JPS61258723A - Manufacture of two-layer hollow film - Google Patents

Manufacture of two-layer hollow film

Info

Publication number
JPS61258723A
JPS61258723A JP61053546A JP5354686A JPS61258723A JP S61258723 A JPS61258723 A JP S61258723A JP 61053546 A JP61053546 A JP 61053546A JP 5354686 A JP5354686 A JP 5354686A JP S61258723 A JPS61258723 A JP S61258723A
Authority
JP
Japan
Prior art keywords
annular
film
water
layer
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61053546A
Other languages
Japanese (ja)
Other versions
JPS6245048B2 (en
Inventor
Zenichi Nakamura
善一 中村
Masayoshi Ono
小野 正善
Hidenori Nomura
野村 英紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP61053546A priority Critical patent/JPS61258723A/en
Publication of JPS61258723A publication Critical patent/JPS61258723A/en
Publication of JPS6245048B2 publication Critical patent/JPS6245048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/19Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their edges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide the film with excellent light beam transmittance as well as desired thin and flexible property, prevent the strain or buckling or leg between two layers of film and obtain a good temperature-keeping property by a method wherein the inner and outer two layers of tubular film are adhered to the side wall surfaces of inner and outer annular cooling-water tanks by the pressure of gas sent between annular slits and water is passed through both annular water tanks. CONSTITUTION:Molten thermoplastic resin 4, extruded through the delivery port 7 of an extruding dice 1, is formed into two-layer tube, connected by a multitude of legs between two layers, and the tube is inflated with a gas supplied from a pipe 37. The positions of height of a water depth regulating ring 21 for inside annular cooling-water tank and a water depth regulating hollow tubular nut 31 for the outside annular cooling-water tank are adjusted to equalize the depths of water, contacting with both inner and outer layers of the two-layer hollow film, and cool the inflated resin in the inside and outside annular cooling water tanks 2, 3 while the pressure of air, sent by pressure between both annular slits 8, 9 of the dice through an air sending port 11 formed between the same slits 8, 9, is adjusted to adhere both of the inner and outer films to the annular outside wall 12 and the annular inside wall 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は二層聞中空フィルム、特に2枚のフィルム層間
が多数の分離した脚によって一体的に連結され多数の細
長い区分至を2枚フィルム間に形成してなる中空フィル
ムの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a two-layer hollow film, particularly a two-layer hollow film, in which the two film layers are integrally connected by a number of separate legs, and a number of elongated segments are connected to each other. The present invention relates to a method for manufacturing a hollow film formed between

(従来の技術) 上記の中空フィルムは一枚のシートフィルムに比べて保
温性が優れているところから、近年特に温室用被覆材と
して注目されている。ところが、この二層間中空構造と
したことにより光線透過率が一枚のシートフィルムに比
べて著しく低下したのでは昼間の太陽熱が温室内に充分
に蓄熱されなくなり、また上下二枚のフィルム間に渡設
された多数の脚がしっかりと両フィルムを分離させて細
長い区分苗を維持させなければ保温効果が低下して温室
用被覆材としての機能を充分に果たすことができないも
のとなる。また、この種の中空フィルムは従来の単層シ
ートフィルムのように巻取って保管・搬送することがで
きるとともに作業性を良好ならしめるため充分に柔軟性
をも備えたものであることが要求される。
(Prior Art) The above-mentioned hollow film has been attracting attention in recent years as a covering material for greenhouses because it has superior heat retention properties compared to a single sheet film. However, due to the hollow structure between the two layers, the light transmittance is significantly lower than that of a single sheet film, and daytime solar heat is not stored sufficiently in the greenhouse, and the heat is not transferred between the upper and lower films. Unless the provided many legs firmly separate both films to maintain long and slender sectioned seedlings, the heat retention effect will be reduced and the film will not be able to function satisfactorily as a greenhouse covering material. In addition, this type of hollow film is required to be able to be rolled up, stored and transported like a conventional single-layer sheet film, and to have sufficient flexibility to ensure good workability. Ru.

このように所望の光線透過率を得るために、上下フィル
ム層並びに脚を透明で薄くかつ柔軟性のある樹脂で成型
し、しかもしつかりした細長い区分室を維持する二層間
中空フィルムを効率良く製造することは困難なこととさ
れていた。
In order to obtain the desired light transmittance, the upper and lower film layers as well as the legs are molded with transparent, thin, and flexible resin, and a two-layer hollow film that maintains a strong and elongated compartment is efficiently manufactured. It was considered difficult to do so.

従来提案されている二層間中空フィルムを製造する一つ
の方法としては、特開昭50−133263に示されて
いるように、同心状に形成された大小2個の環状スリッ
トとこの環状スリットを連結する複数のスリットを有す
る環状押出ダイスより溶融した熱可塑性樹脂を押出しつ
つ膨張させ、次いで空冷方式にて冷却するインフレーシ
ョン押出成型方法が公知となっている。
One of the conventionally proposed methods for manufacturing a two-layer hollow film is to connect two large and small annular slits formed concentrically, as shown in JP-A-50-133263. An inflation extrusion molding method is known in which a molten thermoplastic resin is extruded and expanded through an annular extrusion die having a plurality of slits, and then cooled by an air cooling method.

