JPS61256940A - Production of pyroxene crystallized glass - Google Patents

Production of pyroxene crystallized glass

Info

Publication number
JPS61256940A
JPS61256940A JP9554385A JP9554385A JPS61256940A JP S61256940 A JPS61256940 A JP S61256940A JP 9554385 A JP9554385 A JP 9554385A JP 9554385 A JP9554385 A JP 9554385A JP S61256940 A JPS61256940 A JP S61256940A
Authority
JP
Japan
Prior art keywords
glass
cao
pyroxene
crystals
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9554385A
Other languages
Japanese (ja)
Other versions
JPH0360784B2 (en
Inventor
Shigemi Yamaguchi
山口 繁実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9554385A priority Critical patent/JPS61256940A/en
Publication of JPS61256940A publication Critical patent/JPS61256940A/en
Publication of JPH0360784B2 publication Critical patent/JPH0360784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Abstract

PURPOSE:To produce pyroxene crystallized glass with a simple stage by molding the glass having the specific compsn. consisting essentially of SiO2 and Al2O3 to a prescribed shape and heating and cooling the same. CONSTITUTION:The glass which consists, by wt%, of 50-70% SiO2, 2-7% Al2O3 (60-80% SiO2+Al2O3), 0-10% CaO, 6-15% MgO (10-20% CaO+MgO), 4-15% Na2O, 0-3% Li2O, 0-5% K2O (0-15% Na2O+Li2O+K2O), 0.2-5% TiO2 0-10% ZnO, 0-5% B2O3 and 0-5% P2O5 and having the compsn. consisting of MgO/CaO>2/3 is fused and cleaned up in a melting furnace. Such glass is molded to the prescribed shape at about 1,300 deg.C and the molding is heated to 950-1,050 deg.C. The molding is held at said temp. for 120-240min and is slowly cooled, by which the molding is crystallized and the pyroxene crystallized glass is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は輝石系結晶化ガラスの製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing pyroxene-based crystallized glass.

〔従来の技術〕[Conventional technology]

壁材等の建材として、大理石模様のあるウオラストナイ
ト系結晶化ガラス、フォルステライト系結晶化ガラスが
提案されている。ウオラストナイト系結晶化ガラスは、
熔融したガラスを板状に形成し又は、所定の型に流し込
み、これを結晶化させると、ウオラストナイト結晶がガ
ラスの表面に垂直に発達し、かつその形状が針状である
ので、表面を研磨しても大理石模様が生じ難い。
Wollastonite-based crystallized glass and forsterite-based crystallized glass with marble patterns have been proposed as building materials such as wall materials. Wollastonite crystallized glass is
When molten glass is formed into a plate shape or poured into a predetermined mold and crystallized, wollastonite crystals grow perpendicularly to the surface of the glass, and since the shape is needle-like, the surface is Marble pattern does not easily occur even when polished.

それ故、かかる結晶化ガラスは、熔融したガラスを水冷
等の手段により粉砕し、ガラス粒とし、これを所定の型
に入れ結晶化処理を行ない、次いで研磨して模様を形成
する、いわゆる集積法により製造されている。しかしな
がら、集積法はガラス粒の製造工程が必要であり、工程
が複雑になる難点がある。
Therefore, such crystallized glass is produced using the so-called integrated method, in which molten glass is crushed by means such as water cooling to obtain glass particles, which are placed in a predetermined mold and subjected to crystallization treatment, and then polished to form a pattern. Manufactured by. However, the accumulation method requires a glass grain manufacturing process, which has the disadvantage of complicating the process.

