面と大粒径黒
鉛との接触間隙の毛管現象によって、大粒径黒鉛粒子表
面を伝わって記録媒体表面側に浸透、付着する。そして
昇温記録制御が終了し且つ溶融インクが冷却固化する以
前の状態において記録媒体を熱転写記録シートを剥離す
ると、加熱々量が一定以上で大粒径黒鉛粒子を取り囲ん
でその周囲に充分な溶融インクが存在する場合には、そ
の未浸透の溶融インク材料を表面に付着した状態で大粒
径の黒鉛粒子自身も記録媒体表面に付着、転写される。
The ink material, which has been melted and reduced in viscosity in response to temperature-raising recording control, is affected by the thermal expansion of the hot-melt binder material during melting, the pressure applied through the surface of the recording medium, and the interaction between the surface of the recording medium and large-grained graphite. Due to capillary action in the contact gap, the particles penetrate and adhere to the surface of the recording medium through the surface of the large graphite particles. When the thermal transfer recording sheet is peeled off from the recording medium after the temperature increase recording control has been completed and before the molten ink has cooled and solidified, the amount of heating exceeds a certain level and the large graphite particles are surrounded by sufficient melting. If ink is present, the large graphite particles themselves are also attached and transferred to the surface of the recording medium with the unpenetrated molten ink material attached to the surface.

従って大粒径の黒鉛粒子は溶融インクの浸透。Therefore, large-sized graphite particles are penetrated by molten ink.

転写をさせるいわゆるインクキャリヤの役目を持ち、そ
の転写記録濃度は溶融インク量、すなわち昇温記録加熱
量に対応して連続的である。転写記録濃度の最大は、イ
ンク層厚み方向の全体が溶融、低粘性化した状態で与え
られる。
It plays the role of a so-called ink carrier for transfer, and the transfer recording density is continuous in accordance with the amount of melted ink, that is, the amount of heating for recording at elevated temperature. The maximum transfer recording density is achieved when the entire ink layer in the thickness direction is melted and has a low viscosity.

斯くして、黒鉛粉末として通常のインク用着色色材を形
成する小粒径微粉末から、上述の如くインクキャリヤと
しての効果を示す大粒径粒子を含む形での粒径分布を持
たせると、上述の浸透、付着転写は黒鉛粉末の粒径、す
なわち熱容量に応じて前述の黒色インク材料及びインク
キャリヤとしての役割を連続的に果たし、黒色の良好な
連続階調の熱転写記録シートが実現できる。
In this way, it is possible to change the particle size distribution from the small particle size fine powder that forms the usual coloring material for ink as graphite powder to include the large particle size particles that exhibit the effect as an ink carrier as described above. The above-mentioned infiltration and adhesion transfer continuously play the role of the black ink material and ink carrier according to the particle size of the graphite powder, that is, the heat capacity, and a thermal transfer recording sheet with good black continuous gradation can be realized. .

実施例 以下、実施例について本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to Examples.

第1図は、本発明にか\る黒色熱転写記録シートの一実
施例の断面構造図である。なお、説明の便宜上、黒鉛粉
末の粒形は全て球状に表示しである。
FIG. 1 is a cross-sectional structural diagram of an embodiment of a black thermal transfer recording sheet according to the present invention. For convenience of explanation, all graphite powder particles are shown as spherical.

1oは、例えば厚さが3〜15μmのポリエチレンテレ
フタレー)(PET、)、ポリイミド等のフィルムやコ
ンデンサペーパー等の耐熱性基体である。耐熱性基体1
oの表面11上にはホットメルトバインダ材2oと黒鉛
粉末3oから成る熱転写層4oが成層されて黒色熱転写
記録シート1Q。
1o is a heat-resistant substrate such as a film of polyethylene terephthalate (PET), polyimide, etc. or capacitor paper having a thickness of 3 to 15 μm. Heat resistant substrate 1
A thermal transfer layer 4o made of a hot melt binder material 2o and graphite powder 3o is laminated on the surface 11 of the black thermal transfer recording sheet 1Q.

が形成される。記録へラドによる昇温記録制御は基体背
面12側から行う。本例では黒鉛粉末30は大、小の二
種類の粒度分布に分球されたものが混合されて用いられ
ている。
is formed. Temperature increase recording control by the recording head is performed from the back surface 12 side of the substrate. In this example, graphite powder 30 divided into two types of particle size distributions, large and small, is mixed and used.

