JPS6125643B2 - - Google Patents

Info

Publication number
JPS6125643B2
JPS6125643B2 JP20858082A JP20858082A JPS6125643B2 JP S6125643 B2 JPS6125643 B2 JP S6125643B2 JP 20858082 A JP20858082 A JP 20858082A JP 20858082 A JP20858082 A JP 20858082A JP S6125643 B2 JPS6125643 B2 JP S6125643B2
Authority
JP
Japan
Prior art keywords
gas
fuel
fluidized bed
catalyst
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20858082A
Other languages
Japanese (ja)
Other versions
JPS59102803A (en
Inventor
Shozo Kaneko
Akira Hashimoto
Kenichi Hisamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20858082A priority Critical patent/JPS59102803A/en
Priority to MX198347A priority patent/MX168335B/en
Priority to NLAANVRAGE8302824,A priority patent/NL189123C/en
Priority to GB08321739A priority patent/GB2126118B/en
Priority to DE19833329435 priority patent/DE3329435A1/en
Priority to CH442783A priority patent/CH655495B/de
Priority to FR8313260A priority patent/FR2531944A1/en
Publication of JPS59102803A publication Critical patent/JPS59102803A/en
Publication of JPS6125643B2 publication Critical patent/JPS6125643B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 本発明は炭化水素系燃料改質装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in hydrocarbon fuel reformers.

燃料改質装置とは炭化水素系燃料を水素を主成
分とするガスに変換する装置で、従来より化学ブ
ランドに於て数多く用いられている。最も代表的
なものは、いわゆるスチームリフオーマと称する
もので、第1図に示すように炭化水素系燃料H.
C.に水蒸気を添加し、これを高温下で触媒層C
に通し、水素リツチガスとし、更にCOコンバー
タで残在するCOをCO2とし、その後CO2を除去
して高純度の粋素含有ガスとするものである。図
中、1は触媒管、2は装置周壁、3はバーナであ
る。この従来のものには次のような欠点があつ
た。
A fuel reformer is a device that converts hydrocarbon fuel into gas whose main component is hydrogen, and has been used in many chemical brands. The most typical one is the so-called steam refrigerant, and as shown in Figure 1, it uses hydrocarbon fuel H.
Add water vapor to C. and apply it to catalyst layer C under high temperature.
The remaining CO is converted into CO 2 using a CO converter, and then the CO 2 is removed to produce a highly pure pure element-containing gas. In the figure, 1 is a catalyst tube, 2 is a peripheral wall of the device, and 3 is a burner. This conventional method had the following drawbacks.

(1) スチームリフオーマの触媒管1は750℃以上
というような高温で使用されるため、耐高温材
料を使用しても使用限界に近く、少しでも局部
的な熱負荷の増加や温度のアンバランスがある
と触媒管が過熱噴破し、中のガスが噴出するこ
とがあつた。このため炉の設計は熱負荷を非常
に低く抑え、かつ均一に分布させるため、炉の
寸法が非常に大きくなり、所要スペースも大き
く、非常に不経済な設計となつていた。
(1) Since the catalyst tube 1 of the steam reformer is used at high temperatures of 750°C or higher, even if high-temperature resistant materials are used, it is close to its usable limit, and even the slightest local increase in heat load or temperature unsteadiness may occur. If there was an imbalance, the catalyst tube would overheat and blow out, causing the gas inside to blow out. For this reason, the furnace design has been designed to keep the heat load very low and uniformly distributed, resulting in a very large furnace size and a large space requirement, resulting in a very uneconomical design.

(2) 触媒管を加熱した燃焼排ガスは通常熱交換器
で水(蒸気)と熱交換されるが、必ずしも充分
な熱交換が行われず、従つて熱効率も低く不経
済であつた。
(2) The combustion exhaust gas that heated the catalyst tube is usually heat exchanged with water (steam) in a heat exchanger, but sufficient heat exchange is not always carried out, and therefore the thermal efficiency is low and uneconomical.

