JPS61258531A - Atom beam device - Google Patents

Atom beam device

Info

Publication number
JPS61258531A
JPS61258531A JP10022085A JP10022085A JPS61258531A JP S61258531 A JPS61258531 A JP S61258531A JP 10022085 A JP10022085 A JP 10022085A JP 10022085 A JP10022085 A JP 10022085A JP S61258531 A JPS61258531 A JP S61258531A
Authority
JP
Japan
Prior art keywords
atomic beam
beam source
atomic
partition plate
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10022085A
Other languages
Japanese (ja)
Inventor
Noriji Kariya
教治 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10022085A priority Critical patent/JPS61258531A/en
Publication of JPS61258531A publication Critical patent/JPS61258531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To prevent the flowing of liquidified Cs to the outside of an atom beam radiation part through a collimator by providing penetratingly a thin tube flowing a beam source vapor to the minute pierced part of a barrier plate between a beam source storage part and an atom beam radiation part in a form that both ends are projected respectively from the face of the barrier. CONSTITUTION:A barrier plate 25 is provided between the beam source storage pat 24 and the atom beam radiation part 29 and the thin tube 41 through which the beam source vapor flows is provided penetratingly to the minute hole pierced part of the barrier plate 25 in a form that both ends are projected respectively from the said barrier wall face. In flowing the Cs in the said Cs ample 21 liquidified by the heat conduction from the atom beam radiation section 29 into the beam source storage part 24, the liquidified Cs is vaporized by the barrier plate 25 heated by the heater 27 of the heat part 29. The Cs vapor passes in the flowing thin tube 41 provided penetrated in a form to be projected to the said barrier plate 25 and is radiated through the collimator 28 as the Cs atom beam 33 to the cavity resonator. Thus, it is prevented that the liquidified Cs 22 flows into the tube 41 due to vibration or shock.

Description

【発明の詳細な説明】 〔概 要〕 本発明は周波数標準器に用いられるセシウム原子ビーム
装置において、該装置内の原子ビーム発生炉におけるビ
ーム源収容部と原子ビーム放射部との間の隔壁板の細孔
穿設部に、両端がそれぞれ隔壁板面より突出する形にビ
ーム源蒸気を流通する細管を貫設した構成とし、当該装
置をセシウム(Cs)が液化する28℃以上の環境温度
で移動操作、或いは輸送する際に、振動等によりビーム
源収容部内で液化したセシウムが、不用意に原子ビーム
放射部のコリメークを通して放射部外へ流出する不都合
を上記隔壁板に設けた突出する細管によって防止し、性
能の安定化を図ったものである。
[Detailed Description of the Invention] [Summary] The present invention relates to a cesium atomic beam device used in a frequency standard, in which a partition plate is provided between a beam source housing section and an atomic beam emitting section in an atomic beam generating reactor in the device. A thin tube through which the beam source vapor flows is installed in the perforated part of the pores with both ends protruding from the surface of the partition plate, and the device can be operated at an environmental temperature of 28°C or higher where cesium (Cs) liquefies. The protruding thin tube provided on the bulkhead plate prevents the inconvenience that cesium liquefied inside the beam source housing unit due to vibrations, etc., may inadvertently flow out of the atomic beam radiating unit through the collimation of the atomic beam radiating unit during moving operations or transportation. The aim is to prevent this and stabilize performance.

〔産業上の利用分野〕[Industrial application field]

本発明は周波数標準器の心臓部として採用されるセシウ
ム原子ビーム装置の改良に係り、特に当該装置をセシウ
ムが液化する外部環境温度において移動操作、或いは輸
送時等に原子ビーム発生炉のビーム源収容部内より液化
セシウムが振動、衝撃などにより不用意にコリメータを
通して原子ビーム放射部外へ流出することを防止する構
成に関するものである。
The present invention relates to the improvement of a cesium atomic beam device used as the heart of a frequency standard, and in particular, the present invention relates to the improvement of a cesium atomic beam device used as the heart of a frequency standard, and in particular, when the device is moved at an external environmental temperature where cesium liquefies, or when transported, etc., the device is housed in a beam source of an atomic beam generating reactor. This invention relates to a structure that prevents liquefied cesium from inadvertently flowing out of the atomic beam emitting section through a collimator due to vibrations, shocks, etc.

