JPS61255194A - Method for recording video signal to rotation recording medium - Google Patents

Method for recording video signal to rotation recording medium

Info

Publication number
JPS61255194A
JPS61255194A JP60097167A JP9716785A JPS61255194A JP S61255194 A JPS61255194 A JP S61255194A JP 60097167 A JP60097167 A JP 60097167A JP 9716785 A JP9716785 A JP 9716785A JP S61255194 A JPS61255194 A JP S61255194A
Authority
JP
Japan
Prior art keywords
signal
recording
signals
recorded
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097167A
Other languages
Japanese (ja)
Inventor
Kotaro Muranaga
村永 浩太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP60097167A priority Critical patent/JPS61255194A/en
Publication of JPS61255194A publication Critical patent/JPS61255194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a reproducing color video signal having a good S/N and high picture quality by recording two to four types of recording signals of high upper limit frequency on an outer peripheral side recording area on a rotating recording medium divided into the same number as the recording signals in accordance with the upper limit frequency. CONSTITUTION:On a bracket 15, two magnetic heads 16 and 17 separated with a prescribed distance in the radius direction on the disk 1 of the magnetic heads 16 and 17 is approximately equal to the length in the radius direction of one recording area when an upper side recording surface of the disk 1 is equally divided into two recording areas as shown by W1U and W2U. Then, only an FM luminance signal selected in a wide band is recorded on outer periphery side of recording areas W1U and W1L without the band being restricted by two types of color difference components and the two types of the color difference components are converted into prescribed signal formations and recorded on inner peripheral side recording areas W2U, W2L. Thereby, a recording signal band can be more widely taken than the conventional recording method in which these signals are simultaneously transmitted by a 1 channel transmission line.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回転記録媒体への映像信号記録方法に係り、特
に磁気ディスク、フロッピーディスク°のような円盤状
回転記録媒体であって、一定回転数で回転する回転記録
媒体に対し、映像信号をその記録帯域等に応じて記録す
る映像信号記録方法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method of recording video signals on a rotating recording medium, and particularly to a method for recording video signals on a rotating recording medium, and particularly for recording a video signal on a disk-shaped rotating recording medium such as a magnetic disk or a floppy disk at a constant rotation speed. The present invention relates to a video signal recording method for recording a video signal on a rotating recording medium according to its recording band.

従来の技術 従来より一定回転数で円盤状回転記録媒体(以下、ディ
スクという)を回転し、そのディスクにカラー映像信号
を記′録する、等角速度方式(CAV方式)の映像信号
記録方法が種々提案されており、第8図はその一例を示
す。同図中、ディスク1は一例として上下両面に磁気記
録再生可能な構造とされた磁気ディスクで、その取付中
心孔2を中心として周知の手段により一定回転数で回転
せしめられる。このディスク1の上面にはブラケット3
の先端に取付けられた磁気ヘッド5が摺動し、下面には
ブラケット4の先端に取付けられた磁気ヘッド6が摺動
する。ディスク1は例えば 3600「p■で回転し、
磁気ヘッド5及び6をディスク1の半径方向に1フイー
ルド毎に交互に1トラックピッチ分ずつ間欠的に歩進し
、かつ、カラー映像信号を1フイールド毎にスイッチン
グして磁気ヘッド5及び6に交互に供給することにより
、ディスク1の上面には例えば奇数フィールドのカラー
映像信号のみが記録された同心円状トラックが形成され
、かつ、ディスク1の下面には偶数フィールドのカラー
映像信号のみが記録された同心円状トラックが形成され
る。再生時には適切な信号処理によって通常の再生、ス
ローモーション再生。
Conventional technology There are various video signal recording methods using the constant angular velocity method (CAV method), in which a disk-shaped rotating recording medium (hereinafter referred to as a disk) is rotated at a constant rotational speed and color video signals are recorded on the disk. A method has been proposed, and FIG. 8 shows an example thereof. In the figure, a disk 1 is, for example, a magnetic disk having a structure capable of magnetic recording and reproducing on both upper and lower surfaces, and is rotated at a constant rotation speed by known means around its mounting center hole 2. As shown in FIG. A bracket 3 is placed on the top surface of this disk 1.
A magnetic head 5 attached to the tip of the bracket 4 slides, and a magnetic head 6 attached to the tip of the bracket 4 slides on the bottom surface. For example, disk 1 rotates at 3600 "p■,
The magnetic heads 5 and 6 are intermittently stepped by one track pitch every field in the radial direction of the disk 1, and the color video signal is switched every field so that the magnetic heads 5 and 6 are alternately moved. For example, concentric tracks are formed on the upper surface of the disk 1 in which only odd-numbered field color video signals are recorded, and on the lower surface of the disk 1 only even-numbered field color video signals are recorded. Concentric tracks are formed. During playback, proper signal processing allows normal playback and slow motion playback.

静止画再生、フィールドモード再生等ができる。Still image playback, field mode playback, etc. are possible.

