JPS61256835A - Distribution line carring equipment - Google Patents
Distribution line carring equipmentInfo
- Publication number
- JPS61256835A JPS61256835A JP9676685A JP9676685A JPS61256835A JP S61256835 A JPS61256835 A JP S61256835A JP 9676685 A JP9676685 A JP 9676685A JP 9676685 A JP9676685 A JP 9676685A JP S61256835 A JPS61256835 A JP S61256835A
- Authority
- JP
- Japan
- Prior art keywords
- distribution line
- impedance
- signal
- ground
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は配電系統に接続された電気機器の運用、例え
ば系統及び負荷機器の監視、制御、自動検針、あるいは
諸管理情報収集用等に適用される配電線搬送装置に関す
る。[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to the operation of electrical equipment connected to a power distribution system, such as monitoring and controlling the system and load equipment, automatic meter reading, or collecting various management information. The present invention relates to a distribution line conveying device.
最近の配電系統の発達は電力がエネルギーとしてもまた
、情報網としても極めて有用な媒体である事から益々そ
の利用度が高まって来ている。With the recent development of power distribution systems, the use of electric power has been increasing because electric power is an extremely useful medium both as energy and as an information network.
すなわち、配電系統はその構成が一大規模でありかつそ
の負荷に種々の電気機器が接続されているのが特徴で蔦
る。In other words, the power distribution system is characterized by its large-scale configuration and the fact that various electrical devices are connected to its loads.
このような大規模複雑な系統の運用を自動化するために
、いわゆる、配電自動化装置が実用化されつつある。中
でも、配電線に高周波の電流または電圧を重畳する配電
線搬送装置が次第に注目を浴びつつある。In order to automate the operation of such large-scale and complex power systems, so-called power distribution automation devices are being put into practical use. Among these, power distribution line conveying devices that superimpose high-frequency current or voltage on power distribution lines are gradually attracting attention.
第3図は従来の2線対地帰路配電線搬送方式の構成図を
示すもので、図において1は柱上変圧器、2は単相3線
配電線、3は端末局に設けられた送信装置で、夫々の送
信器31.32は送信側結合装置30b、30cを介し
てす、n、cからなる単相3線配電線2忙接続されてい
る。4は中継局の受信装置で、受信器結合装置40−1
40−2を介して夫々の受信器41.42に接続されて
いる。Figure 3 shows a configuration diagram of a conventional 2-wire ground-to-ground return distribution line carrier system. In the figure, 1 is a pole transformer, 2 is a single-phase 3-wire distribution line, and 3 is a transmitter installed at a terminal station. Each of the transmitters 31 and 32 is connected to a single-phase three-wire distribution line 2 consisting of A, N, and C via transmitting side coupling devices 30b and 30c. 4 is a receiving device of a relay station, and a receiver coupling device 40-1
40-2 to respective receivers 41.42.
次に動作について説明する。まず、信号の送信方法とし
ては端末局である送信装置3のいずれかより単相3線配
電線2の2相に対し送信側結合装置30b又は30cを
介して大地との間に同極性の信号電圧を印加する。この
操作によって信号電圧は2線を通り受信端に向って並行
忙伝播し対応する2線の受信側結合装置40−1.40
−2のいずれかを介して受信器41または42にキャッ
チされる。例えば、この場合の適用周波数は系統周波数
より充分高い周波数で別途準備された発振回路から出力
される。モしてV結線の単相3線式配置!線2の場合の
様にb−n相、c −n相に夫々単独の負荷が存在する
系統では信号対雑音比(S/N )を向上させるために
2種の送信器31.32を配設し受信側忙も2種の受信
器41.42を配して、いずれか良好な対での受信をす
る方法がとられている。Next, the operation will be explained. First, as a signal transmission method, a signal of the same polarity is sent from one of the transmitting devices 3, which is a terminal station, to the ground via the transmitting side coupling device 30b or 30c to the two phases of the single-phase three-wire distribution line 2. Apply voltage. By this operation, the signal voltage propagates in parallel toward the receiving end through the two wires, and the corresponding two-wire receiving side coupling device 40-1.40
-2 to the receiver 41 or 42. For example, the applicable frequency in this case is sufficiently higher than the system frequency and is output from a separately prepared oscillation circuit. Single-phase 3-wire arrangement with V-connection! In a system where there is a separate load on the b-n phase and the c-n phase, as in the case of line 2, two types of transmitters 31 and 32 are installed to improve the signal-to-noise ratio (S/N). A method is adopted in which two types of receivers 41 and 42 are arranged and reception is performed by whichever pair is better.
