JPS61257441A - Metallic composite material reinforced with fiber - Google Patents

Metallic composite material reinforced with fiber

Info

Publication number
JPS61257441A
JPS61257441A JP9824885A JP9824885A JPS61257441A JP S61257441 A JPS61257441 A JP S61257441A JP 9824885 A JP9824885 A JP 9824885A JP 9824885 A JP9824885 A JP 9824885A JP S61257441 A JPS61257441 A JP S61257441A
Authority
JP
Japan
Prior art keywords
fiber
metal
matrix
fibers
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9824885A
Other languages
Japanese (ja)
Inventor
Masahiko Kakefuda
掛札 昌彦
Yasuo Kondo
保雄 近藤
Minoru Imai
実 今井
Nobuyoshi Hojo
北條 信良
Fumio Morimune
森棟 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP9824885A priority Critical patent/JPS61257441A/en
Publication of JPS61257441A publication Critical patent/JPS61257441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain the titled material having high interface bonding strength, by using inorganic fiber as reinforcing fiber, and Zn base alloy in which specified ratios of metal such as Cu, Mn, Sb, Ag, Li are added, as matrix. CONSTITUTION:In the titled material, inorganic fiber such as carbon fiber, silicon carbide fiber, alumina fiber is used for reinforcing fiber. For the matrix metal, Zn base alloy composed of metal of >=one kind selected from group of <=20% Cu, <=30% Mn, <=30% Sb, <=10% Ag, <=5% Li, <=5% Ti, <=5% Si, <=5% Ni, <=3% Cr and the balance Zn is used. In this way, matrix metal is not brought into reaction with fiber during compositing and interface bonding strength is raised.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は無機質繊維で強化する繊維強化金属複合材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fiber-reinforced metal composite material reinforced with inorganic fibers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、繊維強化金属複合材料(以下これをFRIJとも
云う。)の研究が多方面で実施をれている。このFRM
におけるマトリックス金属にはA/金合金最も多く用い
られ、一部にはur金合金Cu合金、Ti合金などが用
いられている。
In recent years, research on fiber reinforced metal composite materials (hereinafter also referred to as FRIJ) has been carried out in many fields. This FRM
A/gold alloy is most commonly used as the matrix metal, and ur-gold alloy, Cu alloy, Ti alloy, etc. are also used in some cases.

また、強化用繊維としては炭素、炭化けい素、アルミナ
などの無機質繊維が多く用いられている。
Furthermore, inorganic fibers such as carbon, silicon carbide, and alumina are often used as reinforcing fibers.

ところで、このFRuの製造に関して問題となるのはそ
の複合化時において繊維の強度劣化を生じさせないこと
、マトリックス金属と繊維とのぬれ性が良好であること
などが挙げられる。
By the way, problems with the production of this FRu include ensuring that the strength of the fibers does not deteriorate during compositing and that the wettability between the matrix metal and the fibers is good.

A/金合金マトリックス金属とし、炭素繊維や炭化けい
素繊維を強化線維とした場合、その複合化時に強化用繊
維とマトリックス金属が界面反応を起して炭化物を形成
し、FRIJの強度を低下きせることが報告されている
(たとえば特開昭56−16636号公報、特開昭57
−164946号公報)。一方、このような欠点がなく
強化用繊維とマトリックス金属との界面結合強度が高い
マトリックス金属としてZnとAI!’!たけZnとV
lを主成分とする合金が知られている(特開昭57−1
64’146号公報参照)。そして、この合金はA2合
金やMf合金より軽齢化するという面では不利になるも
のの、FR)Jの強度が大幅に向上する。
A/If the gold alloy matrix metal is used and carbon fiber or silicon carbide fiber is used as the reinforcing fiber, the reinforcing fiber and the matrix metal will cause an interfacial reaction when composited, forming carbide, which will reduce the strength of FRIJ. It has been reported (for example, JP-A-56-16636, JP-A-57
-164946). On the other hand, Zn and AI are matrix metals that do not have such drawbacks and have a high interfacial bonding strength between the reinforcing fibers and the matrix metal! '! Take Zn and V
An alloy containing l as a main component is known (Japanese Unexamined Patent Publication No. 57-1
(See Publication No. 64'146). Although this alloy is disadvantageous in that it is lighter in age than the A2 alloy or the Mf alloy, the strength of FR)J is significantly improved.