また、磁気ヘッド5及び6のいずれか一方のみを用いて
、それをディスク1の半径方向に連続的に移送すること
により、カラー映像信号が記録された螺旋状トラックを
形成することができることは勿論である。
Furthermore, by using only one of the magnetic heads 5 and 6 and continuously moving it in the radial direction of the disk 1, it is of course possible to form a spiral track on which a color video signal is recorded. It is.

第9図は従来のディスクの記録方法の他の例を示す。同
図中、第8図と同一構成部分には同一符号を付し、その
説明を省略する。第9図において、ブラケット7に隣接
して取付けられた磁気ヘッド8及び9がディスク1上を
摺動走査する。これら2個の磁気ヘッド8及び9はディ
スク1の片面°だけを用いてフレームモードの記録再生
を行なうために片面側だけに近接して設けられている。
FIG. 9 shows another example of the conventional disc recording method. In the figure, the same components as those in FIG. 8 are designated by the same reference numerals, and their explanations will be omitted. In FIG. 9, magnetic heads 8 and 9 mounted adjacent to bracket 7 slide and scan over disk 1. In FIG. These two magnetic heads 8 and 9 are provided close to only one side of the disk 1 in order to perform frame mode recording and reproduction using only one side of the disk 1.

また、2個の磁気ヘッド8及び9とディスク1との相対
線速度は両者が近接しているので略同−である。
Further, the relative linear velocities of the two magnetic heads 8 and 9 and the disk 1 are approximately the same since they are close to each other.

この例によれば、磁気ヘッド8により奇数フィールド、
磁気ヘッド9により偶数フィールドのカラー映像信号の
記録再生ができる。
According to this example, the magnetic head 8 generates odd fields,
The magnetic head 9 can record and reproduce even field color video signals.

また、第10図は従来のディスクの記録方法の更に他の
例を示す。同図中、第9図と同一構成部分には同一符号
を付し、その説明を省略する。第10図において、ディ
スク1の下面にはブラケット10に隣接して取付けられ
た磁気ヘッド11及び12が夫々同時に摺動する。この
従来例によれば、ディスク1の両面に例えばカラー映像
信号を2チヤンネルで記録できる。
Further, FIG. 10 shows still another example of the conventional disk recording method. In the figure, the same components as those in FIG. 9 are denoted by the same reference numerals, and the explanation thereof will be omitted. In FIG. 10, magnetic heads 11 and 12 mounted adjacent to a bracket 10 slide simultaneously on the lower surface of the disk 1, respectively. According to this conventional example, for example, color video signals can be recorded in two channels on both sides of the disc 1.

発明が解決しようとする問題点 しかるに、第8図及び第9図に示す従来の記録方法は、
カラー映像信号を1チヤンネルの伝送路で記録している
ので、高画質の再生カラー映像信号を得ようとすると装
置全体が複雑高価となり、一方、装置を安価に構成する
と高画質の再生カラー映像信号が得られるような記録が
できないという問題点があった。すなわち、1チヤンネ
ルの伝送路でカラー映像信号を記録する方法としては、
輝度信号と搬送色信号とが帯域共用多重化されているカ
ラー映像信号全体で高周波数又μ比較的低周波数の搬送
、波を周波数変調して得た被周波数変調波信号(FM信
号)を記録するダイレクトFM方式(ハイ、バンド方式
又はローバンド方式)や、被周波数変調輝度信号(FM
輝度信号)と低域変換搬送色信号との周波数分割多重信
号を記録する低域変換カラー記録方式が知られているが
、ダイレクトFM7j革はタイムベースコレクタが必須
で高価であり、また微分利得、微分位相、S/Nなどの
劣化をまねき易い。一方、低域変換カラー記録方式は比
較的狭帯域の記録帯域で記録できると共に、記録媒体の
走行変動が比較的大きくても搬送色信号が低域に変換さ
れているのでその影響を受けにくいので、家庭用VTR
に広く使用されており安価に構成できる反面、FM輝度
信号の帯°域と低域変換搬送色信号の帯域とが互いに制
限されるので高解像度が得られず、またスプリアスが生
じ画質を損ねることがあり、更に低域変換搬送色信号が
FM輝度信号によるバイアス記録のため、記録媒体とヘ
ッドとの当りむらで再生搬送色信号にAMノイズが生じ
てS/Nを悪化させるなどの問題点があった。
Problems to be Solved by the Invention However, the conventional recording method shown in FIGS. 8 and 9
Since the color video signal is recorded through a single channel transmission path, the entire device becomes complicated and expensive if you try to obtain a high-quality reproduced color video signal.On the other hand, if you configure the device at a low cost, you will not be able to obtain a high-quality reproduced color video signal. There was a problem in that it was not possible to record records that would provide accurate results. In other words, the method for recording color video signals on a single channel transmission path is as follows:
Records a frequency modulated wave signal (FM signal) obtained by frequency modulating a high frequency or comparatively low frequency carrier wave in the entire color video signal in which a luminance signal and a carrier color signal are band-sharing multiplexed. Direct FM method (high band method or low band method), frequency modulated luminance signal (FM
A low frequency conversion color recording method is known that records a frequency division multiplexed signal of a luminance signal) and a low frequency conversion carrier chrominance signal, but direct FM7J requires a time base collector and is expensive, and also requires a differential gain, This tends to cause deterioration of differential phase, S/N, etc. On the other hand, the low frequency conversion color recording method allows recording in a relatively narrow recording band, and even if the running fluctuations of the recording medium are relatively large, the carrier color signal is converted to a low frequency range, so it is less affected by it. , home VTR
Although it is widely used and can be constructed at low cost, high resolution cannot be obtained because the band of the FM luminance signal and the band of the low-frequency conversion carrier color signal are mutually limited, and spurious signals occur, impairing image quality. In addition, because the low-frequency conversion carrier color signal is bias recorded using the FM luminance signal, there are problems such as AM noise occurring in the reproduced carrier color signal due to uneven contact between the recording medium and the head, worsening the S/N ratio. there were.