一方、後者のフォルステライト系結晶化ガラスは、失透
温度が1350℃以上と高いため、溶融ガラスより所定
形状の成形体を製造する際の作業が難しいという難点が
ある。
On the other hand, the latter forsterite-based crystallized glass has a high devitrification temperature of 1,350° C. or higher, and therefore has the disadvantage that it is more difficult to manufacture a molded body of a predetermined shape than molten glass.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明は、ガラスの粉砕工程が不要で、失透温度が13
00℃以下である天然石模様のある輝石系結晶化ガラス
の製造法の提供を目的とする。
The present invention does not require a glass pulverization process and has a devitrification temperature of 13
The purpose of the present invention is to provide a method for producing pyroxene-based crystallized glass having a natural stone pattern at temperatures below 00°C.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、重量一表示で実質的に5iO250〜To、
Alz○s 2〜17 、5iOz+A/120g 6
0〜80. Ca00〜10 、 Mg06〜15 、
 C!ao+Mg○10〜20 、 NazO4〜15
 、 Li2O0〜3 、 K2OQ 〜5 、 Na
2O+Li2O+に204〜15. Ti0z O,2
〜5. ZnO0〜10 、 BzOs 0〜5、P2
O50〜5からなり、かつ重量比MgO/ OaOが輪
より大きい組成のガラスを所定形状に成形し、該成形体
を加熱し輝石系結晶を生成させる結晶化ガラスの製造法
を提供する。
The present invention provides substantially 5iO250 to To by weight,
Alz○s 2-17, 5iOz+A/120g 6
0-80. Ca00~10, Mg06~15,
C! ao+Mg○10~20, NazO4~15
, Li2O0~3, K2OQ~5, Na
204 to 15 to 2O+Li2O+. Ti0z O,2
~5. ZnO0~10, BzOs 0~5, P2
Provided is a method for producing crystallized glass, in which a glass having a composition of O50-5 and a weight ratio of MgO/OaO larger than a ring is formed into a predetermined shape, and the formed body is heated to generate pyroxene crystals.

本発明において製造される結晶化ガラスは、主な結晶と
して、ディオプサイド(CaMg5120g )。
The crystallized glass produced in the present invention contains diopside (5120 g of CaMg) as the main crystal.

ディオプサイドのMgSiの一部をA1で置換したアル
ミ含有ディオプサイド及びエンスタタイト(Mg 5i
ns )を生成したものである。かかる結晶は重量で2
0〜50%程度含有する。
Aluminum-containing diopside and enstatite (Mg 5i
ns) was generated. Such a crystal weighs 2
Contains about 0 to 50%.

本発明において使用する成形体のガラス組成の限定理由
は下記の通りである。
The reasons for limiting the glass composition of the molded body used in the present invention are as follows.

SiO2は輝石類結晶の成分及びガラス相の成分となる
。5iOz<50チSiO2> 70%では当該績゛晶
化ガラスの製品が得られ難く、また、粘性の点でロール
アウト法等による板の成形が難かしくなり、いずれも好
ましくない。SiO2は上記範囲中55〜68%が特に
望ましい。
SiO2 becomes a component of pyroxene crystals and a component of the glass phase. If 5iOz<50chiSiO2> is 70%, it is difficult to obtain a crystallized glass product, and the viscosity makes it difficult to form a plate by a roll-out method or the like, so both are unfavorable. It is particularly desirable that SiO2 be within the above range of 55 to 68%.

A1z○3は、耐候性の向上の作用、結晶核発生を助長
する作用、及び輝石類結晶構成成分の1つである。Al
2O5< 2%ではこれらの作用が不充分である。Al
2O3> 17%では他の結晶、フォルステライト、コ
ーディエライトが生成し、かつ熔融性が悪くなり好まし
くない。A、1203は上記範囲中3〜15%が特に好
ましい。
A1z○3 has the effect of improving weather resistance, the effect of promoting the generation of crystal nuclei, and is one of the constituent components of pyroxene crystals. Al
When 2O5<2%, these effects are insufficient. Al
If 2O3>17%, other crystals such as forsterite and cordierite are formed, and the meltability deteriorates, which is not preferable. A, 1203 is particularly preferably 3 to 15% within the above range.