(発明が解決しようとする問題点) しかし、この方法では、押出した溶融熱可塑性樹脂を膨
張させて冷却するとき、冷却効果を早めようとすれば冷
却空気量を比較的多く供給しなければならない。また、
外側環状スリットから吐出される樹脂面と内側環状スリ
ットとから吐出される樹脂面を同じ条件で冷却しようと
すれば、外側環状スリット面側では冷却ノズルから吹き
出された空気は熱を奪って大気に拡散するが、内側環状
スリット面側の吹出し空気は円筒状フィルムの中に閉じ
込められてしまい、膨張させるためのフィルム円筒内の
圧力が異常に高くなってしまい調整ができなくなる。こ
れと同時に内側環状スリット面より奪った熱の拡散がで
きず、外側環状スリット面と内側環状スリット面の冷却
効果が異なってしまい、同じ条件の冷却効果を得ること
ができない。
(Problem to be solved by the invention) However, in this method, when the extruded molten thermoplastic resin is expanded and cooled, a relatively large amount of cooling air must be supplied in order to accelerate the cooling effect. . Also,
If you try to cool the resin surface discharged from the outer annular slit and the resin surface discharged from the inner annular slit under the same conditions, the air blown out from the cooling nozzle on the outer annular slit surface will absorb heat and return to the atmosphere. However, the blown air on the inner annular slit surface side is trapped inside the cylindrical film, and the pressure inside the film cylinder for expansion becomes abnormally high and cannot be adjusted. At the same time, the heat taken from the inner annular slit surface cannot be diffused, and the cooling effects of the outer annular slit surface and the inner annular slit surface differ, making it impossible to obtain a cooling effect under the same conditions.

これを避けるために、内側環状スリット面側に吹き出す
冷却空気の排気口を設けて熱の拡散を図ろうとすれば、
逆にフィルム円筒内の膨張させるための気体の圧力が減
じてしまい、気体の圧力バランスが極めて困難となる。
To avoid this, if you try to dissipate the heat by providing an exhaust port for the cooling air that blows out on the inner annular slit surface,
Conversely, the pressure of the gas for expansion inside the film cylinder decreases, making it extremely difficult to balance the gas pressure.

同時に押出した溶融熱可塑性樹脂を膨張させる時に二層
のフィルム間を連結する脚が不規則に歪んだり座屈しな
いようにするため、フィルム円筒内の気体の圧力と内外
環状スリット間に供給される気体の圧力とのバランスが
必要となるが、上記公知の空冷によって冷却固化してい
るインフレーション押出成形法ではこのような調整は極
めて困難であった。
In order to prevent the legs connecting the two layers of film from being irregularly distorted or buckled when simultaneously extruded molten thermoplastic resin is expanded, the pressure of the gas inside the film cylinder is supplied between the inner and outer annular slits. A balance with the gas pressure is required, but such adjustment is extremely difficult in the above-mentioned known inflation extrusion molding method in which cooling and solidification is performed by air cooling.

また、このような空冷方式では冷却に比較的長い時間が
かかるため樹脂が薄く引き伸ばされ、二層フィルム間の
脚が歪み曲ったすして座屈するだけでなく、徐冷のため
樹脂の透明度が低下して実用性が言われてしまう。
In addition, with this type of air cooling method, cooling takes a relatively long time, so the resin is stretched thin, which not only causes the legs between the two layers to become distorted and buckled, but also reduces the transparency of the resin due to slow cooling. Then, the practicality is mentioned.

上記の空冷方式の代わりに従来の水冷方式を採用するこ
とが考えられるが、従来の水冷方式は単層フィルムの冷
却のために用いられたものであるため、この水冷方式で
は二層からなるフィルムの中空形状を変えることなくこ
れを同時かつ均等に冷却することはできず、上記空冷の
場合と同様な欠陥が生じてしまうのである。
It is conceivable to adopt a conventional water cooling method instead of the air cooling method described above, but since the conventional water cooling method was used to cool a single layer film, this water cooling method cools a film consisting of two layers. It is not possible to cool them simultaneously and uniformly without changing their hollow shapes, and the same defects as in the case of air cooling occur.

従って、本発明は従来提案されているインフレーション
押出成型・空冷方式による二層間中空フィルムの製造方
法を改善し、優れた光線透過率と所望の肉薄柔軟性を備
えしかも二層フィルム間の脚が歪んだり座屈することが
ない保温性の良好な二層間中空フィルムを効率良く製造
する方法を提供するにある。
Therefore, the present invention improves the conventionally proposed method for manufacturing a two-layer hollow film using the inflation extrusion molding/air cooling method, and provides excellent light transmittance and desired thinness and flexibility, while preventing distortion of the legs between the two-layer films. An object of the present invention is to provide a method for efficiently producing a two-layer hollow film with good heat retention properties that does not buckle or buckle.