更に1チヤンネルの伝送路でカラー映像信号を記録する
他の従来の方法として、FMN度信号とその低域側の空
いている周波数帯域を占有するFMill順次色差信号
とよりなる周波数分割多重信号を記録する低域変換色差
信号線順次FM方式や、輝度信号と線順次色差信号とを
夫々時間軸圧縮して得た信号を時分割多重し、その時分
割多重信号で搬送波を周波数変調して得たFM信号を記
録するタイムプレックス方式なども従来より知られてい
るが、これらの方式によれば輝度信号と2種の゛ 色差
信号とが同時に伝送される期間は存在しないので、輝度
信号と2種の色差信号を同時に伝送し記録する前記の各
方式で生ずることがある、輝度信号と色差信号との間で
の相互干渉やモアレを生ずることがなく高画質が得られ
る反面、色差信号は線順次記録であるから再生色信号の
垂直解像度が劣化し、また時間軸圧縮回路が必要で(再
生系には時間軸伸長回路が必要)、装置が高価となると
いう問題点があった。
Another conventional method for recording color video signals using a single channel transmission path is to record a frequency division multiplexed signal consisting of an FMN degree signal and an FMill sequential color difference signal that occupies an empty frequency band on the lower side of the FMN degree signal. Low frequency conversion color difference signal line sequential FM method, and FM method obtained by time-division multiplexing the signals obtained by compressing the time axis of the luminance signal and line-sequential color difference signal, and frequency modulating the carrier wave with the time division multiplexed signal. The time-plex method for recording signals is also known, but according to these methods, there is no period during which the luminance signal and two types of chrominance signals are transmitted simultaneously. While high image quality can be obtained without mutual interference or moiré between the luminance signal and color difference signal, which can occur with the above-mentioned methods in which color difference signals are simultaneously transmitted and recorded, color difference signals are recorded line-sequentially. Therefore, there are problems in that the vertical resolution of the reproduced color signal deteriorates, a time-base compression circuit is required (the reproduction system requires a time-base expansion circuit), and the apparatus becomes expensive.

また、ディスク1はCAV方式でカラー映像信号が磁気
ヘッド5.6,8.9.11又は12により磁気記録さ
れるが、その再生出力値Eppは、ヘッドのコイル巻数
をN、ヘッドの再生能率をη。
In addition, the disk 1 uses the CAV method, and a color video signal is magnetically recorded by a magnetic head 5.6, 8.9.11 or 12. η.

記録トラック幅をW、ヘッドとディスク1との相対線速
度をV、ディスク1の残留磁束(11重密度)をBr、
自己減磁損失を’ id、記録時のスペース損失をLs
r’再生時のスペース損失をし56.ヘッドのギャップ
損失をLgとすると、次式で表わされる。
The recording track width is W, the relative linear velocity between the head and the disk 1 is V, the residual magnetic flux (11-fold density) of the disk 1 is Br,
'id is the self-demagnetizing loss, and Ls is the space loss during recording.
r' Space loss during playback 56. Letting the head gap loss be Lg, it is expressed by the following equation.

E、、−(8/π)−N−η−W−v−8,・Lid−
LSr・LSD−Ll)     (1)ここで、 2.5 1−16 諺tanh (−−→         (
3)Br/H(2 である。ただし、■〜6)式中、a、A、はヘッドのギ
ャップ長と断面積、 I?、、ACは磁心の平、均磁路
長と断面積 gt、A tは後部ギャップ長と断面積、
μ。は磁心の透磁率、HCはディスク1の抗磁力、λは
記録波長、Srは記録時のヘッドとディスク1の磁性層
間のスペース、Soは再生時のヘッドとディスク1の磁
性層間のスペースである。また、記録波長λと磁性層厚
δ、記録ヘッドのギヤツブ長gr、上記スペースSrと
の関係は次の不等式で示される。
E,, -(8/π)-N-η-W-v-8,・Lid-
LSr・LSD-Ll) (1) Here, 2.5 1-16 Proverb tanh (--→ (
3) Br/H (2). However, in the equations (■ to 6), a and A are the gap length and cross-sectional area of the head, and I? ,, AC is the average magnetic path length and cross-sectional area gt, A t is the rear gap length and cross-sectional area,
μ. is the magnetic permeability of the magnetic core, HC is the coercive force of disk 1, λ is the recording wavelength, Sr is the space between the head and the magnetic layer of disk 1 during recording, and So is the space between the head and the magnetic layer of disk 1 during reproduction. . Further, the relationship between the recording wavelength λ, the magnetic layer thickness δ, the gear length gr of the recording head, and the above-mentioned space Sr is expressed by the following inequality.

