JPS61256414A - Position controller - Google Patents

Position controller

Info

Publication number
JPS61256414A
JPS61256414A JP9778785A JP9778785A JPS61256414A JP S61256414 A JPS61256414 A JP S61256414A JP 9778785 A JP9778785 A JP 9778785A JP 9778785 A JP9778785 A JP 9778785A JP S61256414 A JPS61256414 A JP S61256414A
Authority
JP
Japan
Prior art keywords
gain
circuit
positioning accuracy
signal
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9778785A
Other languages
Japanese (ja)
Inventor
Tsutomu Saitou
斎藤 ▲つとむ▼
Ken Fujii
憲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9778785A priority Critical patent/JPS61256414A/en
Publication of JPS61256414A publication Critical patent/JPS61256414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve the positioning accuracy by obtaining the optimum gain with control in response to the change of the frictional force in terms of time and therefore reducing the variance of the positioning accuracy in terms of time. CONSTITUTION:A mobile base 1 is driven by a DC servo motor 2 and a pole screw 3 and the position of the base 1 is detected by a laser interference length measuring machine 4. While a subtraction circuit 8 obtains the deviation between between a target position command signal 6 given from an electronic computer 5 and the present position signal 7 detected by the machine 4. The clock signal 14' given from a clock generator 14 is applied to a minute position command generating circuit 15. Then a minute position command 15' given from the circuit 15 is applied to an addition circuit 16 together with the position deviation signal 9 given from the circuit 8. The signal 14' is processed by a logical circuit 18 and a gain control counter 19 and applied to an operational amplifier 11. Then the gain of the amplifier 11 is controlled to an optimum level in response to the variance of the frictional force in terms of time. Thus the variance of the positioning accuracy is reduced in terms of time and therefore the positioning accuracy is improved with a position controller.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、サーボ系の位置決め制御方式に係り。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a positioning control method for a servo system.

特に縮小投影露光装置のステージのように極めて高い位
置決め精度が要求される場合に好適な位置決めサーボ制
御装置に関する。
In particular, the present invention relates to a positioning servo control device suitable for cases where extremely high positioning accuracy is required, such as on a stage of a reduction projection exposure apparatus.

〔発明の背景〕[Background of the invention]

位置検出器、目的位置からの偏差を演算する回踏、サー
ボモータおよび送りねじによる駆動系から構成される閉
ループ位置制御の位置決め精度を向上せしめるには、閉
ループのゲインを大きくしなければならない。
In order to improve the positioning accuracy of closed-loop position control consisting of a position detector, a rotary wheel for calculating the deviation from the target position, a servo motor, and a drive system using a feed screw, the gain of the closed loop must be increased.

すなわち、微小な位置偏差に応じて、移動台の案内部や
送りねじ等に存在する摩擦力に抗して移動台を動かすト
ルクを発生するに足るゲインが必要である。
That is, sufficient gain is required to generate a torque that moves the movable base against the frictional force present in the guide portion, feed screw, etc. of the movable base in response to minute positional deviations.

しかし、ゲインを大きくすると制御系は不安定になり、
・・ンチングや発振をおこすため限界以上に大きくする
ことができない。したがって、・・ンチングや発振を避
けて、ゲインをできるだけ大きくする工夫が行なわれて
いる。
However, increasing the gain makes the control system unstable,
...It cannot be made larger than the limit because it will cause tinging and oscillation. Therefore, efforts are being made to increase the gain as much as possible to avoid pinching and oscillation.

公知例、特公昭58−47043 、位置制御方式は、
起動時のみ静摩擦力に打ち勝つに十分な高いゲインとし
、起動後は低いゲインに切換えて、安定な走行および位
置決め動作を得るようにしている。この方式における位
置決め精度は、上記の低いほうのゲインと動摩擦力によ
って決定されるので、高い位置決め精度を得るKd、こ
のゲインを。
Publicly known example, Japanese Patent Publication No. 58-47043, position control method is as follows:
The gain is set high enough to overcome the static friction force only during startup, and the gain is switched to a low gain after startup to obtain stable running and positioning operations. The positioning accuracy in this method is determined by the lower gain mentioned above and the dynamic friction force, so this gain is Kd to obtain high positioning accuracy.

制御系が安定な範囲で最大限まで大きくする必要がある
It is necessary to increase the size to the maximum extent within the range where the control system is stable.