〔発明の目的〕[Purpose of the invention]

本発明は上記同様にFRM製造における複合化時におい
て繊維との反応がなく、界面結合強度の高い、新たなマ
トリックス金属を見出し、これによる繊維強化金属複合
材料を提供するものである。
Similarly to the above, the present invention is to discover a new matrix metal that does not react with fibers during compositing in FRM production and has high interfacial bonding strength, and to provide a fiber-reinforced metal composite material using this matrix metal.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は炭素繊維、炭化けい素繊維、アルミ
ナ繊維もしくは金属の酸化物、炭化物、窒化物々どの無
機質繊維を強化用繊維とし、20チ以下のCu、30%
以下のMn、30%以下のSb、10%以下のA1.5
係以下のLi、5チ以下のTi、5%以下のSi、5%
以下のN1.3%以下のcrO群より選ばれた1種以上
の金属と残部がZnとよりなるZn基合金をマトリック
ス金属とする繊維強化金属複合材料である。
That is, the present invention uses inorganic fibers such as carbon fibers, silicon carbide fibers, alumina fibers, or metal oxides, carbides, and nitrides as reinforcing fibers, and contains Cu of 20 or less and 30%.
Mn below, 30% Sb below, A1.5 below 10%
Li below 5%, Ti below 5%, Si below 5%, 5%
This is a fiber-reinforced metal composite material whose matrix metal is a Zn-based alloy consisting of one or more metals selected from the following N1.3% or less crO group and the balance being Zn.

これらのマ) IJックス合金FRVの強度は、合金の
組成により若干の差はあるが、特開昭57−16494
6号に示された、Zn−Al又はZn−V?合金のFR
I〆と同等の強度を示す。
The strength of these MA) IJx alloys FRV varies slightly depending on the composition of the alloy, but
Zn-Al or Zn-V shown in No. 6? Alloy FR
Shows strength equivalent to I〆.

そして、これらの合金はいずれも、炭素繊維、炭化けい
素繊維、アルミナ繊維等と、複合化時の界面反応が少な
く、〜゛曳維陵時間マ) IJノックス属溶湯中に浸せ
きしていても、強度劣化が少ないため、溶湯中で連続的
に大きな断面のプリフォームを製造することができる。
All of these alloys have little interfacial reaction with carbon fibers, silicon carbide fibers, alumina fibers, etc. when composited, and even when immersed in IJ Knox molten metal. Since there is little strength deterioration, preforms with large cross sections can be manufactured continuously in the molten metal.

このプリフォームを、半溶融鍛造、ポットプレス、HI
P等で成形加工する際も低圧で成形でき、低コストのF
、R1,(製造が可能となる。
This preform is processed by semi-melting forging, pot press, HI
When molding with P etc., it can be molded at low pressure and is low cost.
, R1, (manufacture is possible.

(1)強化繊維とl〜では、炭素繊維(比重約1.8)
、炭化けい素繊維(比重約2.5)、アルミナ繊維(比
重約32)が現在製侍されている一般的なものであり、
このいずれでも適用できる。その他金属の酸化物、炭化
物、窒化物等の無機質繊維で、鉄系金属より軽量で強度
の高いものであれば良い。ステンレス等金属像維は@険
化効果が期待できないため、本発明より除外する。
(1) Carbon fiber (specific gravity approximately 1.8) in reinforcing fiber and l~
, silicon carbide fiber (specific gravity of about 2.5), and alumina fiber (specific gravity of about 32) are the common ones currently manufactured.
Either of these can be applied. Other inorganic fibers such as metal oxides, carbides, and nitrides may be used as long as they are lighter and stronger than iron-based metals. Metallic fibers such as stainless steel are excluded from the present invention because they cannot be expected to have a sharpening effect.

(2)マトリックス金属としては、Zn−Al、ZD−
M?合金とこれに5係以下のBa、 Bi、Snを含有
した合金を除いたZn基合金とする。その具体的なもの
として、前述の合金成分を示した。
(2) Matrix metals include Zn-Al, ZD-
M? This is a Zn-based alloy excluding alloys and alloys containing Ba, Bi, and Sn of coefficient 5 or less. The above-mentioned alloy components are shown as specific examples.