δ/λ≧0.25            (7)9「
/λ≦0.5           0Sr/λ≦0.
2            0従って、(1)式かられ
かるように、再生出力値Eppはヘッド・ディスク間の
相対線速度Vに比例して変化することがわかる。ここで
、ディスク1の中心からの距II(半径) r(1)に
位置するときのヘッドと回転数n(rps)のディスク
1との相対線速度v(gi/s)は周知の如く ■=2π「串n           (1G)で表わ
されるから、ディスク1の内周側ほど外周側に比し相対
線速度Vが小となる。よって(1)式及び(10)式よ
り再生出力値Ep−ディスク1の内周側ほど小となる。
δ/λ≧0.25 (7)9
/λ≦0.5 0Sr/λ≦0.
20 Therefore, as can be seen from equation (1), it can be seen that the reproduction output value Epp changes in proportion to the relative linear velocity V between the head and the disk. Here, as is well known, the relative linear velocity v (gi/s) between the head and the disk 1 at the rotation speed n (rps) when located at a distance II (radius) r (1) from the center of the disk 1 is = 2π "skewer n (1G), so the relative linear velocity V is smaller toward the inner circumference of the disk 1 than toward the outer circumference. Therefore, from equations (1) and (10), the playback output value Ep- It becomes smaller toward the inner circumference of the disk 1.

このため、第8図に示した従来の記録方法は勿論のこと
、第9図及び第10図に示した従来の記録方法では、隣
接する2個の磁気ヘッド8及び9や11及び12の相対
線速度Vが略同−であり、ディスク1の内周から再生さ
れたカラー映像信°号の画質は、内周における上記相対
線速度Vが最外周に比し相当に低いことから、劣化が目
立つという問題点があった。
Therefore, in the conventional recording method shown in FIG. 8 as well as in the conventional recording method shown in FIGS. 9 and 10, the relative The linear velocity V is approximately the same, and the image quality of the color video signal reproduced from the inner circumference of the disc 1 is considerably lower than that of the outermost circumference, so the image quality of the color video signal reproduced from the inner circumference of the disc 1 is considerably lower than that of the outermost circumference. There was a noticeable problem.

そこで、本発明は回転記録媒体の記録領域を同心円状の
複数の領域に分割すると共に、カラー映像信号を構成す
る2種以上の信号を記録上限周波数又は重み付けに応じ
て上記複数の分割領域に振り分けて別々に記録すること
により、上記の問題点を悉く解決した回転記録媒体への
映像信号記録方法を提供することを目的とする。
Therefore, the present invention divides the recording area of a rotating recording medium into a plurality of concentric areas, and distributes two or more types of signals constituting a color video signal to the plurality of divided areas according to the recording upper limit frequency or weighting. It is an object of the present invention to provide a method for recording video signals on a rotating recording medium that solves all of the above problems by recording video signals separately.

問題点を解決するための手段 本発明になる回転記録媒体への映像信号記録方法は、一
定周波数で回転せしめられる円盤状回転記録媒体の記録
面を同心円状の複数の記録領域に分割し、2種乃至4種
の記録信号のうち、上限周波数又は重み付けが高い記録
信号ほど上記複数の記録領域のうち外周側の記録領域に
記録されるように、上記2種乃至4種の記録信号をその
上限周波数又は重み付けに応じて複数の記録領域に別々
のヘッドで別々に振り分けて記録するようにしたもので
ある。
Means for Solving the Problems The method of recording video signals on a rotating recording medium according to the present invention divides the recording surface of a disc-shaped rotating recording medium that is rotated at a constant frequency into a plurality of concentric recording areas. Among the recording signals of the seeds to four types, the recording signals of the two to four types are set at the upper limit so that the recording signal with a higher upper limit frequency or weighting is recorded in the outer recording area of the plurality of recording areas. According to the frequency or weighting, recording is performed in a plurality of recording areas using separate heads.