(問題点を解決するための手段) 本発明の二層間中空フィルムの製造方法によれば、一対
の近接して配置した同心状環状スリットとこれらの間に
渡設した多数の脚スリットからなるダイスの吐出口から
溶融した熱可塑性樹脂を二層円筒フィルム状に押出し、
該押出された二層円筒フィルムの内側に気体を挿入して
膨張せしめるとともに、該一対の環状スリット間に気体
を送入して該フィルムが所望の見掛は厚みを有するごと
く二層間隔を維持し、該膨張した二層円筒フィルムを該
ダイスの下方に配設した外側環状冷却水槽と内側環状冷
却水槽の内外両側壁面の間を通過させるとともに該冷却
水槽中の水を同一レベルに設置した該内外側壁上部に同
一深さにオーバーフローさせて該ダイスから押出された
直後の該熱可塑性樹脂に接触させ、該一対の環状スリッ
ト間に送入される気体の圧力によって内外の二層円筒フ
ィルムをそれぞれ内外の環状冷却水槽の側壁面に密着さ
せた状態で該両環状水槽間を通過させてなるのである。
(Means for Solving the Problems) According to the method for producing a two-layer hollow film of the present invention, a die consisting of a pair of closely arranged concentric annular slits and a large number of leg slits extending between them. Extrude the molten thermoplastic resin into a two-layer cylindrical film from the outlet of the
Gas is inserted into the inside of the extruded two-layer cylindrical film to cause it to expand, and gas is also introduced between the pair of annular slits to maintain the two-layer spacing so that the film has a desired apparent thickness. The expanded two-layer cylindrical film is passed between the inner and outer walls of an outer annular cooling water tank and an inner annular cooling water tank disposed below the die, and the water in the cooling water tanks is kept at the same level. The upper parts of the inner and outer walls are overflowed to the same depth and brought into contact with the thermoplastic resin immediately after being extruded from the die, and the inner and outer two-layer cylindrical films are respectively separated by the pressure of the gas introduced between the pair of annular slits. The cooling water tank is passed between the inner and outer annular cooling water tanks in close contact with the side walls of the inner and outer annular cooling water tanks.

(実 施 例) 以下に本発明の好適な実施例について、添附図面を参照
にして説明する。
(Embodiments) Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において1は溶融熱可塑性樹脂の押出しダイスを
示し、この直下に内側環状冷却水槽2と外側環状冷却水
槽3とが配設されており、この押出ダイス1の吐出口よ
り二層円筒状に押出され膨張せられた熱可塑性樹脂4は
両冷却水槽2.3によって直ちに冷却固化され、一対の
ピンチロール5.6によって円筒状からシート状に折畳
まれた後、片側を切開し二層間中空シートフィルムとし
て適宜巻取機等に巻取られる。
In Fig. 1, reference numeral 1 indicates an extrusion die for extruding molten thermoplastic resin, and an inner annular cooling water tank 2 and an outer annular cooling water tank 3 are arranged directly below this die. The extruded and expanded thermoplastic resin 4 is immediately cooled and solidified in both cooling water tanks 2.3, folded from a cylindrical shape into a sheet shape by a pair of pinch rolls 5.6, and then one side is cut open to separate the two layers. The hollow sheet film is appropriately wound on a winding machine or the like.

押出ダイス1の吐出ロアは、第2図に詳細に示されてい
るように、一対の近接して配置された同心状環状スリッ
ト8.9と、これらスリット8゜9間に延長した多数の
脚スリット10とからなっており、これら環状スリット
8.9と隣接する2つの脚スリット10−10によって
区画される単位区分域には空気送風孔11がそれぞれ形
成されている。このような、押出ダイス1の吐出ロアの
形状により、これから押出される溶融した熱可塑性樹脂
4は二層間が多数の脚によって連結された二層円筒状と
なる。
As shown in detail in FIG. 2, the discharge lower of the extrusion die 1 includes a pair of closely spaced concentric annular slits 8.9 and a number of legs extending between these slits 8.9. An air blowing hole 11 is formed in each unit area defined by the annular slit 8.9 and two adjacent leg slits 10-10. Due to the shape of the discharge lower of the extrusion die 1, the molten thermoplastic resin 4 to be extruded has a two-layer cylindrical shape in which the two layers are connected by a large number of legs.

上記のような押出ダイス1の環状スリット8゜9より中
心側の内部には気体送り込みパイプ37が突入し、この
パイプから供給される気体によってダイスから押出され
た溶融した熱可塑性樹脂は膨張される。この時、パイプ
37から圧送される気体の圧力と環状スリット8.9間
の空気送風孔11の空気圧とは調整され、空気送風孔1
1より供給される空気は二層間の熱可塑性樹脂を膨張さ
せるような空気圧とせず、また気体送り込みパイプ37
より供給するフィルム円筒内の空気圧は空気孔11より
供給される空気圧より若干低くしながら二層円筒状フィ
ルムを膨張させる。
A gas feed pipe 37 protrudes into the interior of the extrusion die 1 on the center side of the annular slit 8°9, and the molten thermoplastic resin extruded from the die is expanded by the gas supplied from this pipe. . At this time, the pressure of the gas fed from the pipe 37 and the air pressure of the air vent 11 between the annular slits 8 and 9 are adjusted, and the air pressure of the air vent 11 between the annular slits 8 and 9 is adjusted.
The air supplied from 1 is not at a pressure that would cause the thermoplastic resin between the two layers to expand, and the air supplied from the gas supply pipe 37
The air pressure inside the film cylinder supplied from the air hole 11 expands the two-layer cylindrical film while being slightly lower than the air pressure supplied from the air hole 11.

このようにして膨張された二層円筒状フィルムは次いで
冷却水槽2.3に導かれる。冷却水槽2は、第3図に詳
細に示されているように、支持柱32と大径パイプ20
によって支承され、また冷却水槽3は支持柱33によっ
て支承されている。
The two-layer cylindrical film expanded in this way is then led to a cooling water bath 2.3. The cooling water tank 2 includes a support column 32 and a large diameter pipe 20, as shown in detail in FIG.
The cooling water tank 3 is supported by a support column 33.

大径パイプ20の上面をパツキン38で密封し、外筒に
袴39を取付け、内環状室14の水面下に設置してダイ
ス内部36と集水容器22の内部との気体の流通を遮断
している。また、支持柱32とダイス1との空隙34に
はパツキン35によって外気とダイス内部36に空気の
流通がないようにしである。
The upper surface of the large-diameter pipe 20 is sealed with a gasket 38, a hakama 39 is attached to the outer cylinder, and the hakama 39 is installed under the water surface of the inner annular chamber 14 to block the flow of gas between the inside of the die 36 and the inside of the water collection container 22. ing. Further, a gasket 35 is provided in the gap 34 between the support column 32 and the die 1 to prevent air from flowing between the outside air and the inside 36 of the die.