5iOz+A1zOa > 80%では、ガラスの溶融
性が悪(なり、5iOz+AlzO< 60%では、ガ
ラス(7)耐候性が低下し、いずれも好ましくない。5
iOz+Al2O3は上記範囲中62〜78の範囲が特
に好ましい。
When 5iOz+AlzOa > 80%, the meltability of the glass becomes poor (5iOz+AlzO< 60%), the weather resistance of the glass (7) decreases, and both are unfavorable.5
Among the above ranges, iOz+Al2O3 is particularly preferably in the range of 62 to 78.

CaOは輝石類結晶の成分である。CaOく10%では
結晶核の発生が抑制され、内部からの結晶成長が成され
ないため好ましくない。OaOは上記範囲中3〜8チが
特に好ましい。
CaO is a component of pyroxene crystals. A CaO content of 10% is not preferable because the generation of crystal nuclei is suppressed and crystal growth from inside is not achieved. OaO is particularly preferably 3 to 8 in the above range.

MgOは輝石類結晶の成分である。MgO<6%では、
当該結晶が生成し難(、当該結晶以外の結晶(ウオラス
トナイト、アノーサイト)が生成し、結晶核の発生が抑
制され、内部からの結晶成長が成されないため強度が低
下する。MgO〉15チでは、溶融ガラスを板状に成形
する際にエンスタタイトが生成し易く、当該成形が難し
い。MgOは上記範囲中8〜13が特に好ましい。
MgO is a component of pyroxene crystals. For MgO<6%,
The crystal is difficult to form (and crystals other than the crystal (wollastonite, anorthite) are formed, the generation of crystal nuclei is suppressed, and crystal growth from the inside is not achieved, resulting in a decrease in strength.MgO>15 In H, enstatite is likely to be generated when molten glass is molded into a plate shape, making the molding difficult.Among the above ranges, MgO is particularly preferably 8 to 13.

CaO+MgO> 20 %では、ウオラストナイト結
晶が生成しクラックが入り易(、他方、CaO+MgO
< 10%では、生成結晶の量が少なく強度が低いので
いずれも好ましくない。Ca O+MgOは上記範囲中
11〜19の範囲がより好ましい。
When CaO+MgO>20%, wollastonite crystals are formed and cracks are likely to occur (on the other hand, when CaO+MgO
If it is less than 10%, the amount of crystals produced is small and the strength is low, which is not preferable. Among the above ranges, CaO+MgO is more preferably in the range of 11 to 19.

NazOは原料の熔解性及び板状への成形性を向上し、
結晶成長を早める。NazO<’4%では熔解性が悪く
、粘性が高く当該成形性が低下する。
NazO improves the solubility and formability of raw materials into plate shapes,
Accelerates crystal growth. When NazO<'4%, the meltability is poor, the viscosity is high, and the moldability is reduced.

NazO> 15%以上では粘性が低(過ぎ、当該成形
性が逆に低下すると共に耐候性が低下する。
If NazO>15% or more, the viscosity is too low, and the moldability and weather resistance deteriorate.

NazOは上記範囲中6〜12%が特に好ましい。NazO is particularly preferably 6 to 12% within the above range.

KzOはNazOと同様、熔解性及び板状への成形性を
向上し、複合アルカリ効果(NazO十に20)により
耐候性を向上する。K2O>5%は成形時の結晶発生及
び価格が高〜・ため好ましくない。
Like NazO, KzO improves meltability and formability into a plate shape, and improves weather resistance due to the complex alkali effect (NazO has a 20% strength). K2O>5% is undesirable because crystal formation occurs during molding and the price is high.

K2Oは上記範囲中0〜3%が特に好ましい。K2O is particularly preferably 0 to 3% within the above range.

L120はNazOと同様、熔融性及び板状への成形性
を向上し、複合アルカリ効果(NazO+LizO)に
より耐候性を向上する。LizO>3%は価格が高いた
め好ましくない。LizOは上記範囲中0〜2%が特に
好ましい。
Like NazO, L120 improves meltability and formability into a plate shape, and improves weather resistance due to the composite alkali effect (NazO+LizO). LizO>3% is not preferable because it is expensive. LizO is particularly preferably 0 to 2% within the above range.