また、関連出願1%願昭59−65785 、位置制御
装置は、増巾器に折れ繊持性を設け、微小な偏差におい
ても摩擦トルクを打ち消すトルクを発生し、走行中は低
いゲインによる安定な走行を行なうようにしたものであ
る。
In addition, related application 1% Application No. 59-65785 describes a position control device that provides bending support to the amplifier, generates torque that cancels out the frictional torque even in the case of minute deviations, and maintains stable operation due to low gain while driving. It is designed to allow running.

これ等の従来技術は、摩擦力によるトルクをあらかじめ
想定し、これに応じて最適なゲイン特性をあらかじめ設
定する。ところが摩擦力は、摺動部の場所によって変化
し、且つ経時的に変化する。
In these conventional techniques, torque due to frictional force is assumed in advance, and optimal gain characteristics are set in advance in accordance with this. However, the frictional force changes depending on the location of the sliding part and changes over time.

したがって、移動台の位置決め精度は、移動台の場所に
よって変化し、且つ経時的にも変化する。
Therefore, the positioning accuracy of the movable base changes depending on the location of the movable base and also changes over time.

この位置決め精度の場所によるばらつき、時間的なばら
つきを小さくすれば1位置決め精度を著しく向上するこ
とができる。
By reducing variations in positional accuracy and temporal variations in positioning accuracy, one positioning accuracy can be significantly improved.

すなわち、従来技術では、摩擦力の場所的および時間的
な変化による位置決め精度のばらつきが大きいため、よ
り以上の精度向上が望めないという欠点があった。
That is, in the conventional technology, there is a large variation in positioning accuracy due to local and temporal changes in frictional force, so there is a drawback that further improvement in accuracy cannot be expected.

C発明の目的〕 本発明は、摩擦力の場所による変化、(l!擦力の時間
的な変化に応じて、ゲインが最適になるような制御を行
ない1位置決めn1度の場所的、時間的ばらつきを小さ
くシ、もって位置決め精度を向上せしめる手段を提供す
ることを目的とする。
CObject of the Invention] The present invention performs control such that the gain is optimized according to changes in frictional force depending on location, (l! temporal changes in frictional force, It is an object of the present invention to provide a means for improving positioning accuracy by reducing variations.

〔発明の概要〕[Summary of the invention]

本発明は、目標位置付近まで、増巾器のゲインをサーボ
系が安定に動作する低い値にして走行せしめ、目標位置
に近づいたところで、サーボ系の応答を観測しながらゲ
インを徐々に高めていく位置制御方式である。そして、
このサーボ系の応答を観測する手段が、発明の中心であ
る。
In the present invention, the gain of the amplifier is set to a low value that allows the servo system to operate stably until the target position is reached, and then the gain is gradually increased while observing the response of the servo system. This is a position control method. and,
A means for observing the response of this servo system is at the heart of the invention.

すなわち、目標位置付近において、所望の位置決め精度
に相当する程度の微小な位置指令を正負の両方向に交互
に与え、この位置指令に対するサーボ系の応答を5位置
検出器から帰還されるパルスを計数することによって観
測しようとするものである。
That is, in the vicinity of the target position, minute position commands corresponding to the desired positioning accuracy are alternately given in both positive and negative directions, and the response of the servo system to this position command is counted by pulses fed back from the 5-position detector. This is what we try to observe.

この観測結果に基づいて、ゲインを徐々に高くして行き
、正負両方向の微小指令にサーボ系が確実に追従して動
いていることが確認されたところでゲインの増加を停止
することによって、ゲインの最適調整値を得る。
Based on this observation result, the gain is gradually increased, and the increase in gain is stopped when it is confirmed that the servo system is moving reliably following minute commands in both the positive and negative directions. Obtain the optimal adjustment value.

〔発明の実施例〕[Embodiments of the invention]

第1図は2本発明の一実施例を示す図面である。 FIG. 1 is a drawing showing an embodiment of the present invention.

移動台1は、直流サーボモータ2とボールねじ3により
駆動される。移動台1の位置は、レーザ干渉測長器4に
より検出される。電子計算機5は。
The moving table 1 is driven by a DC servo motor 2 and a ball screw 3. The position of the moving table 1 is detected by a laser interferometer 4 . Electronic computer 5.

