JPS6125811B2 - - Google Patents

Info

Publication number
JPS6125811B2
JPS6125811B2 JP5995381A JP5995381A JPS6125811B2 JP S6125811 B2 JPS6125811 B2 JP S6125811B2 JP 5995381 A JP5995381 A JP 5995381A JP 5995381 A JP5995381 A JP 5995381A JP S6125811 B2 JPS6125811 B2 JP S6125811B2
Authority
JP
Japan
Prior art keywords
fiber bundle
synthetic resin
present
fiber
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5995381A
Other languages
Japanese (ja)
Other versions
JPS57176226A (en
Inventor
Tomiro Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Izumi Cosmo Co Ltd
Original Assignee
Izumi Cosmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izumi Cosmo Co Ltd filed Critical Izumi Cosmo Co Ltd
Priority to JP5995381A priority Critical patent/JPS57176226A/en
Publication of JPS57176226A publication Critical patent/JPS57176226A/en
Publication of JPS6125811B2 publication Critical patent/JPS6125811B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は天然繊維、人造繊維、合成繊維、又は
ガラス繊維、炭素繊維等の無機質繊維の連続繊維
束又は紡績糸に常温で固体のホツトメルト型粉末
状ポリエステル系接着剤で前処理した後、直ちに
押出機(Extruder)によつて繊維束表面に付着
した接着剤を加熱溶融せしめて繊維束表面にのみ
均一に接着被覆せしめ、ついで溶融状合成樹脂を
被覆することによつて、本来の繊維の強伸度、弾
性、柔軟性を失うことなく、繊維表面のみに均一
に、強固に合成樹脂を接着被覆することによつて
耐候性、耐汚染性の大なる合成樹脂被覆繊維を製
造することを目的とするものである。 従来、無撚又は甘撚りの連続繊維の表面に合成
樹脂を被覆する方法は繊維束をそのまま合成樹脂
溶融浴又は溶剤に溶解した合成樹脂溶液浴に浸漬
して被覆し、冷却又は加熱乾燥して製造するか、
又は押出機によつて溶液状又は溶融状合成樹脂を
直接繊維束に被覆する方法が取られているが、何
れの場合も従来の方法においては合成樹脂が繊維
束の表面のみならず繊維束の内部フイラメント間
に浸透して固着し、そのために表面樹脂と繊維束
との接着が強固になる利点はあるが、繊維束中に
合成樹脂が浸透して固着するため、繊維自身の本
来の強伸度特に繊維の弾性、柔軟性を損じ、その
ためかかる合成樹脂被覆繊維を使用した織物はそ
れらの強伸度を必要とする高負荷の過酷な条件下
における用途に使用する場合、耐久性に劣るほか
織物としての品位を落す欠点がある。 本発明は上記に鑑み常温で固体の粉末状ポリエ
ステル系接着剤によつて繊維束表面に接着剤の被
覆を施し、加熱融着して直ちに溶融状合成樹脂被
覆を施すことによつて繊維束のフイラメント間に
は合成樹脂が浸透することなく、繊維束表面のみ
に合成樹脂被覆が施され、原料繊維束の強伸度、
弾性、柔軟性を少しも損ずることなく、耐候性、
及び耐汚染性の大なる合成樹脂被覆繊維の得られ
ることを確認して本発明を完成するに至つたもの
で、本発明は繊維束を先づ常温で粉末状のポリエ
ステル系接着剤で処理し、ついで押出機によつ
て、先づ繊維束表面付着の粉末状接着剤を加熱溶
融せしめて繊維束表面のみに均一に接着せしめ、
更に溶融状合成樹脂を繊維束表面に接着被覆する
合成樹脂被覆繊維の製造方法を提供するものであ
る。 本発明に使用の常温で固体の粉末状ポリエステ
ル系接着剤としては熱可塑性共重合ポリエステル
を主成分とするホツトメルト型接着剤で使用目的
によつて、融点115〜125℃、135〜150℃又は160
〜175℃、粉末度1〜200μの粒度で常温で安定な
化合物で、例えばPES−120P、140P又は170P
(何れも東亜合成化学工業株式会社製ホツトメル
ト型接着剤の商品名)が好適に使用される。 しかも該接着剤は粉末状固体のままで使用され
るが故に溶剤を必要とせず、常温で有効固形分が
100重量%(以下%はことわりがない限り重量%
である。)で、毒性がなく、引火の危険、環境汚
染の心配がなく、繊維束表面にのみ柔軟な接着剤
層を形成するため原料繊維本来の風合いを損ずる
ことのない利点がある。 次に本発明を詳細説明する。 第1図は本発明に使用される装置の一実施例の
概略図を示すもので、ケーク又はチーズ巻き1の
原糸2を常温で固体のポリエステル系ホツトメル
ト型接着剤(例えば前記PES−170P)の浴3に
通じて粉末状接着剤を原糸2の表面に付着させ、
押出機4にて先づ粉末状接着剤を加熱溶融させて
繊維束表面に均一に接着被覆させ、ついで直ちに
繊維束表面のみに合成樹脂を均一、強固に接着被
覆させ、引張り装置5で延伸して巻取る6もの
で、製造方法が簡単で、本発明に使用の上記の特
殊な常温で粉末固体の接着剤の前処理によつて均
一、強固に合成樹脂を繊維束表面にのみ接着被覆
せしめ得られ、前記本発明の目的が完全に達成さ
れる。 本発明に使用の原絲としては如何なる繊維でも
よいが、特にナイロン、ポリエステル繊維、炭素
繊維、ガラス繊維が好適である。 表面被覆用合成樹脂としては塩化ビニル、アク
リル、ウレタン、ナイロン等が好適に使用され
る。 本発明によつて得られた合成樹脂被覆繊維束は
原料繊維束自身の強伸度、弾性、柔軟性等を失う
ことなく夫々その特性を発揮させ、被覆樹脂によ
つて原料繊維の風合いを損うことなく、耐候性、
耐熱性、耐寒性、耐汚染性を向上せしめる利点が
ある。 例えば伸度を必要とする場合には原料繊維束と
してナイロンを使用し、寸法安定性を必要とする
場合にはポリエステル繊維を使用し、また原料繊
維束としてガラス繊維を使用すると伸度が著しく
少なくなり、炭素繊維を使用するとヤング率の大
なる合成樹脂被覆繊維が得られる。 例えばナイロン1890デニールを原料繊維束に使
用し、前記ポリエステル系接着剤で処理し、さら
に100%溶融状塩化ビニルコンパウンド被覆を施
し、かくして本発明の方法によつて製造して得ら
れたナイロン繊維束は6720デニールで合成樹脂被
覆量は原糸に対して350%で、その引張強度
(Kg/3cm)は縦110Kg、ウエルダー剪断、縦80
Kg、ウエルダー剥離、縦37Kgであつた。 本発明に使用の繊維の形態は無撚の連続繊維束
が最も好適であるが、甘撚りの連続糸、紡績糸又
は太い単繊維も適用可能である。 例えば単繊維350デニール(d)から1500d/4
本、全デニール、250d〜6000d、合成樹脂付着量
100〜700重量%で、500d〜42000d程度の合成樹
脂被覆繊維束が得られる。 実施例 1 第1図に示したような装置を使用し、単糸数24
本の210dのナイロンの無撚繊維束をケークより
500m/分の速度で引き出し、先づ常温でポリエ
ステル系ホツトメルト型固体の粉末状接着剤
(PES−120P東亜合成化学株式会社製)浴に供給
して、粉末状接着剤をナイロン繊維束表面に付着
させ、押出機に供給して加熱して付着接着剤を均
一に繊維束表面に溶融接着させ、ついで溶融状塩
化ビニール樹脂を被覆して押出機より取出し、延
伸してボビンに巻取つて製造するのである。 得られた塩化ビニル樹脂被覆ナイロン繊維束に
対するポリエステル系接着剤及び塩化ビニル樹脂
付着量の合対量は約100重量%で、その太さは約
420dであつた。 得られた塩化ビニル樹脂被覆ナイロン繊維束は
下記第1表に示す如く、同一のナイロン糸を直接
押出機によつても樹脂溶液にデイツプする場合も
同様に塩化ビニル樹脂のみを100%被覆した従来
の塩化ビニル樹脂被覆ナイロン繊維束に比較して
引張り強伸度の低下がなく、また「JISK−
0849」法によつて測定した表面摩耗試験(1000回
摩擦)による強度低下がなく、被膜は均一に強固
にナイロン繊維束の表面に接着被覆され、柔軟性
があり、弾性が大で、製織して織目の荒い織物に
した場合、耐候性及び耐汚染性が大で、しかもナ
イロン繊維束自身の風合を損ずることがない。 次に本発明品と比較品との測定結果を第1表に
纒めた。