黒鉛粉末31は、小粒径で熱転写層表面41内に埋没さ
れて前述のいわゆるインク層を形成する黒色インク色材
として用いられる。一方、黒鉛粉末32は大粒径で、熱
転写層40を貫通し、その表面41に突出して層40に
凹凸表面を構成していて、前述のインクキャリヤ効果粒
子として動作すると共にそれ自身も転写記録される黒色
々材の両方を兼ねている。
The graphite powder 31 has a small particle size and is embedded in the thermal transfer layer surface 41 to be used as a black ink coloring material to form the above-mentioned so-called ink layer. On the other hand, the graphite powder 32 has a large particle size, penetrates the thermal transfer layer 40, protrudes from its surface 41, and forms an uneven surface on the layer 40, and acts as the aforementioned ink carrier effect particles and also itself for transfer recording. It also serves as both black and white wood.

インク層の厚さt(粒子32間の間隙部内における層4
oの平均厚さ)は、例えば1μm〜5μm程度に選ばれ
、粉末31の粒径はtよりも小に選ばれる。tが小にな
り過ぎるとインク量の不足から記録濃度が薄く、一方t
が大になり過ぎるとその熱容量の増大によって記録感度
や連続階調性が低下する傾向にある。粉末32の粒径は
層4oに凹凸表面を形成する必要から前述のtの値以上
に選ばれる。その最大粒径は例えば15μm以下が良く
、15μm以上では、インク浸透径路が長くなり過ぎて
前述の溶融インク浸透が困難になり記録感度が低下する
と共に、粉末32自身の転写により、時として低記録濃
度域の連続階調性を低下させ、記録画像品質をドツト状
に劣化させる。粉末32の粒径は好しくは厚さtを超え
、且つ10μm以下に選ばれる。
Thickness t of the ink layer (layer 4 in the gap between particles 32
The average thickness of the powder 31 is selected to be, for example, about 1 μm to 5 μm, and the particle size of the powder 31 is selected to be smaller than t. If t becomes too small, the recording density will be low due to insufficient ink amount, while t
If it becomes too large, recording sensitivity and continuous gradation properties tend to decrease due to the increase in heat capacity. The particle size of the powder 32 is selected to be larger than the above-mentioned value of t since it is necessary to form an uneven surface on the layer 4o. For example, the maximum particle size is preferably 15 μm or less; if it is more than 15 μm, the ink penetration path becomes too long, making it difficult for the molten ink to penetrate as described above, resulting in a decrease in recording sensitivity, and the transfer of the powder 32 itself may sometimes result in poor recording. It reduces the continuous gradation property of the density range and deteriorates the recorded image quality into dots. The particle size of the powder 32 is preferably selected to be greater than the thickness t and less than 10 μm.

第2図は、本発明にかXる黒色熱転写記録シートの他の
実施例の断面構造図である。
FIG. 2 is a cross-sectional structural diagram of another embodiment of the black thermal transfer recording sheet according to the present invention.

本例における黒鉛粉末30aは、第2図の如く2種類の
粒径選別黒鉛を混合することなく、粒径が単一の平均粒
径で表示され、その粒径分布が正規分布等、連続的に粒
径が変化する粒子から成る黒鉛粉末を用いている。
As shown in Fig. 2, the graphite powder 30a in this example has a single average particle size without mixing two types of particle size sorted graphite, and the particle size distribution is continuous, such as a normal distribution. Graphite powder consisting of particles with varying particle sizes is used.

その一定収下の粒径は層表面41内に埋没される黒色色
材31aとして用い、層表面41から突出する一定粒径
以上は前述のインクキャリヤ32&として働く。
The particles having a certain size are used as the black coloring material 31a buried in the layer surface 41, and the particles having a certain size or more protruding from the layer surface 41 serve as the ink carriers 32&.

黒鉛30aにおいてインクキャリヤ322Lの最大粒径
を規定する分布粒度の最大値は、第1図で述べたと同様
に16μm、好しくけ10μm以内に選ばれる。黒鉛粉
末30aの粒度分布は通常0からこの最大値の範囲内の
分布粒径のものが用いられる。熱転写層40に占める黒
鉛粉末30(第1図)、301L(第2図)の重量%は
例えば10〜80%の範囲に選ばれ、10%以下では黒
色度が低下し、80%を超えるとホットメルトバインダ
材20の不足から熱転写性が低下すると共に、記録媒体
への転写記録の強度が低下する。黒鉛粉末30.30&
の重量%は特に20〜70%の範囲内に選ぶことが推奨
される。熱転写層40の塗工量は162〜10g/扉の
範囲が良く、1.29/n? 以下では転写記録濃度が
薄く、10y/77/を超えるとその熱容量の増大から
熱転写感度が低下すると共に、特に低濃度域の連続階調
性が劣化する。1・5〜egyrrlが特に推奨される
範囲である。
The maximum value of the distribution particle size that defines the maximum particle size of the ink carrier 322L in the graphite 30a is 16 μm, preferably within 10 μm, as described in FIG. 1. The particle size distribution of the graphite powder 30a is normally within the range of 0 to this maximum value. The weight percentage of the graphite powders 30 (FIG. 1) and 301L (FIG. 2) in the thermal transfer layer 40 is selected, for example, in the range of 10 to 80%; if it is less than 10%, the blackness will decrease, and if it exceeds 80%, the blackness will decrease. Due to the shortage of the hot melt binder material 20, the thermal transferability deteriorates, and the strength of transfer recording onto the recording medium also decreases. Graphite powder 30.30&
It is particularly recommended that the weight % of is selected within the range of 20 to 70%. The coating amount of the thermal transfer layer 40 is preferably in the range of 162 to 10 g/door, and is 1.29/n? Below, the transfer recording density is low, and when it exceeds 10y/77/, the thermal transfer sensitivity decreases due to the increase in heat capacity, and the continuous gradation property particularly in the low density region deteriorates. A particularly recommended range is 1.5 to egyrrl.