目標位置指令信号6を送り出して、目標位置を指令する
。この目標位置指令信号6と、レーザ干渉測長器4によ
り検出される現在位置信号7との偏差が、減算回路8に
よりデジタル演算される。その演算結果すなわち位置偏
差9は、DA変換器10、演算増巾011、サーボアン
プ12を介して、それが小となる方向に直流サーボモー
タ2を回転する。タコジェネレータ13は、これらのサ
ーボ系を安定化し、その制御性能を向上せしめるために
用いられる。
A target position command signal 6 is sent out to command the target position. The deviation between this target position command signal 6 and the current position signal 7 detected by the laser interferometric length measuring device 4 is digitally calculated by a subtraction circuit 8. The calculation result, ie, position deviation 9, rotates the DC servo motor 2 in the direction in which the position deviation becomes smaller via the DA converter 10, the calculation amplifier 011, and the servo amplifier 12. The tacho generator 13 is used to stabilize these servo systems and improve their control performance.

クロック発生器14.微小位置指令発生回路15、加算
回路16.可逆カウンター7、論理口′、) 、蕗18.増巾器ゲイン制御用カウンター9.立ち上り
立下り検出回路20は1本発明の実施に必要となる部分
であり、以下詳細に説明する。
Clock generator 14. Micro position command generation circuit 15, addition circuit 16. Reversible counter 7, logic mouth', ), butterfly 18. Counter for amplifier gain control9. The rising/falling detection circuit 20 is a part necessary for implementing the present invention, and will be described in detail below.

クロック発生器14は、一定周波数のクロックパルスを
、微小位置指令発生回路15.可逆カウンター7のUP
側大人力論理回路18に供給する。
The clock generator 14 generates clock pulses of a constant frequency to the minute position command generation circuit 15. Reversible counter 7 UP
It is supplied to the side power logic circuit 18.

微小位置指令発生回路15は、所望の位置決め精度に相
当する位の微小な位置指令を発生する回路で、クロック
信号に制御されて正負両方向への微小位置指令を交互に
発生する。この微小位置指令は、加算回路16において
1位置偏差9と加算されるが、サーボ系が大きな位置偏
差で走行している時は、その走行に何等の影響も与えな
い。
The minute position command generation circuit 15 is a circuit that generates a minute position command corresponding to a desired positioning accuracy, and is controlled by a clock signal to alternately generate minute position commands in both positive and negative directions. This minute position command is added to one position deviation 9 in the addition circuit 16, but when the servo system is running with a large position deviation, it does not have any effect on the running.

現在位置信号7の最下位ビットの立上りおよび立下りが
、立ち上り立下り検出回路20によって検出されて可逆
カウンタ17のDOWN側入力に加えられている。
The rising and falling edges of the least significant bit of the current position signal 7 are detected by the rising/falling detection circuit 20 and added to the DOWN side input of the reversible counter 17 .

可逆カウンタ17の内容を一定時間毎に観測すると、移
動台の走行状態を判断することができる。
By observing the contents of the reversible counter 17 at regular intervals, the traveling state of the movable platform can be determined.

例えば、サーボ系が大きな位置偏差で高速で走行してい
る時は、DOWN側に加えられるパルスの数がUP側に
加わるパルスの数より大きい九め、可逆カウンタの内容
は観測毎に負の値を示す。
For example, when the servo system is running at high speed with a large positional deviation, the number of pulses applied to the DOWN side is greater than the number of pulses applied to the UP side, and the content of the reversible counter becomes a negative value for each observation. shows.

ま九1位置偏差が小になり、移動台の案内部やボールね
じ等に存在する摩擦力のために移動台が停止すると、U
P側のみにパルスが加わるので。
When the positional deviation becomes small and the movable base stops due to the frictional force existing in the guide part of the movable base, ball screw, etc., the U
Because the pulse is applied only to the P side.

同カウンタの内容は観測毎に正の値を示す。The contents of the counter indicate a positive value for each observation.

上記の状態において、演算増巾器11のゲインを少しず
つ小刻みに大きくして行くと、遂にはその時の位置偏差
において摩擦力に打ち勝つトルクが発生して偏差を小さ
くする方向に移動台が動く。
In the above state, when the gain of the operational amplifier 11 is increased little by little, a torque is finally generated that overcomes the frictional force at the positional deviation at that time, and the movable table moves in a direction that reduces the deviation.

