JPS61256575A - Manufacture of silicon semiconductor electrode coated with thin film - Google Patents

Manufacture of silicon semiconductor electrode coated with thin film

Info

Publication number
JPS61256575A
JPS61256575A JP60098265A JP9826585A JPS61256575A JP S61256575 A JPS61256575 A JP S61256575A JP 60098265 A JP60098265 A JP 60098265A JP 9826585 A JP9826585 A JP 9826585A JP S61256575 A JPS61256575 A JP S61256575A
Authority
JP
Japan
Prior art keywords
silicon semiconductor
electrode
onto
thin film
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60098265A
Other languages
Japanese (ja)
Other versions
JPH0523025B2 (en
Inventor
Hiromi Yamakita
山北 尋巳
Kiyoshi Hayakawa
浄 早川
Masato Tazawa
真人 田澤
Hiroshi Taoda
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60098265A priority Critical patent/JPS61256575A/en
Priority to US06/838,822 priority patent/US4647348A/en
Publication of JPS61256575A publication Critical patent/JPS61256575A/en
Publication of JPH0523025B2 publication Critical patent/JPH0523025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

PURPOSE:To ensure stable performance even for long term usage by coating thin film of noble metal onto the surface of silicon semiconductor then electrolytically polymerizing thiophene compound onto the surface simultaneously with irradiation of light thus forming a film. CONSTITUTION:In order to coat thin film noble metal such as platinum, gold, etc. onto the surface of silicon semiconductor, metal is heated under vacuum to be deposited onto the surface of silicon semiconductor. Then thiophene compound is dissolved into solvent of refined acetonitrile while trifluoro-methane sulfonate tetra-buthyl ammonium is added to condition the solution. Then a silicon semiconductor electrode coated with noble metal and a platimum electrode are immersed to irradiate the light from a light source such as halogen lamp onto the surface of semiconductor electrode while simultaneously positive voltage is applied onto the semiconductor electrode to polymerize electrolytically.

Description

【発明の詳細な説明】 (a)  技術分野の説明 大発明は、エネルギー利用技術に関するものであシ、詳
しく言えば、光エネルギーを電気エネルギーなどに変換
する湿式光電池に用いられる被覆シリコン半導体電極の
製造方法に関するものである。
Detailed Description of the Invention (a) Description of the Technical Field The great invention relates to energy utilization technology, and more specifically, the invention relates to a coated silicon semiconductor electrode used in a wet photovoltaic cell that converts light energy into electrical energy, etc. This relates to a manufacturing method.

(′b)従来技術の説明 半導体電極を用いた湿式光電池は、光エネルギーを電気
エネルギーに変換するだめのものとして、また、水の光
分解による水素の製造など、すなわち化学エネルギーへ
の変換のだめのものとして注目されている。しかし、半
導体電極を電解質溶液に浸漬するために、半導体が電解
質溶液に溶解したり、酸化されたシして、電極の寿命の
短縮や性能の急速な低下を招く場合が多いという欠点を
もっている。特に、シリコン半導体を動作電極として、
光照射して電気エネルギーへの変換を行った場合には、
数秒間で電極表面に5i02の膜が生成し、急激な性能
の劣化が起こる。これらの問題点を解決するため、従来
から半導体電極表面を金などの貴金属の薄膜で被覆する
方法(例えば、Y。
('b) Description of the Prior Art Wet photovoltaic cells using semiconductor electrodes are used to convert light energy into electrical energy, and also to produce hydrogen by photolysis of water, that is, to convert chemical energy into chemical energy. It is attracting attention as a thing. However, since the semiconductor electrode is immersed in the electrolyte solution, the semiconductor often dissolves in the electrolyte solution or becomes oxidized, resulting in shortened electrode life and rapid deterioration of performance. In particular, using a silicon semiconductor as a working electrode,
When irradiated with light and converted into electrical energy,
A film of 5i02 is formed on the electrode surface within a few seconds, resulting in rapid performance deterioration. In order to solve these problems, a conventional method has been to coat the surface of a semiconductor electrode with a thin film of a noble metal such as gold (for example, Y.

Nakato、 K、Abe、  H+Tsubomu
ra、  Ber。
Nakato, K, Abe, H+Tsubomu
Ra, Ber.

Bunsenges、  Phys、 Ohem、 8
0.1002 (1976))や、ポリピロールなどの
導電性高分子の薄膜で被覆する方法(例えば、R,No
ufi、 D、 Tench。
Bunsenges, Phys, Ohem, 8
0.1002 (1976)) or coating with a thin film of conductive polymer such as polypyrrole (for example, R, No.
ufi, D., Tench.