従来の配電線搬送装置は以上のように構成されているの
で配電線の商用周波電圧とは異る充分高い周波数を別途
準備した発振回路から単相3線配電線の2線に印加して
信号波として伝播させ受信側で検出する搬送方式であっ
たため信号電力の印加検出装置によっては信号の伝送比
が向上しないまま機器が大型、高価となる。Conventional power distribution line carrier devices are configured as described above, and a signal is applied to two wires of a single-phase three-wire power distribution line from a separately prepared oscillation circuit at a sufficiently high frequency different from the commercial frequency voltage of the power line. Since the carrier method was to propagate the signal as a wave and detect it on the receiving side, depending on the signal power application/detection device, the signal transmission ratio could not be improved and the equipment would become large and expensive.
また、中性点nは通常受信装置の近傍で接地される場合
が多く、送信端は1点より信号電力を注入していても受
信装置ではS、、S、及びn点の3点に接地点が存在し
、送信した信号電流が3点に分流して信号伝送率が低下
する上、柱上変圧器のインピーダンスによっても影響を
受ける等の問題点があった。In addition, the neutral point n is usually grounded near the receiving device, and even if the transmitting end injects signal power from one point, the receiving device connects it to three points, S, S, and n. There are problems in that the transmitted signal current is divided into three points, reducing the signal transmission rate, and is also affected by the impedance of the pole transformer.
この発明は上記のような問題点を解消するためになされ
たもので、端末局である送信装置と、中継局である受信
装置との間に接地帰路を設は対地間に信号電力を注入し
て高効率の信号送受信が行えるようにした配電線搬送方
式を提供することを目的とする。This invention was made in order to solve the above-mentioned problems, and involves establishing a ground return path between a transmitting device, which is a terminal station, and a receiving device, which is a relay station, and injecting signal power between them. The purpose of the present invention is to provide a distribution line transportation system that enables highly efficient signal transmission and reception.
この発明に係る配電線搬送装置は低圧配電系統へき電す
る柱上変圧器側にインピーダンスΦネットワークと送信
装置を設けた中継局と、負荷需要家の端末局に送信装置
を設け、前記両局忙接地帰路を設けて端末局側の送、信
装置より対地間に信号電力を注入し中継局のインピーダ
ンス・ネットワークで直列共振を生じさせ受信装置によ
って該送信電流を検出するようkしたものである。The distribution line transport device according to the present invention includes a relay station provided with an impedance Φ network and a transmitting device on the side of a pole transformer that feeds power to a low-voltage distribution system, and a transmitting device provided in a terminal station of a load customer, so that both stations are busy. A ground return path is provided, and signal power is injected from the terminal station's transmitting device to the ground, causing series resonance in the impedance network of the relay station, and the transmitting current is detected by the receiving device.
この発明における配電線を使用した搬送装置は交信時に
高周波インピーダンスを引下げ8/N比の改善を図るた
めに中継局側の配電線と大地間に複数のフィルタからな
るインピーダンス働ネットワークを設け、交信時に直列
共振を再現するようにし、その際に配電線に流れる高8
/N比の信号電流を検出する。In order to lower the high frequency impedance during communication and improve the 8/N ratio, the carrier device using the power distribution line in this invention has an impedance network consisting of a plurality of filters between the power distribution line on the relay station side and the ground, and The series resonance is reproduced, and at that time, the high 8
/N ratio signal current is detected.
以下、この発明の一実施例を図について説明する。図中
、第3図と同一の部分は同一の符号をもって図示した第
1図において、5は単相3線配電線のす、n、c相の通
過電流を検出するためのCT(変流器)、6は接地用の
インピーダンス・ネットワークで後述の基本波阻止、信
号周波数通過の周波数特性を有している。又必要忙応じ
接地回路を開閉する接点Pを有している。An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 3 are designated by the same reference numerals. In FIG. ), 6 is an impedance network for grounding, which has frequency characteristics of blocking fundamental waves and passing signal frequencies, which will be described later. It also has a contact P that opens and closes the grounding circuit as necessary.