(3) 装置の周壁2が耐火材で構成されており、触
媒管の加熱にはこの耐火材からのふく射が主と
して用いられており、このため部分負荷での温
度のコントロールが困難で、最低負荷も50%程
度でありまた負荷変化速度も小さく制限される
他、起動にも多大の時間を要していた。
(3) The peripheral wall 2 of the device is made of refractory material, and the radiation from this refractory material is mainly used to heat the catalyst tubes. Therefore, it is difficult to control the temperature at partial loads, and when the lowest load In addition, the speed of load change was limited to a small value, and it took a long time to start up.

(4) 改質炉の燃焼炉が常圧で設計されているため
寸法が非常に大きく、かつ負圧であるため誘引
通風機(IDF)が必要であつた。
(4) The combustion furnace of the reformer was designed to operate at normal pressure, so it was very large in size, and because it was under negative pressure, an induced draft fan (IDF) was required.

本発明は従来のものの欠点を解消し、より高性
能かつ低コストの燃料改質システムを開発するこ
とを目的とし、即ち、 (1) 全体寸法が小さく、かつ占有面積も小さく経
済的であること、 (2) 排ガスから有効に熱回収を行い、高い熱効率
を有すること、 (3) 起動・停止時間の最短化、 (4) 最低負荷を充分低くすることを目的とするも
のである。
The present invention aims to eliminate the drawbacks of the conventional ones and develop a fuel reforming system with higher performance and lower cost, namely: (1) It is economical with a small overall size and a small footprint; , (2) To effectively recover heat from exhaust gas and have high thermal efficiency, (3) To minimize startup and shutdown times, and (4) To sufficiently lower the minimum load.

本発明は改質炉の加熱を加圧流動層によつて行
うことにより全体を極めてコンパクトに設計し、
かつ触媒管の肉厚を薄くして熱応力を小さくする
と共に軽量化と経済性にすぐれたものとし、容易
にモジユール化―トレーラ輸送が可能なものとす
るもので、炭化水素系燃料をステームリフオーミ
ング反応により水素リツチガスに変換する燃料改
質装置において、加熱媒体として加圧流動層を用
い、触媒管に二重管を用いた反応器および上記反
応器からの燃焼排ガスで駆動するガスタービンを
設けてなる燃料改質装置に関する。
The present invention uses a pressurized fluidized bed to heat the reforming furnace, thereby making the entire structure extremely compact.
In addition, the wall thickness of the catalyst tube is reduced to reduce thermal stress, and it is also lightweight and economical, making it easy to modularize and transport by trailer. In a fuel reformer that converts into hydrogen-rich gas through a forming reaction, a pressurized fluidized bed is used as the heating medium, a reactor with a double-tube catalyst tube, and a gas turbine driven by the combustion exhaust gas from the reactor are used. The present invention relates to a fuel reformer provided therein.

本発明の加熱媒体たる加圧流動層材質としては
砂、アルミナ系40〜200μ程度の大きさのものが
用いられ、加圧の程度は大気圧以上、20〜30ata
程度までで、一般的には4ata程度が普通に用いら
れる。二重管触媒管は外管4と内管5の間の円環
部にバナジウムーニツケル系の一般にはパイプ状
(内径5〜6mm、外径16mm、高さ19mm等)触媒が
充填されており、改質されるべき原料ガスは該触
媒充填部を下方から上方へと流れ、加圧流動層か
らの熱で反応が生じる。触媒層を通過した炭化水
素系燃料ガスは水素と一酸化炭素を主成分とする
ガスに改質され、二重管頂部に至り内管を経て取
り出される。
The material of the pressurized fluidized bed serving as the heating medium of the present invention is a sand or alumina-based material with a size of about 40 to 200μ, and the degree of pressurization is above atmospheric pressure, 20 to 30 ata.
In general, around 4ata is commonly used. In the double-pipe catalyst tube, the annular part between the outer tube 4 and the inner tube 5 is filled with a vanadium nickel catalyst, which is generally pipe-shaped (inner diameter 5 to 6 mm, outer diameter 16 mm, height 19 mm, etc.). The raw material gas to be reformed flows from the bottom to the top through the catalyst-packed section, and a reaction occurs with the heat from the pressurized fluidized bed. The hydrocarbon fuel gas that has passed through the catalyst layer is reformed into a gas whose main components are hydrogen and carbon monoxide, which reaches the top of the double tube and is taken out through the inner tube.