セシウム(Cs)を用いた原子ビーム装置は、Cs原子
の共鳴周波数の永久不変性を利用した超高安定発振器で
あり、精密計測、航法、或いは通信等の分野で広く用い
られている時間、又は周波数標準器の心臓部として採用
されており、既に種々のタイプのものが提案されている
An atomic beam device using cesium (Cs) is an ultra-highly stable oscillator that utilizes the permanent invariance of the resonance frequency of Cs atoms, and is widely used in fields such as precision measurement, navigation, and communication. It has been adopted as the core of frequency standards, and various types have already been proposed.

第3図はCs原子ビーム装置の概隙構成図であり、Cs
ビーム発生炉1内のビーム源収容部に収容された、例え
ばCs充填アンプルを開封して該Csを加熱ヒータによ
り約100°C程度に加熱して蒸気を発生させ、この磁
気を原子ビーム放射部でのコリメータ2を通してGs原
子ビーム3として放射する。
Figure 3 is a schematic diagram of the Cs atomic beam device.
For example, an ampoule filled with Cs stored in a beam source housing part in the beam generation furnace 1 is opened, and the Cs is heated to about 100°C by a heater to generate steam, and this magnetism is transferred to the atomic beam radiation part. The Gs atoms are emitted as a Gs atomic beam 3 through a collimator 2.

該Cs原子ビーノ・3ば、A偏向磁石4により超微細構
造の所定エネルギー〆1へ位のものを選別し、C磁界中
に置かれた高周波遷移部、即ちU字型マイクロ波空洞共
振器5中をiII過する際に、該空洞共振器5中の高周
波磁界の周波数がCs原子の超微細構造の所定エネルギ
ー準位間の遷移周波数と等しい間、共鳴が起こりCs原
子は遷移を受りる。6は磁気シールドである。
The Cs atoms are selected by the A deflection magnet 4 to a predetermined energy level 1 of the ultrafine structure, and are placed in the high frequency transition part, that is, the U-shaped microwave cavity 5, placed in the C magnetic field. When passing through the Cs atom, resonance occurs and the Cs atom undergoes a transition while the frequency of the high-frequency magnetic field in the cavity resonator 5 is equal to the transition frequency between predetermined energy levels of the hyperfine structure of the Cs atom. . 6 is a magnetic shield.

この遷移を受りたCS原子ビームはB偏向研石7により
選別され、更に検出器8で検出して該検出した原子数に
比例した検出信号を外部111路へ出力している。
The CS atomic beam that has undergone this transition is sorted by the B deflection grinder 7, further detected by the detector 8, and a detection signal proportional to the number of detected atoms is output to an external path 111.

このような原子ビーム装置に用いられているCsは28
°C以」−で液化する性質があり、夏期等の外気環境温
度で容易に液体化し、このような環境/□11に度での
移動操作や輸送肋などの振動、((・i撃等によりこの
液状Csが不用意にコリメータ2を介して原子ビーム放
射部り(、即ちCsビーム発41:炉1り(へ流出し、
これに起因してその後の動作りの検出信号を大きく変動
さ−υたり、また短ノテ命化さ−lる問題があり、この
ような不都合を防止することが要望されている。
Cs used in such an atomic beam device is 28
It has the property of liquefying at temperatures below 11°C, and it easily liquefies at outside ambient temperatures such as in the summer, and in such environments/□11° As a result, this liquid Cs inadvertently flows out through the collimator 2 to the atomic beam emitting section (i.e., Cs beam emitting section 41: reactor 1),
Due to this, there is a problem that the detection signal of the subsequent operation fluctuates greatly or the life of the device is shortened, and it is desired to prevent such inconveniences.

〔従来の技術〕[Conventional technology]

上記した原子ビーム装置のCsビーム発生が1は、一般
に第2図に示すようにセシウム(Cs)22が充填され
たアンプル2Iが、ニッケル(Ni)メツシュ23など
を介在して収容されたビーム源収容部24と、該ビーム
源収容部24に細孔26が穿設された隔壁板25を介し
て、ビームm蒸気を発生させる加熱ヒータ27と該Cs
i気をビーム状に放射さセるコリメータ2日とが設けら
れた原子ビーム放射部29から構成されている。
The Cs beam generation of the above-mentioned atomic beam device 1 is generally a beam source in which an ampoule 2I filled with cesium (Cs) 22 is housed with a nickel (Ni) mesh 23 interposed therebetween, as shown in FIG. A heater 27 that generates the beam m vapor through the storage section 24 and the partition plate 25 in which the beam source storage section 24 has a pore 26 and the Cs
It consists of an atomic beam radiating section 29 equipped with a collimator that emits atomic energy in the form of a beam.

