JPS61258449A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61258449A
JPS61258449A JP10081285A JP10081285A JPS61258449A JP S61258449 A JPS61258449 A JP S61258449A JP 10081285 A JP10081285 A JP 10081285A JP 10081285 A JP10081285 A JP 10081285A JP S61258449 A JPS61258449 A JP S61258449A
Authority
JP
Japan
Prior art keywords
conductor
wiring
conductors
width
conductor width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10081285A
Other languages
Japanese (ja)
Inventor
Kiyoshi Futagawa
二川 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10081285A priority Critical patent/JPS61258449A/en
Publication of JPS61258449A publication Critical patent/JPS61258449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device provided with its very long-lived wiring conductors by a method wherein a wiring conductor having the low- reliable conductor width region is replacement-formed into plural microscopic conductors in parallel connection. CONSTITUTION:This semiconductor integrated circuit device is one obtainable by simply dividing a wiring conductor having its conductor width of 10mum into microscopic conductors and includes five microscopic conductors 1, each having the conductor width of 2mum, and a parallel connection conductor part 2. The current densities J of the microscopic conductors 1 are respectively uniform and are set in the same one as the current density of the wiring conductor having its conductor width of 10mum. Yet the wiring longevities (t50) of these microscopic conductors 1 reach as long as 20 times or more than the wiring density of the wiring conductor having its conductor width of 10mum. As a result, though the occupation area of this semiconductor integrated circuit device somewhat increases, the reliability of the wiring can be rapidly improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウムまたはその合金を配線導体に用い
た半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor integrated circuit device using aluminum or an alloy thereof as a wiring conductor.

(従来の技術) 半導体集積回路装置の配線材にアルミニウムまたはその
合金が用いられることは既に周知である。
(Prior Art) It is already well known that aluminum or an alloy thereof is used as a wiring material for semiconductor integrated circuit devices.

これらの配線材は通常スパッタ法により基板上に堆積さ
れ、規定の幅および厚さを備えた配線導体を形成する。
These wiring materials are usually deposited on a substrate by sputtering to form a wiring conductor with a specified width and thickness.

この場合、配線導体の寿命(一般にメディアン寿命を和
で表わす)は、従来、エレクトロ・マイグレーシ曹ン現
象の発生によって定まるとされ、形成すべき配線の導体
幅は、通常、つぎの実験式により近似的に決められて来
た。
In this case, the lifetime of the wiring conductor (generally expressed as the sum of the median lifetimes) is conventionally determined by the occurrence of the electro-migration phenomenon, and the conductor width of the wiring to be formed is usually approximated by the following empirical formula. It was decided that.

すなかち、 tH=AWtJ  eXp(φ/にり =A(Wt)   I  exp(φ/kt)ただし く発明が解決しようとする問題点) しかし、発明者が最近行なった配線導体の微細化に関す
る実験によれば、配線寿命t、。は導体幅Wが10〜2
08mの範囲で最小点を示し、これ以下の微細導体では
全く別の振舞いをすることが確認された。すなわち、電
流密度Jおよび厚みtを一定にして導体幅Wを小さくし
て行くと、配線導体の寿命−10は導体幅Wの縮小と共
に短縮し続けるが、凡そ10〜20μm近辺を境いとし
て反転し、逆に長寿命となる特性を示し始める。この反
転曲線の傾度はきわめて急峻で、例えば導体幅1μmの
微細導体は、従来信頼性が高いと考えられていた導体幅
20μmの数十倍以上の配線メディアン寿命tsoを有
する。
In other words, tH=AWtJ eXp (φ/Ni=A(Wt) I exp(φ/kt) The problem that the invention is intended to solve) However, the inventor recently conducted an experiment regarding miniaturization of wiring conductors. According to the wiring life t,. The conductor width W is 10 to 2
It was confirmed that the minimum point was found in the range of 0.8 m, and that fine conductors smaller than this behaved in a completely different manner. In other words, when the conductor width W is decreased while keeping the current density J and thickness t constant, the life span of the wiring conductor -10 continues to decrease as the conductor width W decreases, but it reverses around approximately 10 to 20 μm. However, on the contrary, it begins to show characteristics that result in a long life. The slope of this inversion curve is extremely steep, and for example, a fine conductor with a conductor width of 1 μm has a wiring median life tso that is several tens of times or more than that of a conductor width of 20 μm, which was conventionally considered to be highly reliable.