作用 カラー映像信号を構成する2種以上の信号、例えば輝度
信号と2種の色差信号とは、回転記録媒体上の別々の記
録領域に記録されるから、これらの信号を1チヤンネル
の伝送路で同時に伝送する従来の記録方法に比し、記録
信号帯域を広くとれる。また、2種乃至4種の記録信号
のうち例えば上限周波数の低い記録信号ほど内周側の記
録領域に記録するから、内周側での相対線速度の低下に
よる影響を最も受けにくい記録ができる。以下、本発明
の各実施例について第1図乃至第7藺と共に説明する。
Two or more types of signals that make up an active color video signal, such as a luminance signal and two types of color difference signals, are recorded in separate recording areas on a rotating recording medium, so these signals can be transmitted through a single channel transmission path. Compared to conventional recording methods that transmit data simultaneously, a wider recording signal band can be obtained. Furthermore, among the two to four types of recording signals, for example, the recording signal with the lower upper limit frequency is recorded in the recording area on the inner circumferential side, so that recording can be performed that is least susceptible to the influence of a decrease in relative linear velocity on the inner circumferential side. . Each embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

実施例 第1図は本発明の第1実施例の記録領域及びヘッド配置
等を示す。同図中、第8図と同一構成部分には同一″符
号を付し、その説明を省略する。第1図において、ブラ
ケット15にはディスク1の半径方向に所定距離離間し
て2個の磁気ヘッド16及び17が夫々取付固定されて
いる。磁気ヘッド16及び17はディスク1の上側記録
面上を摺動走査し、磁気ヘッド16の方が磁気ヘッド1
7の方よりも外周側に位置せしめられている。
Embodiment FIG. 1 shows the recording area, head arrangement, etc. of a first embodiment of the present invention. In the figure, the same components as those in FIG. Heads 16 and 17 are mounted and fixed, respectively.The magnetic heads 16 and 17 slide and scan the upper recording surface of the disk 1.
It is located closer to the outer circumference than point 7.

磁気ヘッド16及び17のディスク1の半径方向上の鯖
離は、ディスク1の上側記録面をWIL及びWzuで示
す如く′2つの記録領域に等分割したときの−の記録領
域の半径方向上の長さに略等しい。他方、ブラケット1
8には磁気ヘッド19とこれよりも一ディスク1の内周
方向に所定距離離間した位置に磁気ヘッド20とが夫々
取付固定されている。磁気ヘッド19及び20はディス
ク1の下側記録面を摺動走査するが、それらのディスク
半径方向の距離は上記下側記録面の記録領域を第1図に
WIL及びW2Lで示す如く2分割したときの−の記録
領域WIL又はW2Lのディスク半径方向上の長さに略
等しい。
The deviation in the radial direction of the disk 1 of the magnetic heads 16 and 17 is the deviation in the radial direction of the - recording area when the upper recording surface of the disk 1 is equally divided into two recording areas as shown by WIL and Wzu. approximately equal to the length. On the other hand, bracket 1
A magnetic head 19 and a magnetic head 20 are fixedly attached to the magnetic head 8 at a position spaced a predetermined distance from the magnetic head 19 in the inner circumferential direction of one disk 1, respectively. The magnetic heads 19 and 20 slide and scan the lower recording surface of the disk 1, and the distance between them in the disk radial direction divides the recording area of the lower recording surface into two as shown by WIL and W2L in FIG. It is approximately equal to the length of the -recording area WIL or W2L in the disk radial direction.

磁気ヘッド16及び17はブラケット15と共に例えば
1フイールドおき毎に間欠的に1トラックピッチ分ずつ
ディスク半径方向に歩進ぜしめられ、磁気ヘッド19及
び20はブラケツ1−18と共に例えば磁気ヘッド16
及び17が移動した次の1フイールドおき毎に間欠的に
1トラックピッチ分ディスク半径方向に歩進ぜしめられ
る。また、磁気ヘッド16及び17には夫々奇数フィー
ルドの映像信号のみが供給され、磁気ヘッド19及び2
0には夫々偶数フィールドの映像信号が供給される。従
って、例えば3600rps+で回転するディスク1の
記録領bXW+ u 、W2 uには移動停止中の磁気
ヘッド16及び17により2種の映像信号が別々に、か
つ、同時に奇数フィールドのみ記録されたトラックが同
心円状に形成され、下側記録面の記録領域には移動停止
中の磁気ヘッド19及び20により上記2種の映像信号
が別々に、がっ、同時に偶数フィールドのみ記録された
トラックが同心円状に形成される。
The magnetic heads 16 and 17 are moved together with the bracket 15 intermittently in the disk radial direction by one track pitch every other field, and the magnetic heads 19 and 20 are moved along with the brackets 1-18, for example, in the disk radial direction.
and 17 are moved intermittently in the disk radial direction by one track pitch every other field. Further, only odd field video signals are supplied to the magnetic heads 16 and 17, respectively, and the magnetic heads 19 and 2
0 is supplied with an even field video signal. Therefore, for example, in the recording areas bXW+ u, W2 u of the disk 1 rotating at 3600 rps+, tracks on which two types of video signals are recorded separately and only odd fields simultaneously by the magnetic heads 16 and 17, which are not moving, are arranged in concentric circles. In the recording area of the lower recording surface, the two types of video signals are recorded separately by the magnetic heads 19 and 20, which are not moving, and concentric tracks are formed in which only even fields are recorded at the same time. be done.