L、 F、 Warren、  J、 Electro
chem、 Soc、 128゜2596 (1981
) )  が試みられているが均一な厚さの膜を生成す
ることが困難であったり、また被覆電極を長時間使用し
た場合には、被覆の剥離などが起こり、十分に解決を見
るには至っていないのが現状である。
L, F. Warren, J. Electro
chem, Soc, 128°2596 (1981
) ) have been attempted, but it is difficult to produce a film with a uniform thickness, and if a coated electrode is used for a long time, the coating may peel off, so it is difficult to see a satisfactory solution. The current situation is that this has not been achieved.

(C)  発明の目的 本発明は上記の点に鑑み、長時間の使用においても安定
な性能をもった被覆シリコン半導体電極を製造すること
を目的とする。
(C) Object of the Invention In view of the above points, the object of the present invention is to manufacture a coated silicon semiconductor electrode that has stable performance even during long-term use.

(d)発明の構成 この目的は本発明によれば、シリコン半導体の表面に貴
金属の薄膜を被覆したのち、その表面において、チオフ
ェン化合物を光照射と同時に電解重合して、その重合体
の膜を生成することによって達成される。
(d) Structure of the Invention According to the present invention, the object is to coat the surface of a silicon semiconductor with a thin film of a noble metal, and then electrolytically polymerize a thiophene compound on the surface simultaneously with light irradiation to form a film of the polymer. This is achieved by generating.

まず、シリコン半導体としては、単結晶または多結晶ま
たは無定形のシリコンにリン、アンチモンなどをドープ
して半導性をもたせたものが用いられる。
First, as a silicon semiconductor, single crystal, polycrystal, or amorphous silicon is doped with phosphorus, antimony, or the like to impart semiconductivity.

シリコン半導体の表面に薄膜として被覆する貴金属とし
ては、白金、金、銀などが用いられる。
Platinum, gold, silver, or the like is used as the noble metal to coat the surface of the silicon semiconductor as a thin film.

また被覆する方法としては、真空中で金属を加熱して、
シリコン半導体表面に蒸着する方法や、その金属を含む
塩の水溶液中にシリコン半導体と対極を入れ、電気化学
的にシリコン半導体表面に金属の薄膜を被覆する方法が
ある。
Another method of coating is to heat the metal in a vacuum.
There is a method of vapor deposition on the surface of a silicon semiconductor, and a method of placing a silicon semiconductor and a counter electrode in an aqueous solution of a salt containing the metal, and electrochemically coating the surface of the silicon semiconductor with a thin metal film.

チオフェン化合物としては、チオフェン、3−メチルチ
オフェン、3−エチルチオフェン、3゜4−ジメチルチ
オフェン、3.4−ジエチルチオフェン外トのほか3−
フェニルチオフェン、2゜2′−ビチオフエン、2.2
’−ジチェニルエチレンなどを用いることができる。
Examples of thiophene compounds include thiophene, 3-methylthiophene, 3-ethylthiophene, 3゜4-dimethylthiophene, 3,4-diethylthiophene, and 3-
Phenylthiophene, 2゜2'-bithiophene, 2.2
'-dithenylethylene and the like can be used.

次に、シリコン半導体の表面において、チオフェン化合
物を電解重合して、その重合体の膜を生成させるには、
まず精製したアセトニトリルなどの溶媒にチオフェン化
合物を溶解し、さらに支持電解質として、トリフルオロ
メタンスルホン酸テトラブチμアンモニウムなどを添加
した溶液を調製する。これに上記の貴金属を被覆したシ
リコン半導体電極と白金々どの対極を入れ、ハロゲンラ
ンプなどの光源からの光を半導体電極表面に照射すると
同時に、半導体電極に正の電圧を加えて、その表面にお
いて電解重合させるのであ石。
Next, to electrolytically polymerize a thiophene compound on the surface of a silicon semiconductor to generate a film of the polymer,
First, a solution is prepared by dissolving a thiophene compound in a solvent such as purified acetonitrile, and further adding tetrabutymu ammonium trifluoromethanesulfonate as a supporting electrolyte. A silicon semiconductor electrode coated with the above-mentioned noble metal and a counter electrode such as platinum are placed in this, and the surface of the semiconductor electrode is irradiated with light from a light source such as a halogen lamp. At the same time, a positive voltage is applied to the semiconductor electrode to cause electrolysis to occur on the surface. Stone because it polymerizes.