(発明の目的) 本発明の目的は、上記の実験データに基づき、きわめて
長寿命を保証し得る微細化構造の配線導体を備えた半導
体集積回路装置を提供することである。
(Objective of the Invention) An object of the present invention, based on the above experimental data, is to provide a semiconductor integrated circuit device having a wiring conductor with a miniaturized structure that can guarantee an extremely long life.

(発明の構成) 本発明の半導体集積回路装置は、アルミニウムまたはア
ルミニウム合金からなる配線導体の少くと本一つが、導
体幅5μm以下の微細導体による並列接続により形成さ
nることを含む。
(Structure of the Invention) The semiconductor integrated circuit device of the present invention includes that at least one wiring conductor made of aluminum or an aluminum alloy is formed by parallel connection using fine conductors having a conductor width of 5 μm or less.

(問題点を解決するための手段) すなわち、本発明によれば、少くとも導体@W10〜2
0μmのメディアン寿命twoが急速に低下する配線導
体は、これより遥かに高く飛躍的に大きな配線寿命tw
oを有する導体幅5μm以下の微細導体に置き換えられ
、電流容量に応じ並列接続構成される。更に詳しい実験
によれば、膜質を変えずに電流密度Jを2倍とした場合
でも寿命ts。
(Means for solving the problem) That is, according to the present invention, at least the conductor @W10~2
Wiring conductors whose median lifespan of 0 μm rapidly decreases have a much higher and dramatically longer wiring lifespan than this.
It is replaced with a fine conductor having a conductor width of 5 μm or less, and is connected in parallel according to the current capacity. According to more detailed experiments, even when the current density J is doubled without changing the film quality, the lifespan is ts.

の向上効果は変わらないデータも得らnているので、置
換すべき微細導体の並列本数は単純な分割数よ抄遥かに
少なくてすむ。
Since data has been obtained that does not change the improvement effect, the number of parallel fine conductors to be replaced can be far smaller than the number of simple divisions.

(作用) アルミニウムおよびアルミニウム合金のスパッタ膜が、
導体幅10〜20μmを境として何故しこかかる物性を
示すのかは、現在のところ充分な説明をすることができ
ない。しかし、従来の予想を覆えし、導体@5μm以下
の微細導体はその数倍以上の導体幅をもつ配線導体と同
程度の信頼性をもつことが実証されるので、とnc)微
細導体による並列接続の配線構造は、特に導体幅lO〜
20μmの配線導体の信頼性低下を有効確実に救済し得
る。
(Function) The sputtered film of aluminum and aluminum alloy is
At present, it is not possible to provide a sufficient explanation as to why such physical properties are exhibited at a conductor width of 10 to 20 μm. However, overcoming conventional expectations, it has been demonstrated that a fine conductor with a conductor width of 5 μm or less has the same level of reliability as a wiring conductor with a conductor width several times that of the conductor. The wiring structure of the connection is particularly important when the conductor width is lO~
Deterioration in reliability of a 20 μm wiring conductor can be effectively and reliably relieved.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

(実施例) tJ1図は本発明の一実施例を示す配線導体図である。(Example) Figure tJ1 is a wiring conductor diagram showing one embodiment of the present invention.

本実施例は、導体1110μmの配線導体を微細導体で
単純分割したもので、導体幅がそれぞn2μmの5本の
微細導体lと並列接続導体部2とを含む。本実施例では
、微細導体1の電流密度Jはそれぞn均等で且つ導体幅
10μmの配線導体と同一に設定される。しかしながら
、この微細導体1の配線寿命tsoは導体@10μmの
配線導体のそれの20倍以上にも達するので、占有面積
は多少増えるものの配線の信頼性を飛躍的に向上せしめ
ることができる。この現象は本発明者によるつぎの実I
i1に事実に基づき、明瞭に説明さたる。
In this embodiment, a wiring conductor of 1110 μm is simply divided into fine conductors, and includes five fine conductors l each having a conductor width of n2 μm and a parallel connection conductor portion 2. In this embodiment, the current density J of the fine conductors 1 is set to be equal to n and the same as that of a wiring conductor having a conductor width of 10 μm. However, since the wiring life tso of this fine conductor 1 is more than 20 times that of a wiring conductor of conductor @10 μm, the reliability of the wiring can be dramatically improved, although the area occupied is increased somewhat. This phenomenon is explained by the following fact I by the inventor.
i1 is clearly explained based on facts.

第2図はアルミ配線導体の導体幅(W)  とメディア
ン寿命(tso)との関係を示す実験データ図である。
FIG. 2 is an experimental data diagram showing the relationship between the conductor width (W) and the median life (tso) of an aluminum wiring conductor.