一方、第1図、第2図において黒鉛粉末30゜301に
おいて熱転写層40の厚み方向に貫通し、層表面41に
突出し凹凸表面を形成するインクキャリヤたる黒鉛粉末
32.321の粉末30゜30aに占める重量%は粉末
32,32aが単一粒径で完全球である場合は単位記録
画素当り最低1個好しくけ4個以上存在すれば良く極め
て少ない値になる。然し、実際の粉末はこのような理想
状態にないため、実用的には例えば5〜7o%の範囲内
に選ばれる。重量%が5%未満であると、インクキャリ
ヤ粒子30.3C1O不足から低記録濃度域の連続階調
性が損われ、まだ記録画像が特に低記録濃度域で粗く見
える。重量%が7o%を超えると、その記録媒体への熱
転写により低濃度域の連続階調性が低下し、記録画像品
質を低下させる。15〜60%が特に推奨される範囲で
ある。
On the other hand, in FIGS. 1 and 2, the graphite powder 30° 301 penetrates the thermal transfer layer 40 in the thickness direction and protrudes onto the layer surface 41, forming an uneven surface. When the powders 32, 32a have a single particle size and are perfectly spherical, the percentage by weight is extremely small, preferably at least one particle per unit recording pixel, and four or more particles per unit recording pixel. However, since the actual powder is not in such an ideal state, it is practically selected within the range of 5 to 7%, for example. If the weight % is less than 5%, the continuous gradation property in the low recording density region will be impaired due to the lack of ink carrier particles 30.3C1O, and the recorded image will still look rough, especially in the low recording density region. If the weight % exceeds 70%, the continuous gradation property in the low density region will deteriorate due to thermal transfer to the recording medium, resulting in a decrease in the quality of the recorded image. A particularly recommended range is 15-60%.

ホットメルトバインダ材2oとしては、例えばカルナウ
バワックス、キャンデリラワックス、モノタンワックス
、酸ワツクス、エステルワックス。
Examples of the hot melt binder material 2o include carnauba wax, candelilla wax, monothane wax, acid wax, and ester wax.

部分酸化エステルワックス、固形バラフィy等のワック
ス、エチレン酢酸ビニル共重合物(87人)。
Partially oxidized ester wax, wax such as solid baraffy y, ethylene vinyl acetate copolymer (87 people).

石油樹脂、アクリル樹脂、ポリアミド樹脂、低分子ポリ
エチレン、ポリブテン等の樹脂を含む一種以上を構成材
料として、これらに必要に応じて可塑剤、鉱物油2表面
活性剤、酸化防止剤等の補助剤を混合して構成される。
The constituent materials include one or more resins such as petroleum resins, acrylic resins, polyamide resins, low-molecular polyethylene, and polybutene, and auxiliary agents such as plasticizers, mineral oil 2 surfactants, and antioxidants are added to these as necessary. Composed of mixtures.

黒鉛端子32.32aの表面41突出による凹凸表面の
形成とは、上記ホットメルトバインダ材20と黒鉛粉末
30.30&を夫々含む熱転写層4oの混゛合材料を例
えばグラビヤ印刷、フレキソ印刷等のソルベントコーテ
ィング法で基体表面11に厚みを限定して塗布し、塗布
層からの溶剤の蒸発により、容易に行える。
The formation of an uneven surface by the protrusion of the surface 41 of the graphite terminal 32.32a means that the mixed material of the thermal transfer layer 4o containing the hot melt binder material 20 and the graphite powder 30. This can be easily done by coating the substrate surface 11 to a limited thickness using a coating method and then evaporating the solvent from the coating layer.