次に上記の2種の映像信号の8例について説明する。2
種の映像信号はFM輝度信号と他の信号どの組合わせで
あり、第3図乃至第7図に示す各例の組合わせが考えら
れる。第3図(A)、第4図(A)、第5図(A)、第
6図(A)及び第7図(A)は夫々FM輝度信号の周波
数スペクトラムを示す。第3図(B)の工は2種の色差
信号(例えばR−YとB−Y、又は■とQ)の時間軸を
例えば約1/2に圧縮してそれらを交互に時分割多重し
、その時分割多重信号で搬送波を周波数変調して得たF
M信号の周波数スペクトラムを示す。また、第4図(B
)は周波数スペクトラム■。
Next, eight examples of the above two types of video signals will be explained. 2
The type of video signal may be any combination of the FM luminance signal and other signals, and the combinations shown in FIGS. 3 to 7 are conceivable. 3(A), FIG. 4(A), FIG. 5(A), FIG. 6(A) and FIG. 7(A) respectively show the frequency spectrum of the FM luminance signal. The process shown in FIG. 3(B) compresses the time axes of two types of color difference signals (for example, R-Y and B-Y, or , F obtained by frequency modulating the carrier wave with the time division multiplexed signal
The frequency spectrum of the M signal is shown. In addition, Fig. 4 (B
) is the frequency spectrum ■.

■で夫々示される第1及び第2のFM色差信号の周波数
分割多重信号の周波数アロケーションを示す。上記第1
のFM色差信号は色差信号B−Y(又はQ信号)で搬送
波を周波数変調して得た信号であり、上記の第2のFM
色差信号は色差信号R−Y (又は■信号)で搬送波を
周波数変調して得た信号である。
3 shows the frequency allocation of the frequency division multiplexed signals of the first and second FM color difference signals indicated by (2), respectively. 1st above
The FM color difference signal is a signal obtained by frequency modulating the carrier wave with the color difference signal B-Y (or Q signal), and is a signal obtained by frequency modulating the carrier wave with the color difference signal B-Y (or Q signal).
The color difference signal is a signal obtained by frequency modulating a carrier wave with the color difference signal R-Y (or ■ signal).

ここで、R−Y信号(又はI信号)、B−Y信号(又は
Q信号)という表現を本明IB書で使用しているのは次
の理由による。周知の如<、PAL方式の搬送色信号は
色差信号R−YとB−Yで搬送波を直角二相変調して得
た被変調波であるのに対し、NTSC方式の搬送色信号
は色差信号I信号とQ信号で搬送波を直角二相変調して
得た被変調波であるが、カラーベクトル図で、R−Y軸
と1軸とが近接しており、B−Y軸とQ軸とが近接して
いるからである。ここで、■信号ETとQ信号Eoとは
、色差信@R−Y、B−Yに対して次の如き関係を有す
ることは周知の通りである。
Here, the expressions RY signal (or I signal) and BY signal (or Q signal) are used in the present IB for the following reason. As is well known, the carrier color signal of the PAL system is a modulated wave obtained by quadrature two-phase modulation of the carrier wave using color difference signals R-Y and B-Y, whereas the carrier color signal of the NTSC system is a color difference signal. This is a modulated wave obtained by quadrature two-phase modulation of a carrier wave using an I signal and a Q signal, but in the color vector diagram, the R-Y axis and the 1st axis are close to each other, and the B-Y axis and the Q axis are This is because they are close to each other. Here, it is well known that the (2) signal ET and the Q signal Eo have the following relationship with respect to the color difference signals @R-Y and B-Y.

El = 0.74  (ER−EY) −0,27(
Ee−EY)           (11)Eo= 
0.48  (ER−・EY)+ 0.41  (Ee
−EY)           (12)しかし、R−
Y信号、B−Y信号の帯域はいずれも公称的1.5MH
zであるのに対し、I信号。
El = 0.74 (ER-EY) −0,27(
Ee-EY) (11) Eo=
0.48 (ER-・EY) + 0.41 (Ee
-EY) (12) However, R-
The Y signal and B-Y signal bands are both nominally 1.5 MH.
z, whereas the I signal.

Q信号の公称の帯域は夫々1.5MHz 、  0.5
MH2であり、色差信号の帯域が異なる。すなわち、N
TSC方式では■信号、Q信号の間でのクロストークを
発生しないよう、Q信号を0.5M Hzに帯域制限し
ている。これに対し、PAL方式でR−Y信号、B−Y
信号の帯域が同じなのは、R−Y信号の色副搬送波を周
波数fH/2(ただし、r+は水平走査周波数)のパル
スでスイッチングしてIH(ただし、Hは水平走査期間
、)毎に極性を反転させているので、変調後のR−Y信
号とB−Y信号のスペクトラムが一致せず、クロストー
クが発生しないからである。
The nominal bands of the Q signal are 1.5MHz and 0.5MHz, respectively.
MH2, and the bands of color difference signals are different. That is, N
In the TSC system, the Q signal is band-limited to 0.5 MHz to prevent crosstalk between the ■ signal and the Q signal. On the other hand, in PAL system, R-Y signal, B-Y signal
The reason why the signal band is the same is that the color subcarrier of the R-Y signal is switched with a pulse of frequency fH/2 (where r+ is the horizontal scanning frequency) and the polarity is changed every IH (where H is the horizontal scanning period). Because they are inverted, the spectra of the modulated RY signal and BY signal do not match, and crosstalk does not occur.