In the present invention, continuous fiber bundles or spun yarns of natural fibers, man-made fibers, synthetic fibers, or inorganic fibers such as glass fibers and carbon fibers are pretreated with a hot-melt powder polyester adhesive that is solid at room temperature, and then immediately extruded. The adhesive adhered to the surface of the fiber bundle is heated and melted using an extruder to uniformly coat only the surface of the fiber bundle, and then coated with molten synthetic resin, which strengthens the original strength of the fibers. The aim is to manufacture synthetic resin-coated fibers with excellent weather resistance and stain resistance by uniformly and firmly adhering synthetic resin only to the fiber surface without losing elasticity, elasticity, or flexibility. It is something to do. Conventionally, the method of coating the surface of untwisted or lightly twisted continuous fibers with synthetic resin is to immerse the fiber bundle as it is in a synthetic resin melt bath or a synthetic resin solution bath dissolved in a solvent, and then cool or heat dry it. manufacture or
Alternatively, a method has been adopted in which a solution or molten synthetic resin is directly coated on the fiber bundle using an extruder, but in either case, in the conventional method, the synthetic resin coats not only the surface of the fiber bundle but also the surface of the fiber bundle. The synthetic resin penetrates between the internal filaments and becomes fixed, which has the advantage of making the bond between the surface resin and the fiber bundle stronger, but since the synthetic resin penetrates into the fiber bundle and becomes fixed, the original strength and elongation of the fiber itself is reduced. In particular, the elasticity and flexibility of the fibers are impaired, and as a result, textiles made of such synthetic resin-coated fibers have poor durability when used in applications under harsh conditions under high loads that require high strength and elongation. There are drawbacks that degrade the quality of the fabric. In view of the above, the present invention has been developed by coating the fiber bundle surface with an adhesive using a powdered polyester adhesive that is solid at room temperature, heat-sealing the adhesive, and immediately applying a molten synthetic resin coating to the fiber bundle. The synthetic resin does not penetrate between the filaments, and the synthetic resin coating is applied only to the surface of the fiber bundle, improving the strength and elongation of the raw fiber bundle.
Weather resistant, without compromising elasticity or flexibility in the slightest.
The present invention was completed after confirming that synthetic resin-coated fibers with high stain resistance could be obtained.The present invention involves first treating fiber bundles with a powdered polyester adhesive at room temperature. Then, using an extruder, the powdered adhesive attached to the surface of the fiber bundle is heated and melted to uniformly adhere only to the surface of the fiber bundle,
Furthermore, the present invention provides a method for producing synthetic resin-coated fibers by adhesively coating the surface of a fiber bundle with a molten synthetic resin. The powdered polyester adhesive that is solid at room temperature used in the present invention is a hot melt adhesive mainly composed of thermoplastic copolymer polyester, with a melting point of 115 to 125°C, 135 to 150°C, or 160°C, depending on the purpose of use.
A compound that is stable at room temperature with a particle size of ~175℃ and a particle size of 1~200μ, such as PES-120P, 140P or 170P.
(all are trade names of hot melt adhesives manufactured by Toagosei Chemical Industry Co., Ltd.) are preferably used. Furthermore, since the adhesive is used as a powdered solid, no solvent is required, and the effective solid content is low at room temperature.
100% by weight (the following percentages are by weight unless otherwise specified)
It is. ), it is non-toxic, has no risk of ignition, and is free from environmental pollution, and has the advantage of not damaging the original texture of the raw fibers because it forms a flexible adhesive layer only on the surface of the fiber bundle. Next, the present invention will be explained in detail. FIG. 1 shows a schematic diagram of an embodiment of the apparatus used in the present invention, in which raw yarn 2 of a cake or cheese roll 1 is glued with a polyester hot-melt adhesive (for example, the above-mentioned PES-170P) that is solid at room temperature. The powdered adhesive is applied to the surface of the yarn 2 through a bath 3 of