尚、32は外囲管31に具備された開封具であり、当該
装置を動作さゼる際に該開封具32を機械的に押し込ん
で前記Csアンプル21を仕切板30を介して突き破っ
て開封し、原子ビーム放射部29からの熱伝導により液
化されたCsアンプル2】中のCs22をビーム源収容
部24内に流出させる。このCs22は更に該放射部2
9の加熱ヒータ27により加熱された隔壁板25及びコ
リメーク28で気化され、該隔壁板25の細孔26を通
ってコリメータ28よりCs原子ビーム33として図示
しない空洞共振器側へ放射させている。
Note that 32 is an opening tool provided in the outer tube 31, and when the device is operated, the opening tool 32 is mechanically pushed to break the Cs ampoule 21 through the partition plate 30 and open it. Then, the liquefied Cs22 in the Cs ampoule 2 is caused to flow into the beam source accommodating part 24 by heat conduction from the atomic beam radiating part 29. This Cs22 is further
The Cs atomic beam 33 is vaporized by the partition plate 25 and collimator 28 heated by the heater 27 of 9, and is radiated from the collimator 28 through the pores 26 of the partition plate 25 as a Cs atomic beam 33 toward a cavity resonator (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記のように原子ビーム装置のCsビーム発生
炉内に開封されて収容されているCs22は、28℃以
上の温度で液化する性質があり、このような環境温度と
なる夏期に当該原子ヒーム装置を移動操作、或いは輸送
するような場合、収容されているCs22が当然液化さ
れているため、該輸送中の振動、衝撃等により不用意に
前記隔壁板25の細孔26及びコリメータ28を通って
原子ビーム放射部29外へ流出する不都合が生しる。
By the way, as mentioned above, Cs22, which is unsealed and stored in the Cs beam generation reactor of the atomic beam device, has the property of liquefying at a temperature of 28°C or higher, and the atomic beam device cannot be used in the summer when the ambient temperature is like this. When moving or transporting Cs22, since the stored Cs22 is naturally liquefied, it may accidentally pass through the pores 26 of the partition plate 25 and the collimator 28 due to vibrations, shocks, etc. during the transport. This results in the inconvenience that the atomic beam flows out of the atomic beam emitting section 29.

またこのような不都合に起因して、その後の動作時の検
出信号を大きく変動させたり、結果的に当該装置の短寿
命化を招来させる欠点があった。
Further, due to such inconveniences, there is a drawback that the detection signal during subsequent operation is greatly fluctuated, and as a result, the life of the device is shortened.

本発明は」二記従来の実情に鑑の、Csビーム発生炉内
のビーム源収容部24と原子ビーム放射部29間に配置
される隔壁板25の細孔26部分を改良して、28°C
以上の外部環境温度において当該装置を移動、輸送する
際などにおいて、ビーム源収容部24内で液化されたC
s22が、不用意に隔壁板25よりコリメータ26を通
して原子ビーム放射部29外へ流出する不都合を防止す
るようした新規な原子ビーム装置を提供することを目的
とするものである。
The present invention improves the pore 26 portion of the partition plate 25 disposed between the beam source accommodating section 24 and the atomic beam radiating section 29 in the Cs beam generating reactor in view of the conventional situation described in section 2. C
When moving or transporting the device at the above external environmental temperature, the liquefied C inside the beam source housing section 24
It is an object of the present invention to provide a novel atomic beam device that prevents the inconvenience of s22 inadvertently flowing out from the atomic beam emitting section 29 from the partition plate 25 through the collimator 26.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は−1−記L1的を達成するため、第1図に示す
ように、原子ビーム装置におりる原子ビーム発生炉を構
成するビーム源収容部24と原子ビーム放射部29間の
隔壁板25の細孔穿設部に、両端がそれぞれ該隔壁板面
より突出する形にビームrA茎気が流通ずる細管4】を
貫設して、当該突出した流通細管旧により液化したCs
22がコリメーク28をjmシて原子ビーム放射部29
外へ容易に流出されないように構成されている。
In order to achieve the L1 objective of -1-, the present invention has a partition plate between the beam source accommodating part 24 and the atomic beam emitting part 29 that constitute the atomic beam generating reactor in the atomic beam apparatus, as shown in FIG. A thin tube 4 through which the beam rA stem air flows is inserted through the perforated portion of No. 25 with both ends projecting from the surface of the partition plate, and the liquefied Cs is
22 moves the collimator 28 to the atomic beam emitting section 29
It is constructed so that it cannot be easily leaked out.