この実験では、温度300〜400℃に加熱された半導
体基板面にスパッタされ、更に400〜450℃の温度
で20〜60分間アニール処理さnたアルミニウム配線
導体が用いられ、電流密度J (A/am” )には異
なる2つの条件が選択さ几た。
In this experiment, an aluminum wiring conductor was used that was sputtered onto a semiconductor substrate surface heated to a temperature of 300 to 400°C, and then annealed for 20 to 60 minutes at a temperature of 400 to 450°C. am”), two different conditions were selected.

すなわち、導体幅WがそれぞれL2(μm)、3.2(
μm)および7.1(μm)の配線導体は電流密度Jを
2 X 10” (A/am” )とし、また、同シ<
7.1(μm)、19(μm)の配線導体の電流密度J
はその半分のI X 1G  (A/am )に選択さ
れ、それぞれの配線のメディアン寿命tsoが試験され
た。ここで、配線のメディアン寿命tsoは、2つの電
流密度について試験した7、1(μm)の導体幅の数値
を基準に正規化されている。
That is, the conductor width W is L2 (μm) and 3.2 (
μm) and 7.1 (μm) wiring conductors have a current density J of 2 × 10” (A/am”) and the same
Current density J of wiring conductor of 7.1 (μm) and 19 (μm)
was selected to be half of that, I x 1G (A/am), and the median lifetime tso of each interconnect was tested. Here, the median lifetime tso of the wiring is normalized based on the conductor width value of 7.1 (μm) tested for two current densities.

この実験データによると、配線のメディアン寿命t、。According to this experimental data, the median lifetime of the wiring, t,.

は、従来の実験式が予想するように導電幅(W)の縮少
と共に単純に短縮し続けるのではなく、むしろ予想を遥
かに越えた10〜20μmのところに最小点が現われ、
5(μm)以下の微細領域に入ると飛躍的と言える程増
大することが認められる。
does not simply continue to shorten as the conductive width (W) decreases, as predicted by the conventional experimental formula, but rather a minimum point appears at 10 to 20 μm, which is far beyond expectations.
It is recognized that when entering the fine region of 5 (μm) or less, the increase increases dramatically.

また、この実験データでは、電流密度が2倍に増加して
もこれら微細導体の配線のメディアン寿命tsoは同様
の傾向を示している。従って、この実験データに基づけ
ば、微細導体の並列本数を単純な分割数より遥かに少な
くすることも可能である。
Moreover, in this experimental data, even if the current density is doubled, the median lifetime tso of the wiring of these fine conductors shows a similar tendency. Therefore, based on this experimental data, it is possible to make the number of parallel fine conductors much smaller than the number of simple divisions.

第3図は本発明の他の実施例を示す配線導体図で、導体
幅10 Amの配線導体を上記の実験データに基づき、
2本の微細導体3を用いて形成したものである。本実施
例の微細導体3の導体幅は前実施例におけるものと同じ
く2μmが選択され、電流密度は2倍強にそ1ぞn設定
される。従って、厚さtを少し厚目に調整して電流密度
を僅かに緩和すれば、きわめて信頼性の高い配線を小さ
な面積内に形成することも可能となる。
FIG. 3 is a wiring conductor diagram showing another embodiment of the present invention, in which a wiring conductor with a conductor width of 10 Am was constructed based on the above experimental data.
It is formed using two fine conductors 3. The conductor width of the fine conductor 3 in this example is selected to be 2 μm, the same as in the previous example, and the current density is set to slightly more than double. Therefore, by adjusting the thickness t to be a little thicker and slightly relaxing the current density, it becomes possible to form extremely reliable wiring within a small area.

断わるまでもなく、アルミ配線導体の物性はその形成条
件によね大きく変わる。この実験データもその一例であ
って、詳しく実験を重ねると、配線のメディアン寿命t
soの最小点は導体幅Wが10〜20μmの範囲にバラ
ツキ、広く観測される。しかしながら、5μmを過ぎた
微細領域において、配線寿命tlOの飛躍的向上が多く
の場合観測されることが確かめられている。これは合金
材の場合でも同じである。
Needless to say, the physical properties of an aluminum wiring conductor vary greatly depending on its formation conditions. This experimental data is one example, and after repeated experiments, the median lifespan of the wiring t
The minimum point of so is observed over a wide range of conductor width W of 10 to 20 μm. However, it has been confirmed that in many cases, a dramatic improvement in the interconnect lifetime tlO is observed in a fine region exceeding 5 μm. This also applies to alloy materials.