First, the extruder 4 heats and melts the powdered adhesive to uniformly coat the surface of the fiber bundle, then immediately coats only the surface of the fiber bundle with the synthetic resin uniformly and firmly, and then stretches it using the tensioner 5. The manufacturing method is simple, and the synthetic resin is uniformly and firmly coated only on the surface of the fiber bundle by pre-treatment with the above-mentioned special room-temperature solid powder adhesive used in the present invention. Thus, the object of the present invention is fully achieved. The raw yarn used in the present invention may be any type of fiber, but nylon, polyester fiber, carbon fiber, and glass fiber are particularly suitable. As the synthetic resin for surface coating, vinyl chloride, acrylic, urethane, nylon, etc. are preferably used. The synthetic resin-coated fiber bundle obtained by the present invention exhibits its properties without losing the strength, elongation, elasticity, flexibility, etc. of the raw fiber bundle itself, and the texture of the raw fiber is not impaired by the coating resin. weatherproof, without
It has the advantage of improving heat resistance, cold resistance, and stain resistance. For example, when elongation is required, nylon is used as the raw material fiber bundle, when dimensional stability is required, polyester fiber is used, and when glass fiber is used as the raw material fiber bundle, the elongation is significantly reduced. Therefore, when carbon fiber is used, a synthetic resin-coated fiber with a large Young's modulus can be obtained. For example, a nylon fiber bundle obtained by using 1890 denier nylon as a raw material fiber bundle, treating it with the polyester adhesive described above, and further coating with 100% molten vinyl chloride compound, and thus manufacturing it by the method of the present invention. is 6720 denier, the amount of synthetic resin covered is 350% of the original yarn, and its tensile strength (Kg/3cm) is 110 kg in length, welder shear, 80 in length.
kg, welder peeling, vertical weight was 37 kg. The most suitable form of the fibers used in the present invention is a non-twisted continuous fiber bundle, but lightly twisted continuous yarns, spun yarns, or thick single fibers are also applicable. For example, single fiber 350 denier (d) to 1500 d/4
Book, full denier, 250d to 6000d, synthetic resin coverage
At 100 to 700% by weight, a synthetic resin-coated fiber bundle of about 500 to 42,000 d can be obtained. Example 1 Using the device shown in Figure 1, the number of single threads was 24.
210d nylon untwisted fiber bundle from cake
It was drawn out at a speed of 500 m/min and first fed into a polyester hot melt type solid powder adhesive (PES-120P manufactured by Toagosei Kagaku Co., Ltd.) bath at room temperature to adhere the powder adhesive to the surface of the nylon fiber bundle. The fiber bundle is then heated, fed into an extruder, and heated to melt and adhere the adhesion adhesive uniformly to the surface of the fiber bundle, then coated with molten vinyl chloride resin, taken out from the extruder, stretched, and wound onto a bobbin to manufacture. It is. The combined amount of the polyester adhesive and vinyl chloride resin adhered to the resulting vinyl chloride resin-coated nylon fiber bundle was approximately 100% by weight, and the thickness was approximately 100% by weight.
It was 420d. The resulting vinyl chloride resin-coated nylon fiber bundles are as shown in Table 1 below, as shown in Table 1 below. There is no decrease in tensile strength and elongation compared to vinyl chloride resin-coated nylon fiber bundles, and there is no decrease in tensile strength and elongation.
There is no decrease in strength in the surface abrasion test (1000 frictions) measured using the ``0849'' method, and the coating is uniformly and firmly adhered to the surface of the nylon fiber bundle, has flexibility, high elasticity, and is easy to weave. When made into a coarsely woven fabric, it has high weather resistance and stain resistance, and does not impair the feel of the nylon fiber bundle itself. Next, the measurement results for the products of the present invention and comparative products are summarized in Table 1.