その根拠を以下に述べる。The basis for this is explained below.

(1) Cuは、マトリックスの強度、耐クリープ性、
耐摩耗性等の向上に有効であるが、20%を超えると、
靭性が無くなII)、FR1i4の引張強さも90 K
g/mm以下となる。
(1) Cu improves matrix strength, creep resistance,
It is effective in improving wear resistance, etc., but if it exceeds 20%,
II) has no toughness, and the tensile strength of FR1i4 is also 90K.
g/mm or less.

(11)山は、高強度で耐摩耗性の優れる合金として2
5 % Mn合金が知られており、この合金マトリック
スのFRMは高い強度を示す。
(11) Yama is an alloy with high strength and excellent wear resistance.
A 5% Mn alloy is known, and FRMs of this alloy matrix exhibit high strength.

しかし、Mnが30チを超えるとFRl、(の強度が低
下する。
However, when Mn exceeds 30, the strength of FRl, ( decreases.

(ill)Sb、 Af、 Li、Tt、 s]+Ni
+Crは全てFRMの引張強さが90 Kg/ynx2
以上を示す限界を上限とした。F’RIi(の引張強度
90 Ky/mm”は、特開昭57−164946号で
示されている曲げ強度120 Kq/my”の基準とほ
ぼ同じ強度と考えられる。
(ill)Sb, Af, Li, Tt, s]+Ni
+Cr has a tensile strength of FRM of 90 Kg/ynx2
The limit showing the above was set as the upper limit. The tensile strength of F'RIi (90 Ky/mm") is considered to be almost the same as the standard of bending strength of 120 Kq/my" shown in JP-A-57-164946.

〔実施例1〕 直径13μm1フィラメント本数500本、引張強さ2
60 KtJrnm2の炭化けい素繊維と表1に示すマ
トリックス金属を図1に示す複合化法で、繊維体積率(
Vf )が50チであるφ6.0羽の丸棒FRMi製作
した。この丸棒の繊維方向引張強さ、ならびに密度を表
2に示す。なお、マ) IJックス合金溶湯の温度は、
液相線プラス30℃で行なった。
[Example 1] Diameter 13 μm 1 filament number 500, tensile strength 2
By the composite method shown in Figure 1, silicon carbide fibers of 60 KtJrnm2 and matrix metals shown in Table 1 were combined to obtain fiber volume fraction (
A round bar FRMi with a diameter of 6.0 mm and a Vf ) of 50 inches was manufactured. Table 2 shows the fiber direction tensile strength and density of this round bar. Furthermore, the temperature of the molten IJx alloy is
The test was carried out at 30°C above the liquidus line.

光 1 表2 以上の様に合金No 1〜3共に、鉄系金属より軽量で
、100 KgAvt2 以上の引張強さを示した。
Light 1 Table 2 As shown above, Alloys Nos. 1 to 3 were lighter than iron-based metals and exhibited a tensile strength of 100 KgAvt2 or more.

〔実施例2〕 直径7μm1フィラメント本数3000本、引張強さ2
50 Kg//mrn’のPAN系高弾性炭素繊維と表
3に示すマ) IJソックス属で〔実施例1〕と同様の
FRIJを製作した。このF’RMの引張強さと密度を
表4に示す。
[Example 2] Diameter 7 μm 1 filament number 3000, tensile strength 2
FRIJ similar to [Example 1] was manufactured using 50 Kg//mrn' of PAN-based high modulus carbon fiber and IJ socks shown in Table 3. Table 4 shows the tensile strength and density of this F'RM.

表3 表4 〔実施例1〕と同様、合金NO1〜3共に、鉄系金属よ
り軽量で、100 Kq/m−以上の強度を示した。
Table 3 Table 4 Similar to [Example 1], Alloys Nos. 1 to 3 were lighter than iron-based metals and exhibited a strength of 100 Kq/m- or more.

第1図および第2図はFRlv[を製造する場合の前段
工程を行なう装置の例である。図中1は真空容器であり
、この真空容器lの内部にはマトリックス金属用の溶解
炉2が設置されている。
FIGS. 1 and 2 are examples of an apparatus that performs the first step in producing FRlv[. In the figure, 1 is a vacuum container, and a melting furnace 2 for matrix metal is installed inside this vacuum container 1.