この場合、ホットメルトワックスや樹脂類U一般に、常
温では溶剤に溶解せぬ場合が多い。このような成分を含
むホットメルトバインダ材2Qの使用においては、常温
不溶解性ホットメルト材の融点乃至は軟化点以上の沸点
を有する溶剤をソルベントコーティング法に用い、これ
らの熱転写層用混合悪濁液を、一旦、常温不溶解性ホッ
トメルト材の融点、沸点附近乃至はそれ以上に加温して
溶剤に溶解させた後、撹拌、粉砕しつつ冷却して常温不
溶解性ホットメルト材の微粒子をいわゆる冷間析出させ
る。この析出懇濁液を基体表面41にソルベントコート
レ、この塗布層の溶剤を予備乾燥して後、或いはこの塗
布層を直ちに析出ホットメルト粒子の融点乃至は軟化点
以上に加熱し、溶剤を完全蒸発させると共に析出ホット
メルト粒子を溶融せしめる。
In this case, hot melt waxes and resins U generally do not dissolve in the solvent at room temperature in many cases. When using hot melt binder material 2Q containing such components, a solvent having a boiling point higher than the melting point or softening point of the room temperature insoluble hot melt material is used in the solvent coating method, and a mixture of these materials for the thermal transfer layer is used. The liquid is first heated to near or above the melting point or boiling point of the room temperature insoluble hot melt material to dissolve it in a solvent, and then cooled while stirring and pulverizing to form fine particles of the room temperature insoluble hot melt material. is precipitated by so-called cold precipitation. This precipitated suspension is coated with a solvent on the substrate surface 41, and after pre-drying the solvent in this coating layer, or immediately heating this coating layer to a temperature higher than the melting point or softening point of the precipitated hot melt particles, the solvent is completely removed. While evaporating, the precipitated hot melt particles are melted.

上記製造法によると、析出ホットメルト粒子は粒子性を
喪失すると共に他のホットメルト材と相溶し、均一な熱
転写層40が形成できる優れた利点がある。なお、第1
図、第2図において、黒鉛粉末32,32aの露出頂部
表面に黒鉛微粉末31’、31m’を含んで薄くホット
メルトバインダ材20′が被覆されているが、これらは
存在していなくても良いものとする。
According to the above manufacturing method, the precipitated hot melt particles lose their particulate nature and are compatible with other hot melt materials, so there is an excellent advantage that a uniform thermal transfer layer 40 can be formed. In addition, the first
2, the exposed top surfaces of graphite powders 32, 32a are thinly coated with hot melt binder material 20' containing fine graphite powders 31', 31m', but even if these are not present, Make it good.

〔実施例〕〔Example〕

黒鉛粉末3oIL(31a、32&)として表面をステ
アリン酸処理した平均粒径1.0μm(6部%重量値)
2粒径分布0〜10μmの人工黒鉛(日本黒鉛社製Hム
G−150−s t ) 53.2部(以下全て重量部
)、ホットメルトバインダ材20として脂環族飽和炭化
水素樹脂(教化点70°C)21.6部、パラフィン(
融点50〜62℃)14.4部、カルナウバワックス(
融点80〜83℃)3.6部、ETA(MA:2部%、
MI:400゜軟化点86°C) 7.2部の計100
部に、溶剤としてキシレン(沸点138〜144℃)を
250部加えて熱転写層用懸濁液を作シ、ボールミルで
撹拌しつつ100’Cに加熱する。
Graphite powder 3oIL (31a, 32&) whose surface was treated with stearic acid, average particle size 1.0 μm (6 parts% weight value)
2 Artificial graphite with a particle size distribution of 0 to 10 μm (Hmu G-150-st manufactured by Nippon Graphite Co., Ltd.) 53.2 parts (hereinafter all parts by weight), an alicyclic saturated hydrocarbon resin (Kyokaku) as the hot melt binder material 20 point 70°C) 21.6 parts, paraffin (
melting point 50-62°C) 14.4 parts, carnauba wax (
melting point 80-83°C) 3.6 parts, ETA (MA: 2 parts%,
MI: 400° Softening point 86°C) 7.2 parts total 100
250 parts of xylene (boiling point: 138-144 DEG C.) as a solvent was added to 1 part to prepare a suspension for a thermal transfer layer, and heated to 100 DEG C. with stirring in a ball mill.