(発明の効果) 以上詳細に説明したように、本発明によれば、信頼性の
低い導体幅領域の配線導体を、複数本の微細導体の並列
接続に置換形成することにより、きわめて長寿命の配線
導体を備え九半導体装置を得ることができるので、その
信頼性を著しく高めることができる。また、配線領域の
縮小も可能である。
(Effects of the Invention) As described in detail above, according to the present invention, by replacing the unreliable wiring conductor in the conductor width region with a parallel connection of a plurality of fine conductors, an extremely long life can be achieved. Since a semiconductor device including wiring conductors can be obtained, its reliability can be significantly improved. It is also possible to reduce the wiring area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す配線導体図、第2図は
アルミ配線導体の導体幅(W)とメディアン寿命(を−
との関係を示す実験データ図、第3図は本発明の他の実
施例を示す配線導体図である。 1.3・・・・・・微細導体、2・・・・・・並列接続
導体部、W・・・・・・配線導体幅、”NO・・・・・
・配線のメディアン寿命、t・・・・・・配線導体の厚
さ、J・・・・・・電流密度。
Fig. 1 is a wiring conductor diagram showing an embodiment of the present invention, and Fig. 2 shows the conductor width (W) and median life (-) of an aluminum wiring conductor.
FIG. 3 is a wiring conductor diagram showing another embodiment of the present invention. 1.3... Fine conductor, 2... Parallel connection conductor section, W... Wiring conductor width, "NO..."
・Median life of wiring, t... Thickness of wiring conductor, J... Current density.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムまたはアルミニウム合金からなる配線導体
の少くとも一つが、導体幅5μm以下の微細導体による
並列接続により形成されることを特徴とする半導体集積
回路装置。
1. A semiconductor integrated circuit device, wherein at least one wiring conductor made of aluminum or an aluminum alloy is formed by parallel connection of fine conductors having a conductor width of 5 μm or less.
JP10081285A 1985-05-13 1985-05-13 Semiconductor integrated circuit device Pending JPS61258449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10081285A JPS61258449A (en) 1985-05-13 1985-05-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10081285A JPS61258449A (en) 1985-05-13 1985-05-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61258449A true JPS61258449A (en) 1986-11-15

Family

ID=14283766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10081285A Pending JPS61258449A (en) 1985-05-13 1985-05-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61258449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289036A (en) * 1991-01-22 1994-02-22 Nec Corporation Resin sealed semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289036A (en) * 1991-01-22 1994-02-22 Nec Corporation Resin sealed semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
CA1124857A (en) Amorphous semiconductor memory device for employment in an electrically alterable read-only memory
KR100766678B1 (en) Chalcogenide glass constant current device, and its method of fabrication and operation
US3877049A (en) Electrodes for amorphous semiconductor switch devices and method of making the same
US2791760A (en) Semiconductive translating device
US7387909B2 (en) Methods of forming assemblies displaying differential negative resistance
US7277313B2 (en) Resistance variable memory element with threshold device and method of forming the same
US7390726B1 (en) Switching ratio and on-state resistance of an antifuse programmed below 5 mA and having a Ta or TaN barrier metal layer
US7358589B1 (en) Amorphous carbon metal-to-metal antifuse with adhesion promoting layers
JPS63142690A (en) Thin film electric device with amorphous carbon electrode and manufacture of the same
US5856233A (en) Method of forming a field programmable device
US5365105A (en) Sidewall anti-fuse structure and method for making
JPH02281621A (en) Semiconductor device and method of forming the same, apparatus for metal deposition and manufacture of metal source
JPS61258449A (en) Semiconductor integrated circuit device
JPH0697164A (en) Wiring in integrated circuit and structure thereof
JPS63107106A (en) Voltage enlargeable varistor
JP3837385B2 (en) Thin film NTC thermistor
US3585534A (en) Microstrip delay line
US20050230785A1 (en) Resistor tuning
US3487522A (en) Multilayered thin-film intermediates employing parting layers to permit selective,sequential etching
US6469363B1 (en) Integrated circuit fuse, with focusing of current
JPH06112017A (en) Integrated-circuit resistor and method for reduction of relative parasitic resistance
JPS60136334A (en) Fuse element for inegrated circuit and method of producing same
US3313988A (en) Field effect semiconductor device and method of forming same
JPS60261101A (en) Film resistance element and method of producing same
US3611060A (en) Three terminal active glass memory element