同様なことを繰り返すと、結局、可逆カウンタの内容が
観測毎にOになる状態に到達する。これは正負両方向の
微小位置指令にサーボ系が確実に追従し、+1→0→+
1→0→叩・・・・・・旧・・の動きをしているととを
示す。この時、ゲインの最適値台がこれに確実に追従し
て動くと、現在位置信号の最下位ビット7′は図の如<
+1と00状態を繰り返えすので、その立上り立下りを
検出するとクロック信号14′と1対1に対応した信号
20’が得られる。14′が可逆カウンタのUP側。
If the same thing is repeated, eventually a state will be reached where the content of the reversible counter becomes O every time the observation is made. This means that the servo system reliably follows minute position commands in both the positive and negative directions, +1 → 0 → +
1 → 0 → Hit... Indicates that the old movement is being performed. At this time, if the optimum value scale of the gain moves reliably following this, the least significant bit 7' of the current position signal will become <
Since the +1 and 00 states are repeated, when the rising and falling states are detected, a signal 20' corresponding one-to-one with the clock signal 14' is obtained. 14' is the UP side of the reversible counter.

20′が同じ<DOVVN側に加えられるから、その内
容を一定時間毎に観測すると0になる。
20' is added to the same <DOVVN side, so if its contents are observed at regular intervals, it becomes 0.

論理回路18とゲイン制御用カウンタ19は。The logic circuit 18 and the gain control counter 19.

演算増巾器11のゲインを小刻みに大きくシ、その度毎
に結果を可逆カウンタ17の内容を観測することによっ
て、ゲインを更に大きくすべきか否かの判断を行なう。
The gain of the operational amplifier 11 is increased in small increments, and each time the result is observed as the contents of the reversible counter 17, thereby determining whether or not the gain should be further increased.

論理回路18Vi一定時間毎に可逆カウンタをリセット
し、リセット後一定時間経過後の内容を読み取り、その
内容に応じ論理判断を行ない、ゲイン制御用カウンタ1
9を通じて演算増巾器11のゲインの制御を行なう。論
理回路18の行なう論理判断とその動作は、91えば第
1図の表のようにきめる。
Logic circuit 18Vi resets the reversible counter at fixed time intervals, reads the contents after a fixed period of time has elapsed after the reset, makes a logical judgment according to the contents, and controls the gain control counter 1.
9 controls the gain of the operational amplifier 11. The logical judgments made by the logic circuit 18 and its operations are determined as shown in the table 91 of FIG. 1, for example.

第1表 ゲイン制御用カウンタ19によって演算増巾器11のゲ
インを制御する回路の実施例を第4図に示す。演算増巾
器11の4個の入力抵抗11−1〜11−4の比を1:
2:4:8とし、ゲイン制御カウンタの4ビツトの出力
により、アナログ・スイッチ11−5を開閉すれば、ゲ
インは16段階に変化する。
FIG. 4 shows an embodiment of a circuit for controlling the gain of the operational amplifier 11 using the gain control counter 19 shown in Table 1. The ratio of the four input resistors 11-1 to 11-4 of the operational amplifier 11 is 1:
2:4:8, and by opening and closing the analog switch 11-5 according to the 4-bit output of the gain control counter, the gain changes in 16 steps.

このようにして、移動台を摩擦力の大きい場所に位置決
めする時には増巾器のゲインを大KL。
In this way, when positioning the movable table in a place where the frictional force is large, the gain of the amplifier is increased.

摩擦力の小さい場所に於ては小さいゲインで位置決めす
るような制御が行なわれる。
In locations where the frictional force is small, positioning control is performed with a small gain.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、摩擦力の場所による変化5時間的な変
化に応じてゲインが最適になるような制御が行なわれ1
位置決め動作毎の精度のばらつきが小さくなり、もって
位置決めff度が向上するという効果がある。
According to the present invention, control is performed such that the gain is optimized in accordance with changes in frictional force depending on location5 and changes over time.
This has the effect of reducing the variation in accuracy between positioning operations, thereby improving the positioning efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は本発明の制御により最適のゲインが得られた時
のサーボ系各部の状態を示す図、第3図は演算増巾器の
ゲインを制御する手段の一例を示す回路図である。 1・・・移動台、2・・・直流サーボモータ、3・・・
ボールねじ、4・・・レーザ干渉測長器;5・・・電子
計算機。 6・・・目標位置指令信号、7・・・現在位置信号、7
′・・・同最下位ピット、8・・・減算回路、9・・・
位置偏差信号、10・・・DA変換器、11・・・演算
増巾器、12・・・サーボアンプ、13・・・タコジェ
ネレータ。 14・・・クロック発生6.14’・・・クロック信号
、15・・・微小位置指令発生回路、15′・・・同指
令。 16・・・加算回路、17・・・加算回路、18・・・
論理回路、19・・・ゲイン制御用カウンタ、20・・
・立ち上り立下り検出回路、20′・・・同出力。
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a diagram showing the states of various parts of the servo system when the optimum gain is obtained by the control of the present invention, and FIG. 3 is a circuit diagram showing an example of means for controlling the gain of the operational amplifier. 1...Moving table, 2...DC servo motor, 3...
Ball screw, 4... Laser interference length measuring device; 5... Electronic computer. 6...Target position command signal, 7...Current position signal, 7
'...Same lowest pit, 8...Subtraction circuit, 9...
Position error signal, 10...DA converter, 11... Arithmetic amplifier, 12... Servo amplifier, 13... Tacho generator. 14...Clock generation 6.14'...Clock signal, 15...Minimum position command generation circuit, 15'...Same command. 16... Addition circuit, 17... Addition circuit, 18...
Logic circuit, 19... Gain control counter, 20...
・Rise and fall detection circuit, 20'...same output.