【表】 第1表の結果より、本発明のナイロン無撚繊維
束を使用した場合、従来の同一のナイロン無撚繊
維束にそのまま塩化ビニル樹脂を被覆した比較品
の場合の室温25℃、湿度65%中で測定した引張強
度は第1表に示すように本発明品と殆んど差がな
く、伸度が従来品の場合低下があるが、本発明の
品の場合は伸度低下がなく、さらに表面摩耗試験
結果は本発明の場合、強度低下が皆無であるのに
反して比較品の場合は表面摩耗試験によつて破壊
して強度の測定が不可能であつた。 この理由は本発明は第1表の結果より表面のみ
に100%樹脂が付着しているのに反して比較品は
合成樹脂液中に押出し被覆した場合も合成樹脂溶
液中にデイツプ(Dip)した場合も共に繊維束内
部に浸透しているため表面のみに被覆の樹脂は
100%よりも著しく少なく、そのため表面の性質
をあらわす表面摩耗試験による強度低下が著しく
大で破壊するに至るのである。 この表面摩耗の性質が実用的に大きく支配し本
発明の最大の利点となつている。 実施例 2 第1図に示したような装置を使用し、ポリエス
テルフイラメント系繊維束を使用して実施例1と
同様に試験した結果を第2表に示す。
[Table] From the results in Table 1, when using the nylon non-twisted fiber bundle of the present invention, compared to the same conventional nylon non-twisted fiber bundle coated with vinyl chloride resin, the room temperature and humidity are 25℃ and the humidity. As shown in Table 1, the tensile strength measured at 65% is almost the same as the product of the present invention, and the elongation of the conventional product decreases, but the product of the present invention shows no decrease in elongation. Furthermore, the results of the surface abrasion test showed that in the case of the present invention, there was no decrease in strength, whereas in the case of the comparative product, it was destroyed in the surface abrasion test, making it impossible to measure the strength. The reason for this is that the present invention has 100% resin attached only to the surface as shown in Table 1, whereas the comparative product does not dip in the synthetic resin solution even when extruded and coated in the synthetic resin solution. In both cases, the resin is coated only on the surface because it has penetrated into the inside of the fiber bundle.
It is significantly less than 100%, and as a result, the strength decrease in the surface abrasion test, which shows the properties of the surface, is so large that it can lead to destruction. The nature of this surface abrasion largely governs practical use and is the greatest advantage of the present invention. Example 2 Table 2 shows the results of a test conducted in the same manner as in Example 1 using the apparatus shown in FIG. 1 and a polyester filament fiber bundle.