ETA及びカルナウバワックスは、常温ではキシレンに
完全溶解しない。100’Cの加熱によりてこれらも含
めてホットメルトバインダ材は溶解が進み、互に相溶す
る。ホットメルトバインダ材が完全溶解した段階でボー
ルミルを続けながら室温に迄自然冷却し更に2時間ボー
ルミルにかける。
ETA and carnauba wax do not completely dissolve in xylene at room temperature. By heating at 100'C, the hot-melt binder materials including these proceed to melt and become mutually compatible. When the hot melt binder material is completely melted, the ball milling is continued while the mixture is naturally cooled to room temperature, and the ball milling is further continued for 2 hours.

この冷却、撹拌1分散過程で未相溶のETA、カルナウ
バワックスは微粒子状に析出し、人工黒鉛粉末と共に均
一に分散される。
During this cooling, stirring and dispersion process, the incompatible ETA and carnauba wax precipitate into fine particles and are uniformly dispersed together with the artificial graphite powder.

この析出混合懸濁液を、市販の#5のパーコーターで厚
さ9μmのPETフィルムから成る耐熱性基体10の表
面11に常温で塗布し、塗工層のキシレン溶剤を予備蒸
発させた後、析出’EV人(軟化点86°C)及びカル
ナウバワックス(融点80〜83°C)粒子の何れの軟
化点、融点よりも高温の120’Cの加熱乾燥炉中全通
過させ塗工層ヶヵ。あいヤ7,7エオえええ、。5オ、
   1析出粒子を溶融、低粘度化する。この加熱溶融
によって析出粒子は粒状を喪失すると共に、他のホット
メルトバインダ材成分との相溶も進行し、はソ均一なホ
ットメルトバインダ材20が構成される。
This precipitation mixed suspension was applied at room temperature to the surface 11 of a heat-resistant substrate 10 made of a 9 μm thick PET film using a commercially available #5 percoater, and after preliminary evaporation of the xylene solvent in the coating layer, the precipitation The entire coating layer was passed through a heating drying oven at 120'C, which is higher than the softening point and melting point of both EV (softening point: 86°C) and carnauba wax (melting point: 80-83°C) particles. Aiya 7, 7 Eo yeah. 5 o,
1. Melt the precipitated particles and reduce their viscosity. By this heating and melting, the precipitated particles lose their granularity, and their compatibility with other hot melt binder material components also progresses, so that a uniform hot melt binder material 20 is formed.

また、キシレン溶剤の蒸発に伴なって、塗工層の層表面
は低下し、第2図に例示した如くインクキャリヤ全形成
する大粒径の黒鉛粒子32aは、黒鉛微粒子32a′を
含んだホットメルトバインダ材20′でその頂部を薄く
被覆された状態で層表面41から突き出て、凹凸表面の
熱転写層4oが構成される。本例における層40の塗工
量は3.61y&であった。
Further, as the xylene solvent evaporates, the layer surface of the coating layer is lowered, and as illustrated in FIG. A thermal transfer layer 4o with an uneven surface is formed by protruding from the layer surface 41 with its top portion thinly coated with melt binder material 20'. The coating weight of layer 40 in this example was 3.61y&.

斯くして製造された第2図例示の黒色熱転写記録シート
を用いた転写記録特性例を第3図に示す。
FIG. 3 shows an example of transfer recording characteristics using the black thermal transfer recording sheet exemplified in FIG. 2 manufactured in this manner.

昇温記録制御は4ドツト(画素) /MHの公知のリニ
ヤ型サーマル記録ヘッドを用い、記録媒体(受像体)と
してはポリプロピレン樹脂系の厚さ150μmの記録紙
を使用した。主走査線記録速度は16.7 ms/ライ
ン、副走査線密度は4ライ//ff、記録電気信号は6
ビツトでパルス幅変調され、変調パルス幅(Pw)の最
大は4mSである。
A known linear type thermal recording head of 4 dots (pixels)/MH was used for the temperature increase recording control, and a polypropylene resin-based recording paper having a thickness of 150 μm was used as the recording medium (image receptor). The main scanning line recording speed is 16.7 ms/line, the sub-scanning line density is 4 lines//ff, and the recording electrical signal is 6
The pulse width is modulated by bits, and the maximum modulated pulse width (Pw) is 4 mS.

印加電力は0.6 W/ドツトである。The applied power was 0.6 W/dot.