ここで用いる光源としては、ハロゲンランプ、タングス
テンフンデ、キセノンラング、水銀灯すどのほか、太陽
光でもよい。
The light source used here may be a halogen lamp, a tungsten lamp, a xenon lamp, a mercury lamp, or sunlight.

また、支持電解質としては、上記トリプルオロメタンス
ルホン酸テトラブチルアンモニウムのほかテトラフルオ
ロホウ酸テトラブチルアンモニウム、ヘキサフルオロリ
ン酸テトラブチルアンモニウムなどが用いられる。
Further, as the supporting electrolyte, in addition to the above-mentioned tetrabutylammonium triple olomethane sulfonate, tetrafluoroborate tetrabutylammonium, hexafluorophosphate tetrabutylammonium, etc. are used.

溶媒としては、アセトニトリルのほか、ニトロベンゼン
、ニトロメタンなどでもよい。
In addition to acetonitrile, nitrobenzene, nitromethane, etc. may be used as the solvent.

このように光照射を伴う電解重合によυ貴金属被覆シリ
コン半導体の表面に生成したチオフェン化合物ポリマー
の膜は支持電解質として用いた化合物の成分イオン(例
えばトリフルオロメタンスルホン酸イオン)を含むため
、高度の導電性を有する。また、本発明の方法によれば
、容易に均一な薄膜が得られる。一般にシリコン半導体
はきわめて酸化されやすく、湿式光電池の動作電極とし
て電解質中で用い、光照射した場合には数秒間以内に光
電流が゛極度に減衰することが知られているが、本発明
の方法によシリコン半導体表面に形成された膜は、長時
間にわたって保護効果を示し、電極の性能は安定であっ
た。またその安定性は、単にシリコン表面に金属を被覆
したもの、または、チオフェン化合物の重合体だけを被
覆したものよシ大であった。(参考側参照) (e)  発明の実施例 以下、本発明の代表的な実施例を示す。
The thiophene compound polymer film formed on the surface of the noble metal-coated silicon semiconductor through electrolytic polymerization accompanied by light irradiation contains component ions of the compound used as the supporting electrolyte (e.g. trifluoromethanesulfonate ion), so it has a high degree of Has electrical conductivity. Further, according to the method of the present invention, a uniform thin film can be easily obtained. In general, silicon semiconductors are extremely susceptible to oxidation, and it is known that when used in an electrolyte as the working electrode of a wet photovoltaic cell and irradiated with light, the photocurrent is extremely attenuated within a few seconds. However, the method of the present invention The film formed on the silicon semiconductor surface showed a protective effect over a long period of time, and the electrode performance was stable. Moreover, its stability was greater than that of simply coating the silicon surface with a metal or coating only a polymer of a thiophene compound. (See reference side) (e) Examples of the invention Below, typical examples of the invention will be shown.

実施例1 フッ化水素酸であらかじめエツチングしたn型単結晶シ
リコン半導体(リンでドープ)を真空蒸着装置の中に入
れ、10−4〜IQ−6mHf程度の真空下、4.8 
cmの距離で金を赤熱してシリコン半導体表面に22秒
間蒸着した。
Example 1 An n-type single-crystal silicon semiconductor (doped with phosphorus) that had been etched in advance with hydrofluoric acid was placed in a vacuum evaporator and heated under a vacuum of about 10-4 to IQ-6 mHf at 4.8 mHf.
Gold was red-hot and deposited on the silicon semiconductor surface for 22 seconds at a distance of cm.

別に精製した8−メチルチオフェン2.fM、!:)リ
フルオロメタンスμホン酸テトラブチルアンモニウム0
.5Pを精製したアセトニトリル29−に溶解し、パイ
レックス・ガラス製容器に入れ、これに白金電極と上記
の金を蒸着したn型単結晶シリコン半導体電極を浸漬し
、7μゴンガスを6分間吹込んだ。このガラス製容器の
外部から半導体電極の表面にハロゲンランプの光t 8
 B、 2 mW/cdの強度で照射すると同時に、3
.2ポ/V 、1−の電圧を金蒸着したシリコン半導体
電極に印加して、70秒間電解重合したところ、表面に
トリフルオロメタンスルホン酸イオンを含んだ3−メチ
ルチオフェン・ポリマーの薄い膜が生成した。なお、電
解重合の際の電流はシリコン半導体表面1cIA当シ1
8.1〜2.85 mAであった。
Separately purified 8-methylthiophene2. fM,! :) Tetrabutylammonium fluoromethane μphonate 0
.. 5P was dissolved in purified acetonitrile 29- and placed in a Pyrex glass container, into which the platinum electrode and the gold-deposited n-type single crystal silicon semiconductor electrode were immersed, and 7 μg gas was blown into the container for 6 minutes. Light from a halogen lamp t8 is applied to the surface of the semiconductor electrode from the outside of this glass container.
B, simultaneously irradiating with an intensity of 2 mW/cd and 3
.. When a voltage of 2po/V, 1- was applied to a gold-deposited silicon semiconductor electrode and electrolytically polymerized for 70 seconds, a thin film of 3-methylthiophene polymer containing trifluoromethanesulfonate ions was formed on the surface. . Note that the current during electrolytic polymerization is 1cIA per silicon semiconductor surface.
It was 8.1-2.85 mA.