加えてNazO+Kz○+Li2Oは4〜15%がよく
、さらに6〜12チが特に好ましい。
In addition, NazO+Kz○+Li2O is preferably 4 to 15%, and particularly preferably 6 to 12%.

TlO2は結晶核形成剤であり、ガラス内部より結晶を
発生させるため、当該結晶化ガラスの強度が向上する。
TlO2 is a crystal nucleating agent and generates crystals from inside the glass, thereby improving the strength of the crystallized glass.

さらにこの成分は、天然石模様としての外観に優れた大
きさに結晶を成長させる作用をする。Ti0z<0.2
%では、かかる効果がほとんど得られず、TiO2>5
%では結晶が灰紫色に着色するため好ましくない。Tl
O2は上記範囲中0.2〜3%が特に好ましい。
Furthermore, this component acts to grow crystals to a size that provides an excellent appearance as a natural stone pattern. Ti0z<0.2
%, such an effect is hardly obtained, and when TiO2>5
% is not preferable because the crystals are colored grayish-purple. Tl
O2 is particularly preferably 0.2 to 3% within the above range.

ZnOは耐薬品性を向上し、当該結晶化ガラスの強度を
向上させる。ZnO>10%は熔融性が悪(なるため、
さらに他の結晶(亜鉛スピネル)が生成し暗青色に着色
するため好ましくない。
ZnO improves chemical resistance and improves the strength of the crystallized glass. ZnO > 10% has poor meltability (because
Furthermore, other crystals (zinc spinel) are formed and colored dark blue, which is not preferable.

ZnOは上記範囲中0〜8チが特に好ましい。ZnO is particularly preferably 0 to 8 in the above range.

B2O3は熔解性を促進し、粘度を低下させる。B2O3 promotes solubility and reduces viscosity.

B2O3>5%ではガラスの分相が生じやすく、成形後
のセラミング処理時間を遅らせるため好ましくない。B
2O3は上記範囲中0〜3チが特に好ましい。
If B2O3>5%, phase separation of the glass tends to occur, which is undesirable because it delays the ceramicing treatment time after molding. B
2O3 is particularly preferably 0 to 3% within the above range.

P2O5は熔解性を促進し、結晶核形成を促進する。P
2O5〉5%は、逆に結晶の成長が遅くなり、成形後の
セラミング処理時間を遅らせるため好ましくない。P2
O5は上記範囲中0〜3が特に好ましい。また、MgO
/ Oa○の重量比が2/3より小さいとウオラストナ
イト結晶が生成しクラックが入り易(なるので好ましく
ない。
P2O5 promotes solubility and promotes crystal nucleation. P
2O5>5% is not preferable because, on the contrary, crystal growth slows down and the time required for the ceraming treatment after molding is delayed. P2
O5 is particularly preferably 0 to 3 within the above range. Also, MgO
If the weight ratio of /Oa○ is less than 2/3, wollastonite crystals are formed and cracks are likely to occur, which is not preferable.

本発明においては、以上の成分の総量が96チ以上にす
るのが好ましく、残部4チ未満についてはMnO3(4
0,FezO3,Nip、 Ss等の着色剤を添加し、
好みの色調にすることができる。
In the present invention, it is preferable that the total amount of the above components is 96 or more, and the remaining less than 4 is MnO3 (4
Add colorants such as 0, FezO3, Nip, Ss, etc.
You can change the color to your liking.

かかる組成のガラスの成形体を製造するに当っては、目
標組成となるように各原料を調合し゛Cバッチを調整し
、溶融炉にて1400〜1500℃に加熱して熔融し清
澄する。次いで熔融ガラスを]300°C程度に冷却し
所定形状に成形する。板ガラスを成形する場合、特に限
定されるものではないが、ロールアウト法により連続的
に所定厚味のリボンを成形し、次いでこれを徐冷し所定
の大きさに切断する方法が生産性の面から望ましい。
In manufacturing a glass molded body having such a composition, each raw material is prepared to have a target composition, a batch C is prepared, and the mixture is heated in a melting furnace to 1400 to 1500°C to melt and clarify. Next, the molten glass is cooled to about 300°C and formed into a predetermined shape. When forming plate glass, there are no particular limitations, but in terms of productivity, it is best to continuously form a ribbon of a predetermined thickness using a roll-out method, then slowly cool it and cut it into a predetermined size. desirable.