ダイス内部36に二層円筒状フィルムを膨張させるだめ
の気体の圧力をかける気体送り込みパイプ37が、ダイ
ス1との空隙がない状態で挿入されている。
A gas feed pipe 37 that applies pressure of gas to expand the two-layer cylindrical film inside the die 36 is inserted without any gap between it and the die 1.

このように冷却水槽はダイスの直下に配設され、しかも
吐出口と冷却水槽中の水面(W)との間隔はできるだけ
狭くし、この例では100mm〜150mm程度とし、
従ってダイスから押出された二層円筒状樹脂は気体送り
込みパイプ37から供給された気体の圧力によって、内
外環状スリット間の圧力とバランスさせながら膨張され
、直ちに冷却されることになる。
In this way, the cooling water tank is arranged directly below the die, and the distance between the discharge port and the water surface (W) in the cooling water tank is made as narrow as possible, in this example, about 100 mm to 150 mm.
Therefore, the two-layer cylindrical resin extruded from the die is expanded by the pressure of the gas supplied from the gas feed pipe 37 while balancing the pressure between the inner and outer annular slits, and is immediately cooled.

内側環状冷却水4f!2の垂直外側壁12は外側環状冷
却水槽3の垂直内側壁13と同一レベルに配設されると
ともに僅かに分離され、この間隔は前記ダイスの同心状
環状スリット8,9の間隔よりも若干狭くしてあり、ダ
イスより押出され膨張された二層円筒状樹脂4の二層フ
ィルム間隔がピンチローラ5,6によって加えられるド
ラフトとによって僅かに狭小となった後に、この二層フ
ィルム面がこの間に供給される送風空気圧によって上記
外側および内側壁12.13に密着しながら垂直に案内
されるようにする。内側環状冷却水槽2には内環状室1
4と外環状室15とが分離形成され、外環状室15の底
面には給水パイプ16が連結され、ここから冷却水が供
給される。この外環状室15の内側壁17の上端にはそ
らせ板18が止着され、外環状室15に供給された冷却
水をその外側壁、すなわち前記垂直外側壁12の上方へ
流れるように案内する。内環状室14の内側壁19は冷
却水槽2の中央開口を区画し、この中央開口に内側冷却
水槽2を支承する大径バイブ20が内側壁19から空隙
をおいて挿通している。また、この内側壁19には水深
調節用のリング21が螺合されている。
Inner annular cooling water 4f! The vertical outer wall 12 of the outer annular cooling water tank 3 is disposed on the same level as the vertical inner wall 13 of the outer annular cooling water tank 3 and is slightly separated from the vertical outer wall 12 of the die. After the two-layer film gap of the two-layer cylindrical resin 4 extruded from the die and expanded is slightly narrowed by the draft applied by the pinch rollers 5 and 6, the two-layer film surface is The supplied blowing air pressure causes the tube to be vertically guided while closely adhering to the outer and inner walls 12,13. The inner annular cooling water tank 2 has an inner annular chamber 1.
4 and an outer annular chamber 15 are formed separately, and a water supply pipe 16 is connected to the bottom of the outer annular chamber 15, from which cooling water is supplied. A baffle plate 18 is fixed to the upper end of the inner wall 17 of the outer annular chamber 15, and guides the cooling water supplied to the outer annular chamber 15 to flow upward to the outer wall thereof, that is, the vertical outer wall 12. . The inner wall 19 of the inner annular chamber 14 defines a central opening of the cooling water tank 2, and a large-diameter vibrator 20 that supports the inner cooling water tank 2 is inserted through the central opening with a gap from the inner wall 19. Further, a ring 21 for water depth adjustment is screwed onto this inner wall 19.

このような構造により、給水バイブ16から外環状室1
5に供給された冷却水は垂直外側壁12の上部にオーバ
ーフローして溶融した二層円筒状樹脂の内側層フィルム
と接触してこれを冷却し、そらぜ板18の上面を通って
内環状室14に入り、さらに水深調節用リング21の上
面を越え内側壁19とバイブ20の間の空隙から下方に
流下する。
With this structure, the water supply vibrator 16 is connected to the outer annular chamber 1.
The cooling water supplied to 5 overflows to the upper part of the vertical outer wall 12, contacts and cools the molten two-layer cylindrical resin inner layer film, and passes through the upper surface of the baffle plate 18 to the inner annular chamber. 14, and further flows down through the gap between the inner wall 19 and the vibrator 20 over the upper surface of the water depth adjustment ring 21.

この流下した水は内側冷却水槽2の下方に設けた集水容
器22に一時的に溜る。この水は排出液面検出装置23
にて検知され、大径パイプ20を貫通する排水バイブ2
4によって外部に排出される。
This flowing water temporarily accumulates in a water collecting container 22 provided below the inner cooling water tank 2. This water is detected by the discharge liquid level detection device 23.
Drainage vibrator 2 that is detected by and penetrates the large diameter pipe 20
4 is discharged to the outside.

上記の記載から理解されるように、水深調整用リング2
1を上下に移動調節することによって、垂直外側壁12
の上部にオーバーフローする水深を調節できるのである
As understood from the above description, water depth adjustment ring 2
1 by moving and adjusting the vertical outer wall 12 up and down.
The depth of the water that overflows to the top of the tank can be adjusted.