本発明の燃料改質システムは燃料改質装置の
他、流動層式熱交換器等にも応用できる。
The fuel reforming system of the present invention can be applied not only to fuel reformers but also to fluidized bed heat exchangers and the like.

本発明システムの構成の一例を第2図に示す。 An example of the configuration of the system of the present invention is shown in FIG.

1は加圧式の改質炉容器、2は流動加熱層、3
は流動層上部空間、4は二重触媒管外管、5は二
重触媒管内管である。6は燃料排ガス出口ダク
ト、7はガスタービン、8はガスタービン排気ダ
クト、9は排熱回収ボイラ、10は煙突である。
1 is a pressurized reforming furnace vessel, 2 is a fluidized heating bed, 3
4 is an outer tube of a double catalyst tube, and 5 is an inner tube of a double catalyst tube. 6 is a fuel exhaust gas outlet duct, 7 is a gas turbine, 8 is a gas turbine exhaust duct, 9 is an exhaust heat recovery boiler, and 10 is a chimney.

11は炭化水素系燃料H.C.供給管、12はバ
ーナ用燃料管(バーナ12′はパイプノズル)、1
3は改質用原料ガス管、14は原料ガス―水蒸気
混合装置、18は原料ガス/水蒸気混合ガス管で
ある。15はボイラ給水管、16はボイラ給水ポン
プ、17は改質用蒸気管である。19は反応生成
ガス管、20は熱交換器、21はCOシフトコン
バータ入口管、22はCOシフトコンバータであ
る。23は燃焼用空気Aコンプレツサ、24は燃
焼用空気ダクト、25は燃焼用空気風箱、26発
電機である。
11 is a hydrocarbon fuel HC supply pipe, 12 is a burner fuel pipe (burner 12' is a pipe nozzle), 1
3 is a raw material gas pipe for reforming, 14 is a raw material gas-steam mixing device, and 18 is a raw material gas/steam mixed gas pipe. 15 is a boiler water supply pipe, 16 is a boiler water supply pump, and 17 is a reforming steam pipe. 19 is a reaction product gas pipe, 20 is a heat exchanger, 21 is a CO shift converter inlet pipe, and 22 is a CO shift converter. 23 is a combustion air compressor A, 24 is a combustion air duct, 25 is a combustion air box, and 26 is a generator.

加圧式改質炉容器1はバーナ12′からの燃料
をライン18からの空気で燃焼して流動材を上昇
させて形成される加圧式の流動加熱層2によつて
二重触媒管4及び5を均一かつ一定温度にて加熱
し、この中に充填された触媒層によつて原料ガ
ス/水蒸気混合ガス管18によつて供給された混
合気を改質し、水素と一酸化炭素を主成分とする
ガスとし反応生成ガス管19より炉外へ送り出
す。反応生成ガスは熱交換器20にて温度を適温
に下げた後、COシフトコンバータ22にて一酸
化炭素に改質し(CO+H2O→CO2+H2)、H2
ツチガスHとして使用する。
A pressurized reforming furnace vessel 1 is constructed by a pressurized fluidized heating bed 2 formed by burning fuel from a burner 12' with air from a line 18 to raise a fluidized material, and a double catalyst tube 4 and 5 is heated uniformly and at a constant temperature, and the mixture supplied through the raw material gas/steam mixture gas pipe 18 is reformed by the catalyst bed filled therein, so that hydrogen and carbon monoxide are the main components. This gas is sent out of the furnace from the reaction product gas pipe 19. The temperature of the reaction product gas is lowered to an appropriate temperature in a heat exchanger 20, and then reformed into carbon monoxide in a CO shift converter 22 (CO+H 2 O→CO 2 +H 2 ), which is used as H 2 rich gas H.