〔作 用〕[For production]

このように構成された原子ビーム装置においては、28
°C以上の夕(部環境6v度等によりビーム源収容部2
4内で液化されたCS22は、前記隔壁板25に貫設し
てなる突出した流1JI)細管旧の構成によって簡単に
通過することが阻止され、移動操作や輸送中の振動、或
いはf!i !!’等により−に肥液化Cs22が不用
意にコリメーク26を通して原子ビーム放射部29外へ
流出することを防止することが可能となる。
In the atomic beam device configured in this way, 28
At night above °C (beam source housing 2
The CS22 liquefied in the partition wall plate 25 is prevented from easily passing through by the structure of the protruding flow tube 1JI) formed through the partition wall plate 25, and is prevented from easily passing through due to vibrations during moving operations or transportation, or f! i! ! ' etc., it becomes possible to prevent the liquefied fertilizer Cs22 from inadvertently flowing out of the atomic beam emitting section 29 through the collimator 26.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る原子ビーム装置におりる原子ビー
ム発生炉の一実施例を示す要部断面図である。
FIG. 1 is a sectional view of essential parts showing an embodiment of an atomic beam generating reactor included in an atomic beam apparatus according to the present invention.

図において、24はセシウム(Cs)22が充填された
アンプル21を、例えばニッケル(Ni)メツシュ23
などを介在して収容したビーム源収容部であり、29は
ビーム源蒸気を発生さゼる加熱ヒータ27と該C5芸気
をビーム状に放射させるコリメータ28を備えた原子ビ
ーム放射部である。これまでの構成は従来と同様である
In the figure, reference numeral 24 indicates an ampoule 21 filled with cesium (Cs) 22, for example, a nickel (Ni) mesh 23.
29 is an atomic beam radiating section equipped with a heater 27 for generating beam source vapor and a collimator 28 for emitting the C5 energy in a beam shape. The configuration up to now is the same as before.

このような構成のビーム源収容部24と原子ビーム放射
部29間には、隔壁板25が配設されでいるが、該隔壁
板25の細孔穿設部には、両α114がそれぞれ該隔壁
板面より突出する形にビーム源荒気が流通ずる細管41
が貫設されている。
A partition plate 25 is disposed between the beam source accommodating part 24 and the atomic beam emitting part 29 having such a configuration, and both α114 are attached to the perforated part of the partition plate 25, respectively. A thin tube 41 through which the beam source rough air flows through a shape that protrudes from the plate surface.
is installed through it.

さて、このような構造の原子ビーム発生炉にあっては、
従来と同様に開封具32を機械的に押し込んで、前記C
sアンプル21を仕切板30を介して突き破って開封し
、原子ビーム放射部29からの熱伝導により液化された
該Csアンプル21中のCsをビーム源収容部24内に
流出させると、この液化Csは該放射部29での加熱ヒ
ータ27により加熱された前記隔壁板25などで気化さ
れ、このCs蒸気は該隔壁板25に突出する形に貫設さ
れた流通細管41内を通過し、更にコリメータ28を通
ってCs原子ビーム33として図示しない空洞共振器側
へ放射させることが出来る。
Now, in an atomic beam generating reactor with this kind of structure,
As in the conventional case, the opening tool 32 is mechanically pushed in and the C.
When the S ampoule 21 is broken through the partition plate 30 and unsealed, and the Cs in the Cs ampoule 21, which has been liquefied by heat conduction from the atomic beam emitting section 29, flows out into the beam source housing section 24, this liquefied Cs is vaporized by the partition plate 25 heated by the heater 27 in the radiation section 29, and this Cs vapor passes through the flow tube 41 projecting through the partition plate 25, and then passes through the collimator. 28 and can be radiated as a Cs atomic beam 33 to a cavity resonator (not shown).