また、真空容器1および溶解炉2の一端にはダイス3が
設けられている。また、真空容器1内には溶解炉2の後
側に位置して繊維供給用のロー24,5が配設されてい
る。なお、6は真空容器1内に連通ずる真空ポンプであ
る。
Furthermore, a die 3 is provided at one end of the vacuum container 1 and the melting furnace 2 . Further, within the vacuum container 1, rows 24 and 5 for supplying fibers are arranged at the rear side of the melting furnace 2. Note that 6 is a vacuum pump that communicates with the inside of the vacuum container 1.

この装置によりFRMを製造する場合について説明する
と、まず、ローラ4,5において平均70μm以下の薄
いシート状に開繊した強化用繊維7を溶解炉2内に案内
し、その溶解炉z内において溶融したマトリックス金属
8に浸漬させる。そして、繊維7とマトリックス金属8
を複合化した後、ダイス3に通して連続的に引き抜くの
である。これにより直径0.40〜0.55mtnのワ
イヤ状の複合材9が得られる。また、このとき上記真空
容器I内は10〜10Torrの真空雰囲気下にある。
To explain the case of manufacturing FRM using this device, first, the reinforcing fibers 7, which are opened into a thin sheet shape with an average size of 70 μm or less by rollers 4 and 5, are guided into the melting furnace 2, and then melted in the melting furnace z. immersed in the matrix metal 8. And fiber 7 and matrix metal 8
After compounding, it is passed through a die 3 and continuously drawn out. As a result, a wire-shaped composite material 9 having a diameter of 0.40 to 0.55 mtn is obtained. Further, at this time, the inside of the vacuum container I is under a vacuum atmosphere of 10 to 10 Torr.

したがって、化学的、物理的な悪影響を他力防上できる
Therefore, it is possible to protect against chemical and physical adverse effects.

第3図および第4図は上記ワイヤ状の複合材9からさら
に特定形状の複合材10を製造する後段工程の装置であ
る。
FIG. 3 and FIG. 4 show an apparatus for a later step of manufacturing a composite material 10 of a specific shape from the wire-shaped composite material 9 described above.

すなわち、この装置は大気中に設置してなるマトリック
ス金属用の溶解炉11であり、この側壁部にはダイスI
2が設けられている。
That is, this device is a melting furnace 11 for matrix metal installed in the atmosphere, and a die I is installed on the side wall of the furnace 11.
2 is provided.

しかして、上記ワイヤ状の複合材9を再度上記溶解炉1
1中の溶融したマトリックス金属12中に浸漬したのち
、これをダイス13を通して丸、角あるいは特定形状の
大きな断面の複合材IOとするものである。
The wire-shaped composite material 9 is then transferred to the melting furnace 1 again.
After being immersed in the molten matrix metal 12 in 1, it is passed through a die 13 to form a composite material IO having a large cross section of round, square or specific shape.

マ) IJソックス属溶湯と複合化時に長時間接触して
いても、繊維の強度劣化が少々いため、溶湯中で連続的
に大きな断面のプリフォームを製造することができる。
M) Even if the fibers are in contact with the IJ socks molten metal for a long time during compositing, there is little deterioration in the strength of the fibers, so it is possible to continuously manufacture preforms with large cross sections in the molten metal.

このプリフォームを使用して、成形加工するに際しても
低温、低圧で良く、コスト低減が可能となる。
Using this preform, molding can be performed at low temperatures and pressures, making it possible to reduce costs.