かかる成形体に結晶を生成するには次のような熱処理を
採用するのが望ましい。
In order to generate crystals in such a molded body, it is desirable to employ the following heat treatment.

成形体が破損しない程度の速度で結晶の成長する温度ま
で昇温し、通常の雰囲で3〜5時間保持する。これによ
りガラス中に主結晶としてディオプサイド、アルミ含有
ディオプサイド。
The temperature is raised to a temperature at which crystals grow at a rate that does not damage the molded body, and the temperature is maintained in a normal atmosphere for 3 to 5 hours. This results in diopside and aluminum-containing diopside as the main crystals in the glass.

エンスタタイトが生成する。結晶の成長する温度は95
0〜1050℃である。昇温工程中650〜780℃で
120〜240分間保持し、又は当該温度域の昇温速度
を下げると微細な結晶を生成することができる。微細な
結晶を生成するにはガラス原料に少量の炭素を添加して
熔融し、この熔融ガラスを成形した成形体を結晶化処理
しても達成される。かかる方法によって生成する結晶の
大きさはo、 i〜4m+程度であり、また、最終的に
生成する結晶の量は30〜40重量%である。
Produced by enstatite. The temperature at which crystals grow is 95
The temperature is 0 to 1050°C. Fine crystals can be generated by holding the temperature at 650 to 780° C. for 120 to 240 minutes during the heating step, or by lowering the heating rate in the temperature range. The generation of fine crystals can also be achieved by adding a small amount of carbon to a glass raw material and melting it, and then crystallizing a molded body made from this molten glass. The size of the crystals produced by this method is about o, i to 4m+, and the amount of crystals finally produced is 30 to 40% by weight.

〔実施例〕〔Example〕

常法に従い表1の目標組成(重量チ)になる様に、Si
O2源とし珪砂、AlzOs源としアルミナ粉、OaO
源とし石灰石、MgO源とし水酸化マグネシウム、Na
2O源としソーダ灰、K2O源とし炭酸カリ、LixO
源とし炭酸リチウム、TlO2源とし二酸化チタン粉、
ZnO源とし亜鉛華、B2O3源とし硼砂、P2O3源
としリン酸カルシウム、を使用し、更に清澄剤とし芒硝
及びカーボンを使用し目的とするガラス組成に従ってバ
ッチを調合した。このバッチ5 Kqを白金坩堝に入れ
1450℃5時間で熔融し、板状にプレス成形し冷却し
た。成形された板ガラスを、アルミナ粉を散布した耐火
物で作られた基台に載置し、熱処理炉に入れ、50℃/
もで昇温し1000°C4時間の結晶化処理を行なった
According to the usual method, Si was
Silica sand as O2 source, alumina powder as AlzOs source, OaO
Limestone as a source, magnesium hydroxide as an MgO source, Na
Soda ash as a 2O source, potassium carbonate as a K2O source, LixO
Lithium carbonate as a source, titanium dioxide powder as a TlO2 source,
A batch was prepared according to the desired glass composition by using zinc white as a ZnO source, borax as a B2O3 source, calcium phosphate as a P2O3 source, and further using Glauber's salt and carbon as a fining agent. This Batch 5 Kq was placed in a platinum crucible and melted at 1450°C for 5 hours, press-molded into a plate shape and cooled. The formed plate glass is placed on a base made of refractory material sprinkled with alumina powder, placed in a heat treatment furnace, and heated at 50℃/
The temperature was raised at 1000° C. for 4 hours to perform crystallization treatment.