外側環状冷却水槽3も内環状室25と外環状室26とに
分割され、内環状v25の底面には給水バイブ27が結
合され、内環状室25.26の仕切壁上端面にはそらせ
板28が取付いて内環状室25に供給された冷却水を垂
直内側壁13の上方に向けて流れるようにしている。外
環状室26の底面には排水バイブ29が取付けられ、こ
の排水バイブ29の上部排水孔30には水深調節用の中
空筒状のナツト31が上下に移動自在に螺合されている
。このような構造により、給水バイブ27から内環状室
25に供給された冷却水はそらせ板28によって内方に
流れて垂直内側壁13の上部にオーバーフローして溶融
した二層円筒状樹脂の外側層フィルムと接触してこれを
冷却し、そらせ板28の上面を通って外環状室26に入
り、水深調節用の中空筒状ナツト31の高さを越えた水
は排水バイブ29によって外部に排出される。
The outer annular cooling water tank 3 is also divided into an inner annular chamber 25 and an outer annular chamber 26, a water supply vibrator 27 is coupled to the bottom surface of the inner annular chamber 25, and a baffle plate 28 is attached to the upper end surface of the partition wall of the inner annular chamber 25.26. is attached so that the cooling water supplied to the inner annular chamber 25 flows upwardly of the vertical inner wall 13. A drainage vibrator 29 is attached to the bottom surface of the outer annular chamber 26, and a hollow cylindrical nut 31 for water depth adjustment is screwed into an upper drainage hole 30 of the drainage vibrator 29 so as to be movable up and down. With this structure, the cooling water supplied from the water supply vibrator 27 to the inner annular chamber 25 flows inward by the deflector plate 28 and overflows to the upper part of the vertical inner wall 13 to form a melted two-layer cylindrical outer layer of resin. Water that contacts the film and cools it, enters the outer annular chamber 26 through the upper surface of the baffle plate 28, and water that exceeds the height of the hollow cylindrical nut 31 for water depth adjustment is discharged to the outside by the drain vibrator 29. Ru.

上記の記載から明らかなように、中空筒状ナツト31の
高さを調節することによって二層筒状中空フィルムの外
側層フィルムに接触する水深を調節することができる。
As is clear from the above description, by adjusting the height of the hollow cylindrical nut 31, the depth of water that contacts the outer layer film of the two-layer cylindrical hollow film can be adjusted.

本発明では、内側及び外側環状冷却水槽2.3を設けて
膨張した二層円筒状に押出された樹脂をただ単に冷却す
るだけでなく、前記内側環状冷却水槽の水深調節用リン
グ21及び外側環状冷却水槽の水深調節用の中空筒状ナ
ツト31の高さ位置を調節して、二層筒状中空フィルム
の内外両層に接触する水深をそれぞれ等しくすると同時
に、これら両水深の水圧によって中空フィルムの内外両
層が内方に撓んだり両フィルム層間の脚が座屈したりす
ることがないように、ダイスの内環状スリット8.9間
に形成された空気送風孔11から圧送される空気旺を調
整して内外両フィルムをそれぞれ内外冷却水槽2.3の
環状外側壁12と環状内側壁13とに密着させ、冷却水
がこれらの側壁12.13と内外両フィルムとの間から
下方に滴下しないようにして冷却する。
In the present invention, the inner and outer annular cooling water tanks 2.3 are provided to not only simply cool the expanded resin extruded into a two-layer cylinder, but also the water depth adjustment ring 21 of the inner annular cooling water tank and the outer annular The height position of the hollow cylindrical nut 31 for adjusting the water depth of the cooling water tank is adjusted to equalize the depth of water that contacts both the inner and outer layers of the two-layer cylindrical hollow film, and at the same time, the water pressure at both water depths causes the hollow film to In order to prevent both the inner and outer layers from bending inward or the leg between the two film layers from buckling, air is forced to be blown through the air ventilation hole 11 formed between the inner annular slits 8 and 9 of the die. The inner and outer films are adjusted so that they are in close contact with the annular outer wall 12 and the annular inner wall 13 of the inner and outer cooling water tanks 2.3, respectively, so that cooling water does not drip downward from between these side walls 12.13 and the inner and outer films. Cool it in this way.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

実施例1: 第2図に示すダイス1の吐出ロアの中心直径が770m
mの押出ダイスを90mn+押出機に連結して、190
℃の温度で溶融されたMI2酢酸ビニル含有率15%の
フィルム用エチレン酢酸ビニル樹脂を毎時100k(l
の割合で二層円筒状にして下方に押し出す。
Example 1: The center diameter of the discharge lower of die 1 shown in Fig. 2 is 770 m.
m extrusion die is connected to 90m+ extruder, 190
Film grade ethylene vinyl acetate resin with a MI2 vinyl acetate content of 15% melted at a temperature of
Form into a two-layered cylinder at a ratio of 2 and extrude downward.