【表】【table】

【表】 第2表から明かなように本発明品は単に原糸芯
糸に合成樹脂(この場合塩化ビニル樹脂)を被覆
した場合に比較して、耐熱性、耐寒性所謂耐候性
が大で耐揉性も著しく大であることが分る。その
ため本発明によつて製造された合成樹脂被覆繊維
はコンテナ袋、コンクリートなどの養生用シー
ト、又は風よけシート又はメツシユシユーズ等の
苛酷な条件下における原料として有効に使用され
る。 ただ引張強伸度については第1表の場合も同様
であるが、第2表においても、本発明の場合、比
較例と著しい差がないのは一般に合成織維に被覆
した合成樹脂が本発明の場合も、比較例の場合
も、ともに芯糸に使用される繊維自身の引張時の
強伸度を大きく低下せしめないためである。 さらに原糸芯糸の太さ(総デニール)が大にな
ると、ホツトメルト型粉末状ポリエステル系接着
剤を使用して直ちに押出し機にかける場合には第
2表に示すように被覆樹脂の付着量が大になるこ
とが本発明によつて判明した。
[Table] As is clear from Table 2, the product of the present invention has greater heat resistance, cold resistance, and so-called weather resistance compared to the case where the core yarn is simply coated with synthetic resin (in this case, vinyl chloride resin). It can be seen that the resistance to rubbing is also extremely high. Therefore, the synthetic resin-coated fibers produced according to the present invention can be effectively used as raw materials for container bags, curing sheets for concrete, etc., windshield sheets, mesh use, etc. under severe conditions. However, the same is true for tensile strength and elongation in Table 1, but in Table 2, there is no significant difference between the present invention and the comparative example. This is because, both in the case of 1 and in the case of the comparative example, the tensile strength and elongation of the fiber itself used for the core yarn is not significantly reduced. Furthermore, as the thickness (total denier) of the raw yarn core yarn increases, the amount of coating resin deposited increases as shown in Table 2 when using a hot melt type powdered polyester adhesive and immediately applying it to an extruder. According to the present invention, it has been found that the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される装置の一実施例の
概略図を示す。 1……ケーキ、2……繊維束、3……接着剤
浴、4……押出機、5……延伸部、6……製品巻
取り部。
FIG. 1 shows a schematic diagram of one embodiment of the apparatus used in the present invention. 1... Cake, 2... Fiber bundle, 3... Adhesive bath, 4... Extruder, 5... Stretching section, 6... Product winding section.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維束を常温で固体のホツトメルト型粉末状
ポリエステル系接着剤で処理し、ついで先づ繊維
束表面付着の該粉末状ポリエステル系接着剤を加
熱溶融せしめて繊維束表面にのみ均一に被覆接着
せしめ、ついでそのまま直ちに該繊維束表面に溶
融状合成樹脂を接着被覆することを特徴とする合
成樹脂被覆繊維の製造方法。
1. The fiber bundle is treated with a hot melt type powdered polyester adhesive that is solid at room temperature, and then the powdered polyester adhesive attached to the surface of the fiber bundle is first heated and melted to uniformly cover and bond only the surface of the fiber bundle. . A method for producing synthetic resin-coated fibers, which comprises immediately adhering and coating the surface of the fiber bundle with a molten synthetic resin.
JP5995381A 1981-04-20 1981-04-20 Production of synthetic resin coated fiber Granted JPS57176226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5995381A JPS57176226A (en) 1981-04-20 1981-04-20 Production of synthetic resin coated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5995381A JPS57176226A (en) 1981-04-20 1981-04-20 Production of synthetic resin coated fiber