また一方、このように前記ビーム源収容部24内にCs
22が開封された状態で収容された当該装置を、該Cs
22が液化する外部環境温度下において移動操作、或い
は輸送等を行う場合、前記隔壁板25に突出する形に貫
設された流通細管旧の構成によって、液化されたCs2
2が振動、衝撃等により該細管41内に流入することが
困ケffとなって阻止されることから、該液化Cs22
がコリメーク26側へ流出することが防止される。従っ
て当該原子ビーム装置を外部環境温度等で制約されるこ
となく容易に取扱うことが可能となる。
On the other hand, in this way, the Cs
22 is stored in an unsealed state, the Cs
When carrying out a moving operation or transportation under an external environmental temperature where Cs22 is liquefied, the liquefied Cs2
Since it is difficult for Cs22 to flow into the thin tube 41 due to vibrations, shocks, etc., the liquefied Cs22
is prevented from flowing out to the collimator 26 side. Therefore, the atomic beam device can be easily handled without being restricted by external environmental temperature or the like.

尚、以−にの実施例では隔壁板に単数の流171釧管を
貫設した場合の例について図示し、説明したが、本発明
はこの例に限定されるものではなく、必要に応して複数
の流通細管を貫設するようにしてもよく、この場合も同
様の効果が得られる。
In addition, in the embodiments described above, an example in which a single flow pipe 171 is installed through the partition plate has been illustrated and explained, but the present invention is not limited to this example, and modifications can be made as necessary. A plurality of flow tubes may be provided through the tube, and the same effect can be obtained in this case as well.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようQこ、本発明に係る原子ビ
ーム装置によれば、原子ビーム発生炉における隔壁板に
突出する形に貫設された流通11■管41の構成によっ
て、動作時、或いはCsが液化する外部環境温度下での
移動操作や輸送中の振動、衝撃等によりビーム源収容部
より液化Csが不用意に原子ビーム放射部外へ流出する
ことが防止され、当該装置の性能が安定化すると共に、
移動操作や輸送などの取扱性が向上する等、実用−に優
れた効果を奏する。
As is clear from the above explanation, according to the atomic beam apparatus according to the present invention, the configuration of the flow pipe 41 projecting through the partition plate in the atomic beam generation reactor allows for This prevents liquefied Cs from inadvertently flowing out of the atomic beam emitting section from the beam source housing section due to movement operations under the external environmental temperature where Cs liquefies, vibrations and shocks during transportation, and improves the performance of the device. Along with stabilizing
It has excellent practical effects, such as improved handling in moving operations and transportation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原子ビーム装置における原子ビー
ム発生炉の一実施例を示す要 部断面図、 第2図は従来の原子ビーム装置におりる原子ビーム発生
炉を説明するための要部断面 図、 第3図は原子ビーム装置の概略構成を説明するための図
である。 第1図において、 21ばC,sアンプル、22ばセシウム、24はビーム
源収容部、25は隔壁板、27は加gフシヒータ、28
はコリメータ、29は原子ビーム放射部、33ば原子ビ
ーム、41は流1ffl細管をそれぞれ示す。 A擲芒B月り吏フψ七7躯ぢy日月J)尊者p回−j狛
U第1図 従幻フ・」シ説明1)手舒眸萌国 第2図
FIG. 1 is a cross-sectional view of essential parts showing an embodiment of an atomic beam generator in an atomic beam apparatus according to the present invention, and FIG. 2 is a main part for explaining an atomic beam generator in a conventional atomic beam apparatus. The sectional view and FIG. 3 are diagrams for explaining the schematic configuration of the atomic beam device. In FIG. 1, 21 is a C, s ampoule, 22 is cesium, 24 is a beam source housing part, 25 is a partition plate, 27 is a gf heater, 28
29 is a collimator, 29 is an atomic beam radiation part, 33 is an atomic beam, and 41 is a flow 1ffl thin tube. A, awn, B, moon, 77 bodies, sun, and moon, J) Venerable p times-j, Koma, U, 1st figure, subordinate illusion, explanation 1) Handshake, Mengukuni, 2nd figure