流動層における燃焼で生成した排ガスは流動層
上部空間3を経て、燃焼排ガスダクト6を経て、
ガスタービン7に入る。このガスタービンにはコ
ンプレツサ23と発電機26が連結されており、
燃焼用空気はコンプレツサ23にて必要な圧力迄
昇圧された後、燃用空気ダクト24、燃焼用空気
風箱25を経て、流動層へ供給される。コンプレ
ツサに動力を供給した余剰の動力は発電機26に
て電力に変換される。ガスタービンにて仕事をし
た排ガスは、排熱回収ボイラ9にて熱交換した
後、煙突10より大気に放出される。この排熱回
収ボイラ用の給水は給水ポンプ16により送ら
れ、9により蒸気となつて、原料ガス/水蒸気混
合装置14によつて原料ガスと混合される。
The exhaust gas generated by combustion in the fluidized bed passes through the fluidized bed upper space 3, the combustion exhaust gas duct 6,
Enter gas turbine 7. A compressor 23 and a generator 26 are connected to this gas turbine.
After the combustion air is pressurized to a required pressure by the compressor 23, it is supplied to the fluidized bed via the combustion air duct 24 and the combustion air box 25. The surplus power supplied to the compressor is converted into electric power by the generator 26. The exhaust gas that has worked in the gas turbine undergoes heat exchange in an exhaust heat recovery boiler 9, and then is released into the atmosphere from a chimney 10. This feed water for the exhaust heat recovery boiler is sent by a feed water pump 16, turned into steam by 9, and mixed with raw material gas by a raw material gas/steam mixer 14.

加圧流動層の採用により次のようなメリツトが
生じる。
Adoption of a pressurized fluidized bed provides the following advantages.

(1) 空塔速度が常圧に比べて小さくなる。或は空
塔速度を合わせると層床面積を小さくでき全体
寸法を非常に小型化できる。
(1) The superficial velocity becomes smaller compared to normal pressure. Alternatively, by matching the superficial velocity, the bed area can be reduced and the overall size can be made very small.

(2) 空塔速度を小さく取る場合は、流動材径をそ
れだけ小さくでき、従つて層内に挿入されてい
る触媒管の摩耗が小さく、かつ上部空間でのキ
ヤリオーバも小さい。
(2) When the superficial velocity is kept small, the diameter of the fluidized material can be made that much smaller, and therefore the wear of the catalyst tube inserted in the bed is small, and the carryover in the upper space is also small.

(3) 加圧により更に高い流動層熱伝達率が得られ
る。
(3) Higher fluidized bed heat transfer coefficients can be obtained by pressurization.

(4) ガスタービンにより高温の排ガスの持つエネ
ルギが動力として回収され圧縮機の所要動力を
まかなえるのみならず、余剰分は直接発電も可
能である。また排熱回収ボイラをそれだけ小さ
くできる。
(4) The energy contained in the high-temperature exhaust gas is recovered as power by the gas turbine, which not only covers the power required for the compressor, but also enables direct power generation from the surplus. Moreover, the exhaust heat recovery boiler can be made smaller accordingly.

(5) 最大の重量物である改質炉容器をコンパクト
にできるため輸送や据付が極めて楽であり、モ
ジユール化により容易にトレーラ輸送ができ
る。
(5) The reformer container, which is the heaviest item, can be made compact, making transportation and installation extremely easy, and modularization allows for easy trailer transportation.