次に本発明の動作を以下に説明する、
まず、中継局側からのデータ送信要求に基き端末局の送
信装置31又は32より高周波の送信信号が大地に対し
て印加されるとインピーダンスの低い柱上変圧器側の方
向、すなわち、点線又は実線の矢印で示す方向に信号電
流が流入する。この流入電流は第1図のようにb −n
−c相を図中左向きに流れるが接地用のインピーダン
ス・ネットワークZN6が存在しない場合には、柱上変
圧器1及び接地点(中性点)Onのインピーダンスに左
右されることになる。Next, the operation of the present invention will be explained below. First, when a high frequency transmission signal is applied to the ground from the transmitting device 31 or 32 of the terminal station based on a data transmission request from the relay station side, a low impedance column A signal current flows in the direction toward the upper transformer, that is, in the direction indicated by the dotted or solid arrow. This inflow current is b - n as shown in Figure 1.
-C phase flows leftward in the figure, but if there is no grounding impedance network ZN6, it will depend on the impedance of the pole transformer 1 and the ground point (neutral point) On.
一般に変圧器には漏洩リアクタンスが存在するので、前
記流入電流はその漏洩リアクタンスに制限され、信号周
波数が高い程減衰の影響は大ぎい。Generally, a transformer has leakage reactance, so the inflow current is limited by the leakage reactance, and the higher the signal frequency, the greater the effect of attenuation.
ここで、zNで示したインピーダンスφネットワーク6
を挿入すると該zNは前述のように信号周波数に対し共
振を生じ低いインピーダンスを呈するので流入電流はイ
ンピーダンス・ネットワーク6を経由して大地へ流れる
。Here, the impedance φ network 6 denoted by zN
When zN is inserted, as described above, zN resonates with the signal frequency and exhibits a low impedance, so that the inflow current flows to the ground via the impedance network 6.
この送信電流をす、n、c相に配した3ケのCT5によ
って検出すれば送信電流はインピーダンス−ネットワー
ク6ZNが挿入されない場合忙比して極めて大となる事
は明らかである。従って、受信装置4に流入する送信電
流は太き(なり信号対雑音比が向上する。If this transmission current is detected by the three CT5s arranged in the A, N, and C phases, it is clear that the transmission current will be extremely large compared to the case where the impedance network 6ZN is not inserted. Therefore, the transmission current flowing into the receiving device 4 becomes thicker (the signal-to-noise ratio improves).
この場合CT50周波数特性が問題となるが通常、鉄心
を有する柱上変圧器1の周波数特性は注意深く設計、製
作すればloKHz以上の帯域幅に亘って平担であり、
剪配信号周波として使われる帯域に於ても検出感度を低
下させる要因とはならない。In this case, the CT50 frequency characteristics are a problem, but normally, if carefully designed and manufactured, the frequency characteristics of the pole transformer 1 with an iron core are flat over a bandwidth of loKHz or higher.
Even in the band used as the pruning signal frequency, it does not cause a decrease in detection sensitivity.
このようにインピーダンスφネットワーク6ZNを挿入
し搬送波を送信することにより受信電流の感度を向上さ
せる事が出来る。By inserting the impedance φ network 6ZN and transmitting the carrier wave in this way, the sensitivity of the received current can be improved.
また、第2図は本発明におけるインピーダンス・ネット
ワーク6ZNの詳細図で、図に於て61b 61cは
夫々b、c相と大地の間に挿入さnた基本周波阻止、高
周波通過のフィルター、62b、62cは前記フィルタ
61b 、61cと直列に大地間に挿入され信号周波数
に直列共振をするF波器である。前記4組の戸波器を交
点63に於て残留接続し、接点64を介して大地6Eに
接地する。FIG. 2 is a detailed diagram of the impedance network 6ZN according to the present invention. In the figure, 61b and 61c are fundamental frequency blocking and high frequency passing filters inserted between the b and c phases and the ground, respectively; Reference numeral 62c denotes an F-wave device which is inserted between the ground in series with the filters 61b and 61c and resonates in series with the signal frequency. The four sets of door transducers are residually connected at the intersection 63 and grounded to the ground 6E via the contact 64.