第3図からも明白な如く、本実施例における黒色熱転写
記録シートによると記録紙面上の転写記録濃度りは、変
調パルス幅Pwに対応して紙面濃度DOから滑らかに立
ち上がる。そして低記録濃度域から中、高記録濃度域に
亘って極めて優れた連続階調転写記録特性が得られ、記
録電気信号として画像信号を用いると線頭次で画質に優
れた鮮明な黒色中間調画像が熱転写記録できた。低転写
記録濃度域で連続階調性に特に有効に寄与する大粒径の
インクキャリヤ粒子32aの存在は、径10μm附近の
比較的大きな黒色転写記録ドツトを顕微鏡で観察するこ
とにより検知出来る。変調パルス幅Pw=1 msでは
、上記記録ドツトの密度は約4oO個/M11I、サー
マルヘッドの1記録電極(すなわち1記録画素0.25
 xo、2部mA )面当りでは約25個であった。
As is clear from FIG. 3, according to the black thermal transfer recording sheet of this embodiment, the transfer recording density on the recording paper surface rises smoothly from the paper surface density DO in response to the modulation pulse width Pw. Extremely excellent continuous tone transfer recording characteristics can be obtained from low to medium to high recording density areas, and when an image signal is used as the recording electrical signal, clear black halftones with excellent image quality can be obtained from the line head to the top. The image could be recorded by thermal transfer. The presence of large-diameter ink carrier particles 32a, which particularly effectively contribute to continuous gradation in the low transfer recording density region, can be detected by observing relatively large black transfer recording dots with a diameter of about 10 μm using a microscope. When the modulation pulse width Pw=1 ms, the density of the recording dots is approximately 4oO/M11I, and one recording electrode of the thermal head (that is, one recording pixel is 0.25
xo, 2 parts mA) It was about 25 pieces per surface.

〔比較例〕[Comparative example]

上記実施例における黒鉛粉末の替りに粒径分布0〜1.
2μmの人工黒鉛微粉末を用いて以下同様にして熱転写
記録シートラ製作した。熱転写層の塗工量は実施例と同
様に約3.51/d で、然るに熱転写層の平均厚さは
2.6μmであった。この事実は前記実施例において、
約2.6μm以上の分布粒径の人工黒鉛は熱転写層面に
凹凸を形成するインクキャリヤ32a(第2図)を形成
し得ることを意味している。
Instead of the graphite powder in the above example, particle size distribution of 0 to 1.
A thermal transfer recording sheet was manufactured in the same manner using 2 μm artificial graphite fine powder. The coating weight of the thermal transfer layer was about 3.51/d as in the examples, and the average thickness of the thermal transfer layer was 2.6 μm. This fact is reflected in the above example.
This means that artificial graphite having a particle size distribution of about 2.6 μm or more can form an ink carrier 32a (FIG. 2) that forms irregularities on the surface of the thermal transfer layer.

然るに本引例における人工黒鉛微粉末の粒径は全て熱転
写層の厚さよりも小さく、インクキャリヤ32a’i形
成し得ないことを示している。
However, the particle sizes of the artificial graphite fine powder in this reference are all smaller than the thickness of the thermal transfer layer, indicating that the ink carrier 32a'i cannot be formed.

同様に熱転写記録実験を行うと、本比較例のシートでは
低転写記録濃度域から中転写記録濃度域にかけての記録
濃度りが場所により不安定で、二値濃度的で連続階調性
に欠けるものであシ、良好な中間調画像の熱転写記録は
行えなかった。
Similarly, thermal transfer recording experiments were conducted on the sheet of this comparative example, and the recording density from the low transfer recording density area to the medium transfer recording density area was unstable depending on the location, and the sheet had a binary density and lacked continuous gradation. Unfortunately, thermal transfer recording of a good halftone image could not be performed.

前記実施例では人工黒鉛を用いたが、土状黒鉛や鱗状黒
鉛を用いることも、またこれら3種の黒鉛の内の2種以
上を混合して使用することもできる。特に第1図の構成
において小粒径の黒鉛粉末31を鱗状黒鉛、大粒径の黒
鉛粉末32を人工乃至は土状黒鉛と使い分けすることが
できる。この場合、粉末32を人工黒鉛とすることが画
質や連続階調性が良好で推奨される。
Although artificial graphite was used in the above embodiment, earthy graphite or scaly graphite may be used, or two or more of these three types of graphite may be used in combination. In particular, in the configuration shown in FIG. 1, the small particle size graphite powder 31 can be used as scaly graphite, and the large particle size graphite powder 32 can be used as artificial or earthy graphite. In this case, it is recommended to use artificial graphite as the powder 32 because it provides good image quality and continuous gradation.

然し、これら3種の黒鉛粉末を夫々単独で使用した時、
連続階調特性や画像品質は人工黒鉛が最良であって、そ
の使用が推奨される。次いで土状黒鉛、鱗状黒鉛の順に
低下し易くなる。特に低記録濃度域で画質がドツト状に
ザラ付き粗くなり易い。
However, when these three types of graphite powder are used alone,
Artificial graphite has the best continuous tone characteristics and image quality, and its use is recommended. Next, it tends to decrease in the order of earthy graphite and scaly graphite. Particularly in low recording density areas, the image quality tends to become dot-like and rough.