(6) 流動層は層内の温度が均一かつ一定であるか
ら、これをコントロールすることにより苛酷な
温度条件に置かれる触媒管の噴破事故を確実に
防止することが出来、かつ流動層のもつすぐれ
た部分負荷特性や大きな負荷変化速度を活用で
きる。
(6) Since the temperature inside the fluidized bed is uniform and constant, by controlling this temperature it is possible to reliably prevent blowout accidents of catalyst tubes that are placed under severe temperature conditions, and to maintain the temperature of the fluidized bed. It also allows you to take advantage of its excellent partial load characteristics and large load change speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料改質装置における反応部の
構造を示す縦断面図であり、第2図は本発明の燃
料改質システムの一例を示すフローシートであ
る。
FIG. 1 is a longitudinal sectional view showing the structure of a reaction section in a conventional fuel reformer, and FIG. 2 is a flow sheet showing an example of the fuel reforming system of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素系燃料をスチームリフオーミング反
応により水素リツチガスに変換する燃料改質装置
において、加熱媒体として加圧流動層を用い、触
媒間に二重管を用いた反応器および上記反応器か
らの燃焼排ガスで駆動するガスタービンを設けて
なる燃料改質装置。
1. In a fuel reformer that converts hydrocarbon fuel into hydrogen-rich gas by a steam reforming reaction, a pressurized fluidized bed is used as the heating medium, a reactor using a double pipe between catalysts, and a A fuel reformer equipped with a gas turbine driven by combustion exhaust gas.
JP20858082A 1982-08-12 1982-11-30 Device for modifying fuel Granted JPS59102803A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20858082A JPS59102803A (en) 1982-11-30 1982-11-30 Device for modifying fuel
MX198347A MX168335B (en) 1982-08-12 1983-08-10 IMPROVED APPARATUS FOR REFORMING FUEL
NLAANVRAGE8302824,A NL189123C (en) 1982-08-12 1983-08-11 FUEL REFORMER.
GB08321739A GB2126118B (en) 1982-08-12 1983-08-12 Fuel-reforming apparatus
DE19833329435 DE3329435A1 (en) 1982-08-12 1983-08-12 DEVICE FOR REFORMING FUEL
CH442783A CH655495B (en) 1982-08-12 1983-08-12
FR8313260A FR2531944A1 (en) 1982-08-12 1983-08-12 HYDROCARBON FUEL REFORMING APPARATUS IN A HYDROGEN-RICH GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20858082A JPS59102803A (en) 1982-11-30 1982-11-30 Device for modifying fuel

Publications (2)

Publication Number Publication Date
JPS59102803A JPS59102803A (en) 1984-06-14
JPS6125643B2 true JPS6125643B2 (en) 1986-06-17

Family

ID=16558535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20858082A Granted JPS59102803A (en) 1982-08-12 1982-11-30 Device for modifying fuel

Country Status (1)

Country Link
JP (1) JPS59102803A (en)

Also Published As

Publication number Publication date
JPS59102803A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US4315893A (en) Reformer employing finned heat pipes
US3909299A (en) Fuel cell system including reform reactor
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
JP3075757B2 (en) Endothermic reactor
RU2309275C2 (en) Method of and device for combined generation of thermal and electric energy by gas turbine with afterburning chamber
KR100677016B1 (en) Cylindrical steam reforming unit
US3446747A (en) Process and apparatus for reforming hydrocarbons
CA2557265A1 (en) Compact steam reformer
JPS6326091B2 (en)
JPS5883642A (en) Methanol manufacture
EP1816101B1 (en) Industrial furnace with steam reforming apparatus and method for steam reforming using the same
CA1257478A (en) Process and equipment for the generation of a product gas containing hydrogen and carbon oxides
NO170625B (en) PROCEDURE AND PLANT FOR MANUFACTURING SYNTHESIC GAS
CN100354197C (en) Autooxidation internal heating type steam reforming system
US8133445B2 (en) Reaction chamber promoting heat exchange between the reagents and the gases that are produced
EP2291326B1 (en) Method and equipment for producing synthesis gas
EP0272282B1 (en) Steam reformer with internal heat recovery
USRE26990E (en) Process and apparatus for reforming hydrocarbons
JP3834069B2 (en) Endothermic reactor
JPS6125643B2 (en)
JP2004155650A (en) Autoxidation internal heating type steam reforming system
US4198379A (en) Nitrogen oxide pollution abatement using catalytic combustion
KR101648107B1 (en) A hybrid hydrogen generating system using the reative metal fuel
JPS624322B2 (en)
JP2001046864A (en) Carbon dioxide fixing apparatus