Claims (1)

【特許請求の範囲】[Claims] 1、制御対象を目標位置に駆動するサーボモータ、制御
対象の現在位置を検出する位置検出器、現在位置と目標
位置との偏差を増巾してサーボモータを駆動する増巾器
から成るサーボ系の制御方式、特に、目標位置付近まで
、増巾器のゲインを、サーボ系が安定に動作する低い値
にして走行せしめ、目標位置付近においてゲインを高く
する位置制御方式において、所望の位置決め精度に相当
する正負の位置指令を交互に発生する微小位置指令発生
回路、この位置指令にサーボ系が確実に追従することを
検出するパルス計数回路、およびこのパルス計数回路の
計数値に応じてゲインを漸増することを可能とする可変
増巾度増巾器を設けたことを特徴とするサーボ系の位置
制御装置。
1. Servo system consisting of a servo motor that drives the controlled object to the target position, a position detector that detects the current position of the controlled object, and an amplifier that amplifies the deviation between the current position and the target position and drives the servo motor. In particular, in the position control method where the gain of the amplifier is set to a low value that allows the servo system to operate stably until the target position is reached, and the gain is increased near the target position, it is difficult to achieve the desired positioning accuracy. A minute position command generation circuit that alternately generates corresponding positive and negative position commands, a pulse counting circuit that detects that the servo system reliably follows this position command, and a gain that gradually increases according to the count value of this pulse counting circuit. A servo system position control device characterized by being provided with a variable amplification degree amplifier that makes it possible to
JP9778785A 1985-05-10 1985-05-10 Position controller Pending JPS61256414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9778785A JPS61256414A (en) 1985-05-10 1985-05-10 Position controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9778785A JPS61256414A (en) 1985-05-10 1985-05-10 Position controller

Publications (1)

Publication Number Publication Date
JPS61256414A true JPS61256414A (en) 1986-11-14

Family

ID=14201523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9778785A Pending JPS61256414A (en) 1985-05-10 1985-05-10 Position controller

Country Status (1)

Country Link
JP (1) JPS61256414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327785A (en) * 1989-06-23 1991-02-06 Mitsubishi Electric Corp Induction-motor controller
US6025688A (en) * 1995-04-11 2000-02-15 Canon Kabushiki Kaisha Alignment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327785A (en) * 1989-06-23 1991-02-06 Mitsubishi Electric Corp Induction-motor controller
US6025688A (en) * 1995-04-11 2000-02-15 Canon Kabushiki Kaisha Alignment apparatus

Similar Documents

Publication Publication Date Title
JPS62140863A (en) Printing-head control system
JPH02199513A (en) Servo circuit
KR950007104B1 (en) Servo motor control device
JP4209480B2 (en) Hard disk drive feedforward device
KR970008608B1 (en) Optical disk device
US4827200A (en) Velocity control unit of detecting head
JP2001222303A (en) Device and method for controlling servo
JPS61256414A (en) Position controller
US4338555A (en) Pulse pair servo apparatus
JPH11282538A (en) Servo device
JPH06203498A (en) Head positioning controller for disk device
JPH11301815A (en) Speed and position control method of stacker crane
JPH0646366B2 (en) Servo motor control device
JPS58182706A (en) Numerical control method of robot
JPS5942886B2 (en) Voice coil motor control device
JP2611810B2 (en) Control device
JPS58108983A (en) Controller for motor
JPS6041106A (en) Servo positioning method
JPS6214209A (en) Industrial robot
KR100215454B1 (en) Servo apparatus of vcr
JPS59158406A (en) Control method of robot
JPH04169914A (en) Speed controller for servo motor
JPH09247972A (en) Method and device for controlling stop position
JP3269198B2 (en) Position control device
JPH04282710A (en) Speed control system