この吐出ロアの内側環状スリット8と外側環状スリット
9との間隔は6.21mとし、また脚スリット10−1
0の間隔も4.0mmとした。二層円筒状に押出された
樹脂は、気体送り込みバイブ37から供給される気体の
圧力で膨張して、ダイス直下に配設された2nunの間
隔で分離した内側環状冷却水槽2の外側壁12と外側環
状冷却水Pa3の内側壁13との間を通過する。この際
、内外壁12゜13の上端面とダイス吐出ロアとの間隔
は約130mmとした。また、内外壁12.13のスリ
ットの中心円径は880mmとした。
The distance between the inner annular slit 8 and the outer annular slit 9 of this discharge lower is 6.21 m, and the leg slit 10-1
The interval between zeros was also 4.0 mm. The resin extruded into a two-layer cylinder expands under the pressure of the gas supplied from the gas feed vibrator 37, and forms the outer wall 12 of the inner annular cooling water tank 2 separated by an interval of 2nun, which is arranged directly below the die. It passes between the outer annular cooling water Pa3 and the inner wall 13. At this time, the distance between the upper end surfaces of the inner and outer walls 12° 13 and the die discharge lower was approximately 130 mm. Further, the center circle diameter of the slits in the inner and outer walls 12 and 13 was 880 mm.

ダイスの内環状スリット8.9間に形成された空気送風
孔11から圧送される空気圧は水柱圧で約29.7mm
とし、気体送り込みバイブ37から供給する二層円筒状
フィルムを膨張させるための空気圧は水柱圧で約12f
flI11とし、冷却水の内外壁12゜13の上端面を
越える水深を段階的に変化させた。
The air pressure fed from the air blowing hole 11 formed between the inner annular slits 8 and 9 of the die is approximately 29.7 mm in water column pressure.
The air pressure to inflate the two-layer cylindrical film supplied from the gas feed vibrator 37 is approximately 12f in water column pressure.
flI11, and the depth of the cooling water beyond the upper end surfaces of the inner and outer walls 12°13 was changed in stages.

この水深を20111mにしたところ、二層フィルムが
相互に接近する方向に撓み、二層フィルム間の脚は一部
座屈し、冷却水は内外壁12.13とフィルム間を滴下
した。また、これとは逆に水深を5a+mにしたところ
、二層フィルム間に圧送されている空気圧によって外側
フィルムが外へ膨張し、また冷却効率が低下し安定した
品質のものを得るのが困難であった。これにより、水深
の適性値は5II1m〜20g1I11の範囲内である
ことが知得された。そこで水深を17mmに設定し、ダ
イスの両環状スリット間に圧送される空気圧を上記の値
の前後に微調整したところ、内外の円筒状フィルム層は
内外壁面に密着して上方の冷却水がこの間を滴下するこ
とがなくなり、また冷却水の水圧とバランスし同時に膨
張させるためのフィルム円筒内の圧力ともバランスが取
れて、両フィルム層が歪んだりこの間の脚が座屈するこ
とがなかった。冷却水はあたかも静止しているかのよう
で、その水面は鏡面のように平滑となって冷却条件が非
常に安定し、中心直径770mnのダイスのスリットよ
り押出された二層円筒状フィルムは中心直径880s+
mの大きさに膨張されて5+a/ rm i nの速度
で冷却固化された。冷却水!2.3を通って降下した二
層円筒状フィルムは、一対のピンチロールによってシー
ト状に折畳まれ片側をナイフ状カッターで切開され、し
かる後約2.7mの幅の広幅二層フィルムとなって通常
の巻取機に巻取られた。
When the water depth was set to 20111 m, the two-layer films were bent in a direction toward each other, the legs between the two-layer films partially buckled, and cooling water dripped between the inner and outer walls 12, 13 and the films. Conversely, when the water depth was set to 5 a + m, the outer film expanded outward due to the air pressure being pumped between the two-layer films, and the cooling efficiency decreased, making it difficult to obtain products of stable quality. there were. As a result, it was learned that the appropriate value of water depth was within the range of 5II1m to 20g1I11. Therefore, when we set the water depth to 17 mm and finely adjusted the air pressure pumped between both annular slits of the die to around the above value, the inner and outer cylindrical film layers were in close contact with the inner and outer wall surfaces, and the upper cooling water was There was no need to drip water, and the pressure inside the film cylinder for expansion was also balanced with the water pressure of the cooling water, so both film layers were not distorted and the legs between them were not buckled. The cooling water appears to be stationary, and the surface of the water is as smooth as a mirror, making the cooling conditions extremely stable. 880s+
It was expanded to a size of m and then cooled and solidified at a rate of 5+a/rmin. Cooling water! The two-layer cylindrical film that has descended through 2.3 is folded into a sheet by a pair of pinch rolls, one side is cut with a knife-like cutter, and then a wide two-layer film with a width of about 2.7 m is formed. It was then wound on a regular winder.

このようにして得られた二層フィルムは、上下二層のフ
ィルム間のいわゆる見掛は厚みが2.0IllI11゜
単位重量はほぼtsog、、’が程度で、全光線透過率
は約85%と透明性が優れており、二層フィルム間の脚
部の座屈もなくまた柔軟性に冨んだものであった。  
                      、。
The two-layer film thus obtained has an apparent thickness of 2.0IllI11° between the upper and lower two layers, a unit weight of about tsog, and a total light transmittance of about 85%. It had excellent transparency, no buckling of the legs between the two-layer film, and was highly flexible.
,.

実施例2: 上記実施例1と同様な方法で、ダイス1の吐出ロアの中
心直径が880mmの押出ダイスを90mm押出機に連
結して、190℃の温度で溶融したMI2酢酸ビニル含
有率15%のフィルム用エチレン酢酸ビニル樹脂を毎時
110Jlの割合で二層円筒状にして下方に押出す。
Example 2: In the same manner as in Example 1 above, an extrusion die with a center diameter of the discharge lower of die 1 of 880 mm was connected to a 90 mm extruder, and MI2 vinyl acetate content 15% was melted at a temperature of 190°C. Ethylene vinyl acetate resin for film is formed into a two-layer cylinder and extruded downward at a rate of 110 Jl/hour.