Publications (2)

Publication Number Publication Date
JPS57176226A JPS57176226A (en) 1982-10-29
JPS6125811B2 true JPS6125811B2 (en) 1986-06-17

Family

ID=13128011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5995381A Granted JPS57176226A (en) 1981-04-20 1981-04-20 Production of synthetic resin coated fiber

Country Status (1)

Country Link
JP (1) JPS57176226A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435908A (en) * 1990-06-01 1992-02-06 Asahi Fiber Glass Co Ltd Molding material and manufacturing method thereof
KR101634333B1 (en) * 2015-11-27 2016-06-28 (주)아셈스 Method for manufacturing pattern molding using the adhesive material weaved flat knitting jacquard

Also Published As

Publication number Publication date
JPS57176226A (en) 1982-10-29

Similar Documents

Publication Publication Date Title
US3958066A (en) Conductive synthetic fibers
US5118550A (en) Substrate based on a nonwoven sheet made of chemical textile
US2306781A (en) Product containing siliceous fibers and method of making the same
US4770915A (en) Flexible composite material and process for preparing same
EP0535223B1 (en) Process for producing tubes or pipes formed from a thermoplastic powder impregnated fiberglass roving
US3919028A (en) Method of making unidirectional webbing material
US3881522A (en) Unidirectional webbing material
CA1323488C (en) Non-shrinkable hybrid yarn
CA1339245C (en) Fibrillated tape and method of making same
US5024890A (en) Size composition for impregnating filament strands and glass fibers coated therein
US5366797A (en) Bonded yarn bundle, and textile sheet materials obtainable therefrom
US4810571A (en) Synthetic sheet composite
WO1986002306A1 (en) Coated abrasive sheet material with improved backing
JPS6125811B2 (en)
CA1309649C (en) Adhesive tape
US3516899A (en) Bonded nonwoven fabric
US3197351A (en) Preparation of thin, highly directionalized filament structures
US3248274A (en) Weftless tape
US4244174A (en) Poy yarn compositions
US3420724A (en) Process for preparing bonded,nonwoven fabrics
JPS6059344B2 (en) Method for manufacturing synthetic resin-coated fiber fabric
US3874985A (en) Strapping formed by bonding co-extending filaments with a polymeric composition
JPS6221887A (en) Retroreflective fiber yarn and its production
JPS6335881A (en) Production of water absorbable fiber
WO1992018433A1 (en) Coated glass fibers