Claims (1)

【特許請求の範囲】[Claims] ビーム源収容部(24)に細孔が穿設された隔壁板(2
5)を介してビーム源蒸気を発生させ、かつ該蒸気をビ
ーム状にして放射させるコリメータ(28)を有する原
子ビーム放射部(29)を配設してなる原子ビーム発生
炉と、共振器へ放射された原子ビーム(33)中の原子
の共鳴を検出する検出部を備えてなる構成において、上
記原子ビーム発生炉におけるビーム源収容部(24)と
原子ビーム放射部(29)間の隔壁板(25)の細孔穿
設部に、両端がそれぞれ隔壁板面より突出する形にビー
ム源蒸気を流通する細管(41)を貫設して成ることを
特徴とする原子ビーム装置。
A partition plate (2) with a hole bored in the beam source housing part (24)
5) an atomic beam generation reactor including an atomic beam radiator (29) having a collimator (28) that generates beam source steam and radiates the steam in the form of a beam, and a resonator; A partition plate between the beam source accommodating part (24) and the atomic beam emitting part (29) in the atomic beam generating reactor, in a configuration comprising a detection part for detecting resonance of atoms in the emitted atomic beam (33). An atomic beam device characterized in that a thin tube (41) through which beam source vapor flows is provided in the perforated portion of (25) with both ends protruding from the surface of the partition plate.
JP10022085A 1985-05-10 1985-05-10 Atom beam device Pending JPS61258531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022085A JPS61258531A (en) 1985-05-10 1985-05-10 Atom beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022085A JPS61258531A (en) 1985-05-10 1985-05-10 Atom beam device

Publications (1)

Publication Number Publication Date
JPS61258531A true JPS61258531A (en) 1986-11-15

Family

ID=14268214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022085A Pending JPS61258531A (en) 1985-05-10 1985-05-10 Atom beam device

Country Status (1)

Country Link
JP (1) JPS61258531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007136B2 (en) 2012-02-07 2015-04-14 Seiko Epson Corporation Light-emitting device module and atomic oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007136B2 (en) 2012-02-07 2015-04-14 Seiko Epson Corporation Light-emitting device module and atomic oscillator

Similar Documents

Publication Publication Date Title
US6476383B1 (en) Device and method for generating and manipulating coherent matter waves
Robin et al. Global dynamics of the advanced light source revealed through experimental frequency map analysis
Streltsov et al. Small‐scale, dispersive field line resonances in the hot magnetospheric plasma
Mizushima et al. Microwave spectrum of O 2
Sturm et al. Electron g‐factor determinations in Penning traps
Metzger Lifetime and g-factor of the first excited state in Fe56
US2972115A (en) Molecular beam apparatus
Rose et al. The virial theorem for a Dirac particle
US11199595B2 (en) Radio frequency atomic magnetometer through differential magnetic field polarization selection and operation method thereof
JPS61258531A (en) Atom beam device
KR102189866B1 (en) Quantum oscillator system stabilized to the clock transition of alkali atoms
US3345581A (en) Atomic resonance method and apparatus with improved magnetic field homogeneity control
JPS61258530A (en) Atom oscillator
Maleki et al. SpaceTime Mission: Clock Test of Relativityat Four Solar Radii
Sami Dark energy and possible alternatives
US2994836A (en) Molecular beam apparatus
Mukhopadhyay et al. Gravitational waves from r-mode instability of massive young sub-and super-Chandrasekhar white dwarfs
Lee et al. Spatial magnetic field mapping with Raman spectra of laser-cooled atoms in free-fall
Hogan Towards precision tests of general relativity using an atom interferometer
Aleksandrov et al. Restriction on the existence of a new-type of fundamental interaction arion long-range interaction in an experiment on spin precession of mercury nuclei
Braginsky Development of quantum measurement methods (Methodological notes on part of Einstein's scientific legacy)
US3462705A (en) Compensation coils for magnetic flux leakage through holes in magnetic shields
Gabrielse et al. Precise Matter and Antimatter Tests of the Standard Model with e-, e+, p, p¯ and H¯
Bhatt Isotope shift spectroscopy of ions in cryogenically cooled neutral plasmas
US3619807A (en) Maser oscillator having two connected gas cells with differently oriented magnetic fields