ダイス吐出口のスリットの間隔は実施例1と同様に6.
2mmとし、脚スリットとの間隔は4.On+mとした
The interval between the slits of the die outlet is 6.
The distance between the leg slit and the leg slit is 4. It was set to On+m.

ダイス吐出口と環状冷却水槽の上面との間隔は約150
mIgとし、環状冷却水槽の2IIIIのスリットの中
心円径を975mmとした二層フィルム間に圧送される
空気圧を水柱圧で約2811I11とし、膨張させるた
めのフィルム円筒内の空気圧を水柱圧で約1011と設
定し、冷却水の上記水深を1511IIIlに設定して
二層フィルム間に圧送される空気圧を微調整して、内外
の円筒状フィルムを内外冷却水槽の内外壁面に密着させ
たところ、安定した状態で5t/minの速度で冷却固
化され約3.0m幅の広幅で二層フィルムとなって巻き
取られた。
The distance between the die outlet and the top surface of the annular cooling water tank is approximately 150 mm.
mIg, the center diameter of the 2III slit in the annular cooling water tank is 975 mm, the air pressure fed between the two-layer film is approximately 2811I11 in water column pressure, and the air pressure inside the film cylinder for expansion is approximately 1011 in water column pressure. The water depth of the cooling water was set to 1511III, and the air pressure pumped between the two-layer films was finely adjusted to bring the inner and outer cylindrical films into close contact with the inner and outer walls of the inner and outer cooling water tanks. The film was cooled and solidified at a rate of 5 t/min, and wound up into a two-layer film with a width of approximately 3.0 m.

(効 果) 以上のように本発明に係る二層中空フィルムの製造方法
では、ダイスから押出して膨張させた二層円筒フィルム
を内外冷却水槽の冷却水に直ちに接触させるとともにこ
の冷却水に接触させる程度は内外のフィルム間で等しい
ため、内外のフィルムは均等に冷却されて透明度が良く
しかも収縮差による歪みなどがない。
(Effects) As described above, in the method for producing a two-layer hollow film according to the present invention, the two-layer cylindrical film extruded from a die and expanded is immediately brought into contact with the cooling water in the inner and outer cooling water tanks, and also brought into contact with this cooling water. Since the degree of cooling is the same between the inner and outer films, the inner and outer films are cooled equally, resulting in good transparency and no distortion due to differential shrinkage.

また、内外の二層円筒フィルムはその間に送入される気
体の圧力によって内外の環状冷却水槽の側壁面に密着さ
れた状態で両点状水槽間を通過せられるため、二層フィ
ルムの脚が歪んだり座屈することがなく、しかも冷却水
がフィルムと冷却水槽の側壁面との間を滴下する場合に
生ずるような冷却斑よる皺の発生を防止することができ
る。
In addition, the inner and outer double-layer cylindrical films are passed between the dotted water tanks in close contact with the side walls of the inner and outer annular cooling water tanks due to the pressure of the gas introduced between them, so that the legs of the two-layer film are There is no distortion or buckling, and it is possible to prevent wrinkles due to cooling spots that occur when cooling water drips between the film and the side wall surface of the cooling water tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る二層間中空フィルムの製造方法を
実施する装置の説明図、第2図は押出ダイスの吐出口を
一部拡大して示す平面図、第3図は本発明に用いられる
冷却水槽を示す部分断面図、第4図は成形された二層筒
状中空フィルムでシート状に切開される前の状態を示す
一部破断した斜視図である。 1・・・・・・・・・押出ダイス 2・・・・・・・・・内側環状冷却水槽3・・・・・・
・・・外側環状冷却水槽7・・・・・・・・・押出ダイ
スの吐出口8.9・・・同心環状スリット 10・・・・・・脚スリット 11・・・・・・空気送風孔 12・・・・・・内側環状冷却水槽の外側壁13・・・
・・・外側環状冷却水槽の内側壁21・・・・・・水深
調節用リング 31・・・・・・水深調節用の中空筒状ナツト37・・
・・・・膨張さぜるための気体送り込みバイブ40・・
・・・・大気連通パイプ 特許出願人       宇部日東化成株式会社代 理
 人         弁理士 −色健輔第1図
FIG. 1 is an explanatory diagram of an apparatus for carrying out the method for producing a two-layer hollow film according to the present invention, FIG. 2 is a partially enlarged plan view showing the discharge port of an extrusion die, and FIG. FIG. 4 is a partially cutaway perspective view showing the molded two-layer cylindrical hollow film in a state before it is cut into sheets. 1...Extrusion die 2...Inner annular cooling water tank 3...
... Outer annular cooling water tank 7 ... Extrusion die outlet 8.9 ... Concentric annular slit 10 ... Leg slit 11 ... Air ventilation hole 12... Outer wall 13 of the inner annular cooling water tank...
... Inner wall 21 of outer annular cooling water tank ... Water depth adjustment ring 31 ... Hollow cylindrical nut 37 for water depth adjustment ...
...Gas feeding vibe 40 for expansion...
...Air communication pipe patent applicant Ube Nitto Kasei Co., Ltd. Representative Patent attorney - Kensuke Shiro Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一対の近接して配置した同心状環状スリットとこれらの
間に渡設した多数の脚スリットからなるダイスの吐出口
から溶融した熱可塑性樹脂を二層円筒フィルム状に押出
し、該押出された二層円筒フィルムの内側に気体を挿入
して膨張せしめるとともに該一対の環状スリット間に気
体を送入して該フィルムが所望の見掛け厚みを有するご
とく二層間隔を維持し、該膨張した二層円筒フィルムを
該ダイスの下方に配設した外側環状冷却水槽と内側環状
冷却水槽の内外両側壁面の間を通過させるとともに、該
内外冷却水槽中の水を同一レベルに設定し、該内外側壁
上部に同一深さに水をオーバーフローさせて該ダイスか
ら押出された直後の該熱可塑性樹脂に接触させ、該一対
の環状スリット間に送入される気体の圧力によって内外
の二層円筒フィルムをそれぞれ内外の環状冷却水槽の側
壁面に密着させた状態で該両環状水槽間を通過させてな
ることを特徴とする二層間中空フィルムの製造方法。
The molten thermoplastic resin is extruded into a two-layer cylindrical film from the outlet of a die consisting of a pair of concentric annular slits arranged close to each other and a number of leg slits placed between them, and the extruded two-layer The expanded two-layer cylindrical film is produced by inserting gas into the inside of the cylindrical film to cause it to expand, and by feeding the gas between the pair of annular slits to maintain the two-layer spacing so that the film has a desired apparent thickness. The water is passed between the inner and outer walls of the outer annular cooling water tank and the inner annular cooling water tank disposed below the die, and the water in the inner and outer cooling water tanks is set at the same level, and the water is placed at the same depth on the upper part of the inner and outer walls. The water overflows into the thermoplastic resin immediately after being extruded from the die, and the inner and outer two-layer cylindrical films are cooled by the pressure of the gas introduced between the pair of annular slits. A method for producing a two-layer interlayer hollow film, characterized in that the film is passed between the annular water tanks in close contact with the side wall surface of the water tank.
JP61053546A 1986-03-13 1986-03-13 Manufacture of two-layer hollow film Granted JPS61258723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053546A JPS61258723A (en) 1986-03-13 1986-03-13 Manufacture of two-layer hollow film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053546A JPS61258723A (en) 1986-03-13 1986-03-13 Manufacture of two-layer hollow film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56060615A Division JPS57176123A (en) 1981-04-23 1981-04-23 Method and apparatus for manufacturing interlaminar hollow film