これらは、人工黒鉛粉末の粒形が最も球形に近く、次い
で土状、鱗状黒鉛の順に球形から程遠くなり、インクキ
ャリヤ32.32a表面を介してのスムーズな浸透転写
が困難となり、従って塊状に32.32&それ自身が転
写され易く、転写記録濃度の連続性を低下させ易いこと
によるものと想定される。
The particle shape of artificial graphite powder is closest to a spherical shape, followed by clay-like graphite and scale-like graphite, which are far from spherical in order, making smooth penetration transfer through the surface of the ink carrier 32. This is assumed to be due to the fact that .32& itself is easily transferred and tends to reduce the continuity of transferred recording density.

発明の効果 以上、詳述した如く黒鉛粉末をインク色材及びインクキ
ャリヤ材として用いることにより、熱転写層塗工形成用
インクの管理が容易で、熱転写。
As described above, by using graphite powder as an ink coloring material and an ink carrier material, the ink for forming a thermal transfer layer coating can be easily managed and thermal transfer can be performed.

塗工層の均一性、黒色均一性が改良された黒色熱転写記
録シートが実現できる。
A black thermal transfer recording sheet with improved coating layer uniformity and black uniformity can be realized.

また、本発明にかXる黒色熱転写記録シートによると連
続階調性に優れ、且つ良質の中間調画像の熱転写記録が
でき、その産業上の効果は極めて犬なるものがある。
Further, the black thermal transfer recording sheet according to the present invention has excellent continuous tone properties and can thermally transfer record halftone images of good quality, and its industrial effects are extremely impressive.

なお、以上の説明では、耐熱性基体10としては絶縁性
材料を用いたが基体1oにカーボンや黒鉛粉末を混合し
て抵抗性に構成することができる。
In the above description, an insulating material is used as the heat-resistant base 10, but the base 1o may be made resistive by mixing carbon or graphite powder.

この場合、本発明における熱転写層4oも抵抗性である
ので、熱転写層40’1jH一方の共通電極として基体
背面12にリニヤ−型の記録電極ヘッドを接触させ、振
幅変調、パルス幅変調、振幅ノ(ルス幅変調の記録電気
信号を選択的に印加し、基体10゜熱転写層40を流れ
る電流のジュール熱で熱転写層40を昇温記録制御して
連続階調の熱転写記録を行なうことができる。或いは上
記において基体表面11と熱転写層40との間にアルミ
ニウム等の蒸着導電膜を設置し、この導電膜を共通電極
として抵抗性の基体1Qのジュール熱を利用して熱転写
層を昇温記録制御することもできる。
In this case, since the thermal transfer layer 4o in the present invention is also resistive, a linear recording electrode head is brought into contact with the back surface 12 of the substrate as a common electrode on one side of the thermal transfer layer 40'1jH, and amplitude modulation, pulse width modulation, and amplitude control are performed. (Continuous tone thermal transfer recording can be performed by selectively applying a pulse width modulated recording electric signal and controlling the temperature of the thermal transfer layer 40 by Joule heat of the current flowing through the substrate 10° thermal transfer layer 40. Alternatively, in the above method, a vapor-deposited conductive film of aluminum or the like is installed between the substrate surface 11 and the thermal transfer layer 40, and this conductive film is used as a common electrode to use Joule heat of the resistive substrate 1Q to control the heating and recording of the thermal transfer layer. You can also.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における黒色熱転写記録シー
トの断面図、第2図は本発明の他の実施例における黒色
熱転写記録シートの断面図、第3図は本発明にか\る黒
色熱転写記録シート説明のだめの熱転写記録特性を示す
特性図である。 1o・・・・・・耐熱性基体、2o、20′・・・・・
・ホットメルトバインダ材、30,31.31’、31
a。 31&’ 、32 、322L−旧・・黒鉛粉末、40
・・・・・・熱転写層、100・・山黒色熱転写記録シ
ート。 代理人の氏名 弁理士 中 尾 敏 男 はが1名lθ
・・・耐無性差駁
FIG. 1 is a cross-sectional view of a black thermal transfer recording sheet according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a black thermal transfer recording sheet according to another embodiment of the present invention, and FIG. 3 is a cross-sectional view of a black thermal transfer recording sheet according to another embodiment of the present invention. FIG. 2 is a characteristic diagram showing thermal transfer recording characteristics of a thermal transfer recording sheet. 1o...Heat-resistant substrate, 2o, 20'...
・Hot melt binder material, 30, 31. 31', 31
a. 31&', 32, 322L-old... graphite powder, 40
...Thermal transfer layer, 100... Mountain black thermal transfer recording sheet. Name of agent: Patent attorney Toshio Nakao (1 person)
...Asexuality resistance