実施例2 精製した3−メチルチオフェン2.5tとテトラフルオ
ロホウ酸テトラブチ〜アンモニウム0.422を精製し
たアセトニトリ/I/29−に溶解し、パイレックス・
ガラス製容器に入れ、これに白金電極と実施例1と同様
にして金を蒸着したn型単結晶シリコン半導体電極を浸
漬し、アルゴンガスを6分間吹込んだ。これに実施例1
と同様の方法で112 mW/、−Jの強度で光照射す
ると同時に、3.8ボルトの電圧を半導体電極に印加し
て、57秒間電解重合したところ、金蒸着したシリコン
半導体0表面にテトラフルオロホウ酸イオンを含んだ3
−メチルチオフェン・ポリマーの薄い膜が生成シた。電
解重合の際の電流はシリコン半導体表面1−当!> 1
0.1〜5.1 mAであった。
Example 2 2.5 t of purified 3-methylthiophene and 0.422 t of tetrabuty-ammonium tetrafluoroborate were dissolved in purified acetonitrile/I/29-, and Pyrex.
A platinum electrode and an n-type single crystal silicon semiconductor electrode on which gold was vapor-deposited in the same manner as in Example 1 were immersed in a glass container, and argon gas was blown into the container for 6 minutes. Example 1
In the same manner as above, irradiation with light at an intensity of 112 mW/, -J and a voltage of 3.8 volts was applied to the semiconductor electrode for electrolytic polymerization for 57 seconds. 3 containing borate ions
- A thin film of methylthiophene polymer was formed. The current during electrolytic polymerization is 1-1 on the silicon semiconductor surface! > 1
It was 0.1-5.1 mA.

参考例1 光照射用の窓をもつガラス製容器に硫酸ナトリウム、硫
酸第1鉄、硫酸第2鉄アンモニウムそれぞれ0.1モル
/L、硫酸0,12モN/lを含む水溶液(PE[1,
O)  を入れ、これに実施例1で得られた被覆シリコ
ン半導体電極、銀−塩化銀比較電極及び白金の対極を浸
漬し、ハロゲンランプの光を88、2 mW/、−Jの
強度で照射して、光電流を測定した。照射開始後1時間
における光電流の減衰率は8.0%であった。なお被覆
しないシリコン電極の光電流の減衰率は1分間でほぼ1
00%であ〕、金を被覆しただけのシリコン電極の光電
流の減衰、 率は1時間後において96.2%であった
Reference Example 1 An aqueous solution (PE[1 ,
The coated silicon semiconductor electrode obtained in Example 1, the silver-silver chloride comparison electrode, and the platinum counter electrode were immersed in this and irradiated with light from a halogen lamp at an intensity of 88.2 mW/, -J. The photocurrent was measured. The attenuation rate of photocurrent 1 hour after the start of irradiation was 8.0%. Note that the photocurrent decay rate of an uncoated silicon electrode is approximately 1 per minute.
00%], the photocurrent decay rate of the silicon electrode coated only with gold was 96.2% after 1 hour.

参考例2 実施例2で得られた被覆シリコン半導体電極、銀−塩化
銀比較電極及び白金の対極を参考例1と同様な溶液に浸
漬し、ハロゲンランプの光を38.3mW/al の強
度で照射して光電流を測定した。照射開始後1時間にお
いて光電流は全く減衰しなかった。
Reference Example 2 The coated silicon semiconductor electrode obtained in Example 2, the silver-silver chloride reference electrode, and the platinum counter electrode were immersed in the same solution as in Reference Example 1, and exposed to light from a halogen lamp at an intensity of 38.3 mW/al. The photocurrent was measured by irradiation. The photocurrent did not attenuate at all 1 hour after the start of irradiation.