なお、このFRIJはF’RPよりも耐熱性がよく、ま
た、鉄系金属より軽量で強度が高いため、たとえばエン
ジン部品のコネクティングロッドやピストンピンに好適
する。
Note that this FRIJ has better heat resistance than F'RP, and is also lighter and stronger than iron-based metals, so it is suitable for, for example, connecting rods and piston pins of engine parts.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも知れるように本発明によれば、FR1
vf製造における複合化時に繊維との反応がなく界面結
合強度を高めることができ、また、特定形状の大きな断
面のものも容易かつ安価に製造可能である。ざらに、鉄
系金属のものよりも軽量で強度の高いものが得られる。
As can be seen from the above description, according to the present invention, FR1
There is no reaction with fibers during compositing in VF production, and the interfacial bonding strength can be increased, and products with a large cross section of a specific shape can be manufactured easily and at low cost. In general, it can be made lighter and stronger than iron-based metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFRM製造の前段装置の平面図、第2図は同じ
くその側面図、第3図は同じくそのFRu製造の後段装
置の平面図、第4図は同じくその側面図である。 7・・・繊維、8・・マトリックス金@、9・・・複合
相、10・・・腹合祠、12・・・マトリックス金属。 出願人代理人  弁理士 鈴 江 武 彦@     
    区 P−(’J 味         派 Cつ 区        区 cf′>              寸派     
   味
FIG. 1 is a plan view of a front-stage device for producing FRM, FIG. 2 is a side view thereof, FIG. 3 is a plan view of a second-stage device for producing FRu, and FIG. 4 is a side view thereof. 7...Fiber, 8...Matrix gold@, 9...Composite phase, 10...Hariagoji, 12...Matrix metal. Applicant's agent Patent attorney Takehiko Suzue @
Ward P-('J taste group C ward ward cf'> Dimension group
taste

Claims (1)

【特許請求の範囲】[Claims] 無機質繊維を強化用繊維とし、20%以下のCu、30
%以下のMn、30%以下のSb、10%以下のAg、
5%以下のLi、5%以下のTi、5%以下のSi、5
%以下のNi、3%以下のCrの群より選ばれた1種以
上の金属と残部がZnとよりなるZn基合金をマトリッ
クス金属とすることを特徴とする繊維強化金属複合材料
Inorganic fiber is used as reinforcing fiber, Cu of 20% or less, 30%
% or less Mn, 30% or less Sb, 10% or less Ag,
5% or less Li, 5% or less Ti, 5% or less Si, 5
A fiber-reinforced metal composite material characterized in that the matrix metal is a Zn-based alloy consisting of one or more metals selected from the group of % or less Ni, 3% or less Cr, and the balance Zn.
JP9824885A 1985-05-09 1985-05-09 Metallic composite material reinforced with fiber Pending JPS61257441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9824885A JPS61257441A (en) 1985-05-09 1985-05-09 Metallic composite material reinforced with fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9824885A JPS61257441A (en) 1985-05-09 1985-05-09 Metallic composite material reinforced with fiber

Publications (1)

Publication Number Publication Date
JPS61257441A true JPS61257441A (en) 1986-11-14

Family

ID=14214652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9824885A Pending JPS61257441A (en) 1985-05-09 1985-05-09 Metallic composite material reinforced with fiber

Country Status (1)

Country Link
JP (1) JPS61257441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051540A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Wear resistant zinc alloy material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051540A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Wear resistant zinc alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0074067B1 (en) Method for the preparation of fiber-reinforced metal composite material
US3871834A (en) Carbon-fiber-reinforced aluminum composite material
JPS5950149A (en) Fiber-reinforced metallic composite material
US4514470A (en) Diffusion bonding between titanium base alloys and steels
US5337803A (en) Method of centrifugally casting reinforced composite articles
US5077138A (en) Fiber reinforced magnesium alloy
US5006289A (en) Method for producing an elongated sintered article
EP0449813A1 (en) Complex ceramic whisker formation in metal-ceramic composites
FI60190C (en) PLATINUM RODIUM LEGERING SAERSKILT FOER TILLVERKNING AV DRAGHYLSOR FOER FRAMSTAELLNING AV GLASFIBRER
US5252288A (en) Method for producing an elongated sintered article
JPS61257441A (en) Metallic composite material reinforced with fiber
US5295528A (en) Centrifugal casting of reinforced articles
US7727344B2 (en) Copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
US5114641A (en) Method for producing an elongated sintered article
JPH0672029B2 (en) Fiber reinforced metal
CN108425035A (en) PDC drill bit Maceration alloy and preparation method thereof
JPS5919982B2 (en) Silicon carbide fiber-reinforced molybdenum-based composite material and method for producing the same
AU696386B2 (en) Method of manufacturing high temperature resistant shaped parts
US5480601A (en) Method for producing an elongated sintered article
JP2007516356A5 (en)
JPH01205041A (en) Fiber reinforced aluminum alloy composite material
CN109023158B (en) Copper-based amorphous alloy, preparation method thereof and mobile phone
JP2551446B2 (en) Composite wire of inorganic fiber and metal and method for producing the same
JPS5952643A (en) Composite material