次いで、この板ガラス表面を珪砂にて粗層し、アルミナ
微粉で光沢を出した。これらのガラスについて測定した
失透温度、曲げ強度及び結晶型を同表に併記した。表中
の結晶型Aはディプサイト、Bはアルミ含有ディプサイ
ト、Cはエンスタタイトをそれぞれ示す。同表より明ら
かなように本発明において使用するガラスの失透温度は
1300℃以下と低いため、ガラスの成形体が容易であ
る。また、かかるガラスの成形体を結晶化したものにつ
いて表面を観察したが、クラックの発生は全ったくなか
った。また、そのガラスは天然石模様が見られ、壁材と
して充分使用できるものであった。
Next, the surface of this plate glass was coated with a rough layer of silica sand and made glossy with fine alumina powder. The devitrification temperature, bending strength, and crystal type measured for these glasses are also listed in the same table. Crystal type A in the table represents dipsite, B represents aluminum-containing dipsite, and C represents enstatite. As is clear from the same table, since the devitrification temperature of the glass used in the present invention is as low as 1300° C. or less, it is easy to mold the glass. Furthermore, when the surface of a crystallized glass molded article was observed, no cracks were observed at all. In addition, the glass had a natural stone pattern and could be used as wall material.

〔発明の効果〕〔Effect of the invention〕

本発明による結晶化ガラスは、ガラス表面とは関係なく
、種々の方向に結晶が発達するのでロールアウト法等に
より熔融ガラスを板状に形成し、結晶化させそのまま研
磨することにより製造できる。このため、ガラスを粒化
し、型に入れる工程が簡略化される。
The crystallized glass according to the present invention can be manufactured by forming molten glass into a plate shape by a roll-out method or the like, crystallizing it, and polishing it as it is, since crystals grow in various directions regardless of the glass surface. This simplifies the process of granulating the glass and putting it into a mold.

更に失透温度が1250℃程度と低いため、通常のロー
ルアウト法により成形できるため、製造条件の制約が少
ない。
Furthermore, since the devitrification temperature is as low as about 1250° C., it can be molded by a normal roll-out method, so there are fewer restrictions on manufacturing conditions.

加えて結晶化処理も1000℃以下の950℃〜100
0″Cで可能なため、基台等の材質も価格の安いものを
使用できる利点もある。
In addition, the crystallization treatment is also carried out at temperatures below 1000°C, from 950°C to 100°C.
Since it can be done at 0''C, there is an advantage that inexpensive materials such as the base can be used.

Claims (2)

【特許請求の範囲】[Claims] (1)重量一表示で実質的にSiO_250〜70、A
l_2O_32〜17、S1O_2+Al2O_360
〜80、CaO0〜10、MgO6〜15、CaO+M
gO10〜20、Na_2O4〜15、Li_2O0〜
3、K_2O0〜5、Na_2O+Li_2O+K_2
O4〜15、TiO_20.2〜5、ZnO0〜10、
B_2O_30〜5、P_2O_50〜5からなり、か
つ重量比MgO/CaOが2/3より大きい組成のガラ
スを所定形状に成形し、該成形体を加熱し輝石系結晶を
生成させる結晶化ガラスの製造法。
(1) Substantially SiO_250~70,A in one weight display
l_2O_32~17, S1O_2+Al2O_360
~80, CaO0~10, MgO6~15, CaO+M
gO10~20, Na_2O4~15, Li_2O0~
3, K_2O0~5, Na_2O+Li_2O+K_2
O4~15, TiO_20.2~5, ZnO0~10,
A method for producing crystallized glass in which a glass consisting of B_2O_30-5 and P_2O_50-5 and having a weight ratio of MgO/CaO of more than 2/3 is formed into a predetermined shape, and the formed body is heated to generate pyroxene crystals. .
(2)前記ガラスは重量%表示で実質的にSiO_25
5〜68、Al_2O_33〜15、SiO_2+Al
_2O_362〜78、CaO_3〜8、MgO8〜1
3、CaO+MgO11〜19、Na_2O6〜12、
Na2O+Li_2O+K_2O6〜12、T1O_2
0.2〜3、ZnO0〜8からなる特許請求の範囲第1
項記載の結晶化ガラスの製造法。
(2) The glass is substantially SiO_25 in weight%
5-68, Al_2O_33-15, SiO_2+Al
_2O_362-78, CaO_3-8, MgO8-1
3, CaO + MgO11-19, Na_2O6-12,
Na2O+Li_2O+K_2O6~12, T1O_2
Claim 1 consisting of ZnO 0.2-3 and ZnO 0-8
2. Method for producing crystallized glass as described in Section 1.
JP9554385A 1985-05-07 1985-05-07 Production of pyroxene crystallized glass Granted JPS61256940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9554385A JPS61256940A (en) 1985-05-07 1985-05-07 Production of pyroxene crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9554385A JPS61256940A (en) 1985-05-07 1985-05-07 Production of pyroxene crystallized glass