Publications (2)

Publication Number Publication Date
JPS61258723A true JPS61258723A (en) 1986-11-17
JPS6245048B2 JPS6245048B2 (en) 1987-09-24

Family

ID=12945795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053546A Granted JPS61258723A (en) 1986-03-13 1986-03-13 Manufacture of two-layer hollow film

Country Status (1)

Country Link
JP (1) JPS61258723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774544B1 (en) 2006-04-18 2007-11-08 이한성 Cylindrical film refrigeration apparatus
JP2017515706A (en) * 2014-05-15 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー System, method and apparatus for producing multilayer annular microcapillary products
EP2866999B1 (en) * 2012-06-28 2019-08-28 Dow Global Technologies LLC Method for producing a multi-layer microcapillary film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176123A (en) * 1981-04-23 1982-10-29 Ube Nitto Kasei Kk Method and apparatus for manufacturing interlaminar hollow film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176123A (en) * 1981-04-23 1982-10-29 Ube Nitto Kasei Kk Method and apparatus for manufacturing interlaminar hollow film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774544B1 (en) 2006-04-18 2007-11-08 이한성 Cylindrical film refrigeration apparatus
EP2866999B1 (en) * 2012-06-28 2019-08-28 Dow Global Technologies LLC Method for producing a multi-layer microcapillary film
JP2017515706A (en) * 2014-05-15 2017-06-15 ダウ グローバル テクノロジーズ エルエルシー System, method and apparatus for producing multilayer annular microcapillary products

Also Published As

Publication number Publication date
JPS6245048B2 (en) 1987-09-24

Similar Documents

Publication Publication Date Title
KR100297309B1 (en) Method for producing thermoplastic film oriented by inflation method and apparatus therefor
US4115048A (en) Apparatus for internally cooling a plastic tubular film bubble
US3888609A (en) Apparatus for producing films in accordance with the blown tube process
US4003973A (en) Process and apparatus for producing sheet film from tubular thermoplastic resin film
US3400184A (en) Process and apparatus for preparing film from thermoplastic resins
US2955321A (en) Process and apparatus for manufacturing polyethylene tubing
US3577488A (en) Manufacture of plastic tubular film
US3663134A (en) Apparatus for manufacture of tubular components from plastics material
US4174932A (en) Apparatus for extruding tubular thermoplastic film
US3932080A (en) Apparatus for manufacture of tubular film from thermoplastic resin
US3321563A (en) Production of highly transparent films from thermoplastics
JPS61258723A (en) Manufacture of two-layer hollow film
JPS622970B2 (en)
US3207823A (en) Production of flattened tubular plastic film
US3142865A (en) Method and apparatus for producing thermoplastic tubing and sheeting
EP0583619B1 (en) Method and apparatus for molding inflation film
CA1218816A (en) Method and system for extruding tubular foamed polymer sheet
US3700763A (en) Tubular water quench process with water film cooling
US3532780A (en) Method for producing a tubular film or tubes of thermoplastic resin
US3956254A (en) Thermoplastic crystalline free films
US3388197A (en) Stretched tubular film
JPS6029336B2 (en) Manufacturing method and device for double-layer hollow film
EP0077661A2 (en) Process and apparatus for forming a plastics film
US4204819A (en) Shaping apparatus for tubular film
JPS6134974B2 (en)