(f)  発明の効果 本発明による被覆シリコン半導体電極は湿式光使用に耐
えることができる。これを用いて湿式光電池を組立てれ
ば、太陽エネルギーを電気エネルギーなどに変換して利
用することが可能である。
(f) Effects of the invention The coated silicon semiconductor electrode according to the invention can withstand wet light use. If a wet photovoltaic cell is assembled using this, solar energy can be converted into electrical energy and used.

Claims (1)

【特許請求の範囲】[Claims] シリコン半導体の表面に貴金属の薄膜を被覆したのち、
その表面において、チオフェン化合物を光照射と同時に
電解重合して、その重合体の膜を生成させることを特徴
とする被覆シリコン半導体電極の製造方法。
After coating the surface of a silicon semiconductor with a thin film of precious metal,
A method for manufacturing a coated silicon semiconductor electrode, which comprises electrolytically polymerizing a thiophene compound on the surface thereof simultaneously with light irradiation to form a film of the polymer.
JP60098265A 1985-03-14 1985-05-09 Manufacture of silicon semiconductor electrode coated with thin film Granted JPS61256575A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60098265A JPS61256575A (en) 1985-05-09 1985-05-09 Manufacture of silicon semiconductor electrode coated with thin film
US06/838,822 US4647348A (en) 1985-03-14 1986-03-12 Method for production of film-coated silicon semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098265A JPS61256575A (en) 1985-05-09 1985-05-09 Manufacture of silicon semiconductor electrode coated with thin film

Publications (2)

Publication Number Publication Date
JPS61256575A true JPS61256575A (en) 1986-11-14
JPH0523025B2 JPH0523025B2 (en) 1993-03-31

Family

ID=14215112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098265A Granted JPS61256575A (en) 1985-03-14 1985-05-09 Manufacture of silicon semiconductor electrode coated with thin film

Country Status (1)

Country Link
JP (1) JPS61256575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292872A (en) * 1989-05-02 1990-12-04 Agency Of Ind Science & Technol Manufacture of stabilized semiconductor electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292872A (en) * 1989-05-02 1990-12-04 Agency Of Ind Science & Technol Manufacture of stabilized semiconductor electrode

Also Published As

Publication number Publication date
JPH0523025B2 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
Noufi et al. Protection of semiconductor photoanodes with photoelectrochemically generated polypyrrole films
JP2510192B2 (en) Conductive polymer
Kaneko et al. Photoresponse of a liquid junction polyaniline film
US4728399A (en) Preparation of laminates of metals and electrically conductive polymers
Roncali et al. Electrosynthesis of highly conducting poly (3-methylthiophene) thin films
EP0852804A1 (en) Process for manufacturing an electrode for an electrochemical device
Pitchumani et al. Photochemically doped polypyrrole
Kuwabata et al. Dimerization kinetics of methylene blue incorporated in a Nation film
US4647348A (en) Method for production of film-coated silicon semiconductor electrode
Semenikhin et al. Electrochemical and photoelectrochemical behaviour of poly-3-methylthiophene and polybithiophene in non-aqueous solutions: 1. Dark and light processes in systems with and without cathodic doping
US4379740A (en) Photoassisted generation of hydrogen from water
US4471036A (en) Electrochemical photovoltaic cells and electrodes
JPH0378978A (en) Manufacture of photo-electrochemical cell
Gningue et al. Protection of CdSe Oxygen Photoanodes by Poly (bithiophene)‐Polypyrrole Composites and Copolymers
JPS61256575A (en) Manufacture of silicon semiconductor electrode coated with thin film
Yoneyama et al. Effect of attachment of trimethylchlorosilane and polymer adsorption on stability of silicon photoelectrodes in aqueous solutions
Loutfy et al. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells
Kennedy et al. Preparation of Vacuum‐Deposited Films of Rubidium Silver Iodide
JPS61211964A (en) Manufacture of coated silicon semiconductor electrode
EP0145843A2 (en) Electrically conductive composites comprising p-doped acetylene having conductive coatings and conjugated aromatic polymers and process therefor
JPS63215772A (en) Production of electrically conductive polymer composition
Nakato et al. Tungsten‐or Molybdenum‐Coated p‐n Junction Silicon Electrodes for Efficient and Stable Photoelectrochemical Solar Energy Conversion
Bélanger et al. Characteristics and Stability of n‐Si/SnO2 and n‐Si/SnO2/Pt Photoanodes
Gruszecki et al. Preparation of thin films of polycrystalline CdSe for solar energy conversion: II. Experimental
US2572079A (en) Radiation-sensitive cells and method of making same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term