次に、信号受信時には受信装置4Rにからの指令により
接点64を閉じ前記の信号周波数に対して直列共振回路
を形成する。従って信号電流は前記インピーダンス・ネ
ットワーク6を通して流れ柱上変圧器1の接地点Nを通
して大地へ流れる漏洩を流と併せてCT5により検出さ
れる。Next, when receiving a signal, the contact 64 is closed in response to a command from the receiving device 4R to form a series resonant circuit for the signal frequency. Therefore, the signal current flows through the impedance network 6 and is detected by the CT 5 together with the leakage current flowing through the ground point N of the pole transformer 1 to earth.
重連のようにCT5により図の左側をみた高周波インピ
ーダンスはインピーダンスΦネットワーク6ZNがない
場合に比して極めて小さくなるのでCT5の電流はより
犬となり受信時の8/N比は大幅に向上する。また、接
地点Nから連系線9を引出し連接接地する場合にも前記
の効果は減殺される事はない。また、インピーダンス・
ネットワーク602組のろ波器は負荷状態によって任意
に選択することができる。The high frequency impedance seen on the left side of the diagram due to the CT5 as in the case of multiplexing is extremely small compared to the case without the impedance Φ network 6ZN, so the current of the CT5 becomes more uniform and the 8/N ratio during reception is greatly improved. Further, even when the interconnection line 9 is drawn out from the grounding point N and connected to ground, the above-mentioned effect is not diminished. Also, impedance
The filters in the network 602 can be arbitrarily selected depending on the load condition.
以上のように、この発明によれば搬送波信号電流の交信
時に中継局側の大地に対する高周波インピーダンスを低
下させるため、中継局側の配’fJLHと大地間にイン
ピーダンス・ネットワークを設け、交信時に直列共振状
態を生じさせ信号電流を大幅に向上させるようにしたの
で高周波の信号電流を中継局側の受信端において高8/
N比で検出でき、高品質の交信が出来る効果がある。As described above, according to the present invention, in order to reduce the high-frequency impedance of the relay station side to the ground during communication of carrier signal current, an impedance network is provided between the wiring fJLH on the relay station side and the ground, and series resonance occurs during communication. Since the high-frequency signal current is generated at the receiving end of the relay station and the signal current is significantly improved, the high-frequency signal current is
It can be detected by the N ratio and has the effect of enabling high quality communication.
第1図はこの発明の一実施例を示す2a!対地帰路式の
配電線搬送装置の構成図、第2図は第1図に示した中継
局側のインピーダンス・ネットワークの詳細図、第3図
は従来の配電線搬送装置の構成図である。
図において、1は柱・上置圧器、2は単相3線配電線、
3は送信装置、4は受信装置、5はCT。
6はインピーダンス・ネットワーク、61b。
61cはフィルタ、62b、62cはF波器、64は接
点、6Eは大地である。FIG. 1 shows an embodiment of the invention 2a! FIG. 2 is a detailed diagram of the impedance network on the relay station side shown in FIG. 1, and FIG. 3 is a configuration diagram of a conventional distribution line transportation device. In the figure, 1 is a pole/overhead pressure vessel, 2 is a single-phase 3-wire distribution line,
3 is a transmitting device, 4 is a receiving device, and 5 is a CT. 6 is an impedance network, 61b. 61c is a filter, 62b and 62c are F-wave devices, 64 is a contact, and 6E is a ground.
Claims (3)
変圧器にCTを介して接続された中継局側の受信装置と
、配電線を介して前記柱上変圧器に接続された端末局側
の送信装置と、前記中継局側の配電線及び大地間に接続
され交信時の信号電流に対して共振を生じ高周波インピ
ーダンスを引下げるインピーダンス・ネットワークとを
備えた配電線搬送装置。(1) A pole transformer that feeds power to the low-voltage distribution system, a receiving device on the relay station side connected to the pole transformer via a CT, and a receiver connected to the pole transformer via a distribution line. A power distribution line carrier device comprising a transmitting device on a terminal station side, and an impedance network connected between a power distribution line on the relay station side and the ground to generate resonance with a signal current during communication and lower high frequency impedance.