しかし、上記の如<PAL方式とNTSC方式では色差
信号の帯域は異なるが、PAI一方式とNTSC方式の
機器で同じ回路構成をとる場合、共通に使用できる回゛
路も多いので、R−Y信号とI信号、B−Y信号とQ信
号とを夫々同じ種類の色差信号として取り扱うものとす
る。
However, as mentioned above, although the color difference signal bands are different between the PAL system and the NTSC system, if the same circuit configuration is used for equipment using the PAI system and the NTSC system, there are many circuits that can be used in common. It is assumed that the signal and the I signal, and the BY signal and the Q signal, are treated as the same type of color difference signal.

第5図(B)に示す周波数スペクトラム■はR−Y信号
(又は■信号)とB−Y信号(又はQ信号)とが1日毎
に交互に時系列的に合成された線順次色差信号で搬送波
を周波数変調して得たFM線順次色差信号の周波数スペ
クトラムを示す。また第6図(B)に示す周波数スペク
トラムVは、低域変換搬送色信号で搬送波を周波数変調
して得たFM低域変換搬送色信号の周波数スペクトラム
を示す。更に第7図(B)は■で示す周波数スペクトラ
ムの低域変換搬送色信号と■で示す周波数スペクトラム
の高周波バイアス信号との多重信号の一波数スペクトラ
ムを示す。
The frequency spectrum ■ shown in Figure 5 (B) is a line-sequential color difference signal in which the R-Y signal (or ■ signal) and the B-Y signal (or Q signal) are synthesized alternately in time series every day. The frequency spectrum of an FM line sequential color difference signal obtained by frequency modulating a carrier wave is shown. Further, the frequency spectrum V shown in FIG. 6(B) shows the frequency spectrum of the FM low-pass conversion carrier color signal obtained by frequency modulating the carrier wave with the low-pass conversion carrier color signal. Further, FIG. 7(B) shows a single wave number spectrum of a multiplexed signal of a low-pass conversion carrier color signal having a frequency spectrum indicated by ``■'' and a high frequency bias signal having a frequency spectrum indicated by ▪.

第3図(A)〜第7図(A)に夫々示すFM輝度信号の
上限周波数(記録に必要な周波数帯域の最高周波数)は
、第3図(B)〜第7図(B)に夫々示す他方の映像信
号の上限周波数よりも高い。
The upper limit frequencies (the highest frequencies in the frequency band necessary for recording) of the FM luminance signals shown in Figures 3(A) to 7(A) are shown in Figures 3(B) to 7(B), respectively. higher than the upper limit frequency of the other video signal shown.

そこで、第1図に示す磁気ヘッド16,17゜19及び
20のうち、ヘッド・ディスク間相対線速度が大なる外
周側の記録領域W+ u 、W+ Lに信号の記録を行
なう外周側の磁気ヘッド16及び19には夫々FMi1
度信号が1日毎にスイッチングして交互に供給され、か
つ、上記相対線速度が′小なる内周側の記録領域W2 
u * W2 Lに信号の記録を行なう内周側の磁気ヘ
ッド17及び20には夫々第3図(B)〜第7図(B)
に示した5種の周波数スペクトラムのいずれか−の信号
が1日毎にスイッチングして交互に供給される。これに
より、外周側記録領域W1υ、WILには奇数。
Therefore, among the magnetic heads 16, 17° 19, and 20 shown in FIG. FMi1 on 16 and 19 respectively
Recording area W2 on the inner circumferential side where the speed signal is switched and alternately supplied every day, and where the above-mentioned relative linear velocity is small.
The magnetic heads 17 and 20 on the inner circumferential side that record signals on u*W2L are provided with the magnetic heads 17 and 20 shown in FIGS. 3(B) to 7(B), respectively.
The signals of any one of the five frequency spectra shown in (1) are switched every day and are alternately supplied. As a result, the outer recording area W1υ, WIL has an odd number.

偶数フィールドのFM輝度信号が記録され、内周側記録
領域W2 u * W’2 Lには奇数、偶数フィール
ドの2種の色差信号が、第3図(B)〜第7図(B)に
示した周波数スペクトラムのいずれか−の周波数スペク
トラムで記録される。
The FM luminance signal of the even field is recorded, and two types of color difference signals of the odd and even fields are recorded in the inner recording area W2 u * W'2 L, as shown in Figs. 3(B) to 7(B). The frequency spectrum is recorded as one of the indicated frequency spectra.