Publications (2)

Publication Number Publication Date
JPS61256940A true JPS61256940A (en) 1986-11-14
JPH0360784B2 JPH0360784B2 (en) 1991-09-17

Family

ID=14140477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9554385A Granted JPS61256940A (en) 1985-05-07 1985-05-07 Production of pyroxene crystallized glass

Country Status (1)

Country Link
JP (1) JPS61256940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739202A (en) * 2013-12-17 2014-04-23 朱晓明 Microcrystalline glass and production method thereof
US9174867B2 (en) 2010-10-27 2015-11-03 Asahi Glass Company, Limited Glass plate and process for its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517014A (en) * 1974-07-08 1976-01-21 Hiroshima Garasu Kogyo Kk TENNENDAIRISEKINIRUIJISHITA KETSUSHOKAGARASU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517014A (en) * 1974-07-08 1976-01-21 Hiroshima Garasu Kogyo Kk TENNENDAIRISEKINIRUIJISHITA KETSUSHOKAGARASU

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174867B2 (en) 2010-10-27 2015-11-03 Asahi Glass Company, Limited Glass plate and process for its production
JP5880439B2 (en) * 2010-10-27 2016-03-09 旭硝子株式会社 Glass plate and method for producing the same
CN103739202A (en) * 2013-12-17 2014-04-23 朱晓明 Microcrystalline glass and production method thereof

Also Published As

Publication number Publication date
JPH0360784B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
JP2628006B2 (en) Glass ceramic, method for producing the same, and method for changing the color thereof
JPS63162545A (en) Translucent crystalline glass
JPH08198639A (en) Colored glass ceramic and its preparation
JPH02293345A (en) Transparent nonexpandable crystallized glass
CN111592224A (en) Magnesium aluminum silicate nanocrystalline transparent ceramic, preparation method and product thereof
JPS6049145B2 (en) Method for manufacturing crystallized glass
CA2148662C (en) Glass-ceramics and color package
JPH08253346A (en) Opaque glass ceramic with ivory color and method for controlling its color
JPS61197444A (en) Production of tempered glass
JP2510139B2 (en) Method for producing patterned crystallized glass
US3720526A (en) Glass-ceramic body
KR100385371B1 (en) Crystallized glass for building material having natural marbly pattern and manufacturing method thereof
WO2006135049A1 (en) Natural marble like crystallized glass and process for production thereof
JPH03199136A (en) Production of pyroxene-line crystallized glass
JP3269416B2 (en) Crystallized glass and method for producing the same
JP5041324B2 (en) Natural marble-like crystallized glass and method for producing the same
JPS61256940A (en) Production of pyroxene crystallized glass
JPS62108742A (en) Preparation of augite series crystallized glass
JPH0449498B2 (en)
JPH069245A (en) Crystallized glass article and its production
JP3014139B2 (en) Crystallized glass
JPH04338131A (en) Crystallized glass
JPS6331423B2 (en)
JPH09263424A (en) Crystallized glass and its production
JPH0624768A (en) Natural marble-like crystallized glass article and its production