Claims (1)

【特許請求の範囲】[Claims] シート状の耐熱性基体面上に、昇温記録制御によってそ
の粘性が減少制御され、記録媒体への転写性が付与され
るホットメルトバインダ材と、黒鉛粉末粒子とを含む熱
転写層が成層され、且つこの黒鉛粉末は粒度分布をもち
、その一部の粉末粒子は前記熱転写層の厚み方向に貫通
して前記熱転写層表面に突出し、前記熱転写層に凹凸表
面を形成したことを特徴とする黒色熱転写記録シート。
A thermal transfer layer containing graphite powder particles and a hot melt binder material whose viscosity is controlled to be reduced by temperature increase recording control and impart transferability to a recording medium is layered on a sheet-like heat-resistant substrate surface, Further, the graphite powder has a particle size distribution, and some of the powder particles penetrate through the thickness direction of the thermal transfer layer and protrude onto the surface of the thermal transfer layer, thereby forming an uneven surface on the thermal transfer layer. Record sheet.
JP60099863A 1985-05-10 1985-05-10 Black thermal transfer recording sheet Expired - Lifetime JPH0714664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099863A JPH0714664B2 (en) 1985-05-10 1985-05-10 Black thermal transfer recording sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099863A JPH0714664B2 (en) 1985-05-10 1985-05-10 Black thermal transfer recording sheet

Publications (2)

Publication Number Publication Date
JPS61258791A true JPS61258791A (en) 1986-11-17
JPH0714664B2 JPH0714664B2 (en) 1995-02-22

Family

ID=14258640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099863A Expired - Lifetime JPH0714664B2 (en) 1985-05-10 1985-05-10 Black thermal transfer recording sheet

Country Status (1)

Country Link
JP (1) JPH0714664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293357A1 (en) * 2001-09-12 2003-03-19 Dai Nippon Printing Co., Ltd. Thermal transfer film, process for producing the same and method for image formation using said thermal transfer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979788A (en) * 1982-10-29 1984-05-09 Sony Corp Heat-sublimable ink ribbon
JPS59101399A (en) * 1982-12-01 1984-06-11 Matsushita Electric Ind Co Ltd Dye-transferring body
JPS59131496A (en) * 1983-01-18 1984-07-28 Matsushita Electric Ind Co Ltd Dye transfer medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979788A (en) * 1982-10-29 1984-05-09 Sony Corp Heat-sublimable ink ribbon
JPS59101399A (en) * 1982-12-01 1984-06-11 Matsushita Electric Ind Co Ltd Dye-transferring body
JPS59131496A (en) * 1983-01-18 1984-07-28 Matsushita Electric Ind Co Ltd Dye transfer medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293357A1 (en) * 2001-09-12 2003-03-19 Dai Nippon Printing Co., Ltd. Thermal transfer film, process for producing the same and method for image formation using said thermal transfer film
US6819348B2 (en) 2001-09-12 2004-11-16 Dai Nippon Printing Co., Ltd. Thermal transfer film, process for producing the same and method for image formation using said thermal transfer film

Also Published As

Publication number Publication date
JPH0714664B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
KR890003436B1 (en) Thermal transfer sheet
US4707395A (en) Heat-sensitive transferring recording medium
EP0124616A1 (en) Heat-sublimable ink ribbon
GB2198545A (en) Thermal transfer material
US4479997A (en) Electric discharge facsimile recording material
JPS61258791A (en) Black color thermal transfer recording sheet
EP0194860A2 (en) Heat-sensitive transferring recording medium
EP0126906A1 (en) Heat-sensitive registration/transfer material
CA1192046A (en) Electrosensitive transfer film
EP0354293B1 (en) Multi-usable heat transfer ink ribbon
US5051302A (en) Multi-usable heat transfer ink ribbon
JPS6019585A (en) Current-sensitized transfer recording material
JPH02143899A (en) Thermal transfer recording material and production thereof
JPS61258788A (en) Production of thermal transfer recording sheet
JP2617295B2 (en) Thermal transfer film
JPS6382779A (en) Thermal transfer recording sheet
JPS61125891A (en) Thermal transfer recording sheet
JPH0274391A (en) Thermal transfer recording medium
JPS6221587A (en) Thermal transfer material and production thereof
JPS61137783A (en) Thermal transfer recording method and recording medium
JPH01301286A (en) Thermal transfer recording medium and production thereof
JPH0323992A (en) Thermal transfer recording material and preparation thereof
JPS63319190A (en) Thermal transfer sheet and production thereof
JPS5842490A (en) Recording material for electrifying transfer
JPH0548754B2 (en)