単相3線配電線の中性点と直接々地し、他の2線はろ波
器を介して夫々接地し、負荷系統の状態に応じて選択で
きるようにしたことを特徴とする特許請求の範囲第1項
記載の配電線搬送装置。(2) The configuration of the impedance network is that it is connected directly to the neutral point of the single-phase three-wire distribution line, and the other two wires are grounded through filters, so that selection can be made depending on the state of the load system. A power distribution line conveying device according to claim 1, characterized in that:
接点を設け、必要に応じて前記受信装置からの指令によ
り制御できるようにしたことを特徴とする特許請求の範
囲第1項記載の配電線搬送装置。(3) The distribution line conveying device according to claim 1, characterized in that a contact point is provided between the impedance network and the ground, so that it can be controlled by commands from the receiving device as necessary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9676685A JPS61256835A (en) | 1985-05-09 | 1985-05-09 | Distribution line carring equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9676685A JPS61256835A (en) | 1985-05-09 | 1985-05-09 | Distribution line carring equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61256835A true JPS61256835A (en) | 1986-11-14 |
Family
ID=14173755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9676685A Pending JPS61256835A (en) | 1985-05-09 | 1985-05-09 | Distribution line carring equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61256835A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4851519A (en) * | 1971-10-27 | 1973-07-19 | ||
JPS4949365A (en) * | 1972-05-31 | 1974-05-13 | ||
JPS6260857A (en) * | 1985-09-11 | 1987-03-17 | Nippon Telegr & Teleph Corp <Ntt> | Formation of boride film of high-melting point, high-boiling point and high-hardness substance |
-
1985
- 1985-05-09 JP JP9676685A patent/JPS61256835A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4851519A (en) * | 1971-10-27 | 1973-07-19 | ||
JPS4949365A (en) * | 1972-05-31 | 1974-05-13 | ||
JPS6260857A (en) * | 1985-09-11 | 1987-03-17 | Nippon Telegr & Teleph Corp <Ntt> | Formation of boride film of high-melting point, high-boiling point and high-hardness substance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4199122B2 (en) | Analog regenerative transponder including regenerative transponder system | |
US4475209A (en) | Regenerator for an intrabundle power-line communication system | |
US4300126A (en) | Method and apparatus, for power line communications using zero crossing load interruption | |
US5406249A (en) | Method and structure for coupling power-line carrier current signals using common-mode coupling | |
ES8705173A1 (en) | Receiver apparatus for three-phase power line carrier communications | |
US10056943B2 (en) | System for transmitting and receiving a power line communication signal over the power bus of a power electronic converter | |
JPS59165537A (en) | Light star repeater | |
US11689346B2 (en) | Switched amplifier for data transmission | |
US4384356A (en) | Wide band modem for high speed data transmission | |
CN104779975A (en) | A differential coupling communication device of high speed power line carrier system | |
US20070030561A1 (en) | Relay amplifier | |
JPS61256835A (en) | Distribution line carring equipment | |
CN114584161A (en) | Terminal antenna monitoring device is divided to 5G room | |
JPH01221028A (en) | Power line carrier system transmission system | |
CN205195703U (en) | Power line carrier and wireless double -channel communication device | |
US4620187A (en) | Transformer coupled, solid state communications line switch | |
KR20150102080A (en) | Signalling system | |
US7061872B2 (en) | Managed HDSL repeater | |
Martin | The bicoaxial leaky line and its applications to underground radio communication | |
CN205070995U (en) | Power line carrier communication relay | |
JPH0539041A (en) | Non-insulated track circuit device for voltage transmission/reception system | |
JPS61264927A (en) | Carrier equipment through low voltage distribution line | |
JPS6213135A (en) | Power line carrier communication system | |
JPS6215936A (en) | Method for detecting disconnection of on-road communication equipment | |
JPS62296629A (en) | Distribution line carrier answerback system |