このように、本実施例によれば、2種の色差信号により
帯域制限されることなく、広帯域に選定されたFM11
度信号のみを外周側の記録領域W+ u 、W+ Lに
夫々記録し、かつ、2種の色差信号は第3図(B)〜第
7図(B)に示したいずれか−の所定の信号形態に変換
されて内周側の記録領域W 2 u * W 2 Lに
記録したので、第8図〜第10図と共に説明した従来の
記録方法に比し、FM11度信号はより広帯域で記録さ
れ、また輝度信号と2種の色差信号とは別々の記録領域
(トラック)に記録されるので輝度信号と2種の色差信
号とを同時に同一のトラックに記録する場合に生ずる相
互干渉やモアレは生ぜず、以上よりより高画質のカラー
映像信号の記録再生が可能となる。
In this way, according to this embodiment, the FM11 selected for wide band is not limited by the two types of color difference signals.
Only the color difference signals are recorded in the recording areas W+u and W+L on the outer circumferential side, respectively, and the two types of color difference signals are recorded as one of the predetermined signals shown in FIGS. 3(B) to 7(B). Since the FM 11 degree signal is recorded in the recording area W 2 u * W 2 L on the inner circumferential side, compared to the conventional recording method explained in conjunction with FIGS. 8 to 10, the FM 11 degree signal is recorded in a wider band. Also, since the luminance signal and the two types of color difference signals are recorded in separate recording areas (tracks), mutual interference and moiré that occur when the brightness signal and two types of color difference signals are simultaneously recorded on the same track are avoided. First, it becomes possible to record and reproduce color video signals of higher image quality.

なお、フィールドモードの再生が必要なければ、ディス
ク1を例えば1800rpmで回転させ、片面だけで記
録を行なえばよ(、その場合は上側記録面(又は下側記
録面)の外周側記録領域W+u(又はWIL)に磁気ヘ
ッド16(又は19)によりFM8度信号が連続的に螺
旋状トラックを形成して記録され、かつ、これと同時に
内周側記録領域W2U(又はW2L)に磁気ヘッド17
(又は20)により2種の色差信号が前記した第3図(
B)〜第7図(B)のいずれか−の所定の信号形態で連
続的に螺旋状トラックを形成して記録される。
Note that if field mode playback is not required, the disk 1 can be rotated at, for example, 1800 rpm and recorded on only one side (in that case, the outer recording area W + u of the upper recording surface (or lower recording surface) or WIL), the FM 8 degree signal is continuously recorded by the magnetic head 16 (or 19) forming a spiral track, and at the same time, the magnetic head 17 is recorded in the inner recording area W2U (or W2L).
(or 20), the two types of color difference signals are shown in FIG.
The data is recorded by continuously forming a spiral track in a predetermined signal format shown in any one of B) to FIG. 7B.

次に本発明の第2実施例につき説明するに、第2図は本
発明の第2実施例の記録領域及びヘッド配置等を示す。
Next, a second embodiment of the present invention will be described. FIG. 2 shows the recording area, head arrangement, etc. of the second embodiment of the present invention.

同図中、第8・図と同一構成部分には同一符号を付し、
その説明を省略する。第2図において、ブラケット22
にはディスク1の半径方向上にディスク1の外周側より
内周側へ磁気ヘッド23.24及び25が夫々一定距離
ずつ離間して取付固定され□ており、他方、ブラケット
26にはディスク1の半径方向上にディスク1の外周側
より内周側へ磁気ヘッド27.28及び29が夫々一定
距離ずつ離間して取付固定されている。
In the figure, the same components as in Figure 8 are designated by the same reference numerals.
The explanation will be omitted. In FIG. 2, the bracket 22
In the radial direction of the disk 1, magnetic heads 23, 24 and 25 are mounted and fixed at fixed distances from the outer circumferential side to the inner circumferential side of the disk 1, respectively. Magnetic heads 27, 28 and 29 are mounted and fixed at a fixed distance from each other in the radial direction from the outer circumferential side to the inner circumferential side of the disk 1.

磁気ヘッド23〜25はディスク1の上側記録面上を摺
動走査し、それらの離間距離は上側記録面を3つに等分
割して得られる同心円状の記録領域WAu、Wau+W
cuの各記録領域の半径方向上の長さに略等しい。他方
、磁気ヘッド27〜29はディスク1の下側記録面□を
摺動走査し、それらの離間距離は下側記録面を3つに等
分割して得られる同心円状の記録領域WAL、WBL。
The magnetic heads 23 to 25 slide and scan the upper recording surface of the disk 1, and the distance between them is determined by the concentric recording areas WAu, Wau+W obtained by equally dividing the upper recording surface into three parts.
It is approximately equal to the length in the radial direction of each recording area of cu. On the other hand, the magnetic heads 27 to 29 slide and scan the lower recording surface □ of the disk 1, and the distance between them is concentric recording areas WAL and WBL obtained by dividing the lower recording surface into three equal parts.

WCLの各記録領域の半径方向上の長さに略等しい。It is approximately equal to the length in the radial direction of each recording area of the WCL.

本実施例において、フィールドモード再生を考慮した場
合は、ディスク1は例えば3600rp−で回転され、
ブラケット22(磁気ヘッド23〜25)とブラケット
26(磁気ヘッド27〜29)とは、1フイールド毎に
交友に間欠的に歩進せしめられ、かつ、磁気ヘッド23
〜25と磁気ヘッド27〜29には1フイールド毎に映
像信号がスイッチングされて交互に供給されることによ
り、記録領域WAU、W8 u、Wcuには移動停止中
の磁気ヘッド23.24.25により例えば奇数フィー
ルドの3種の映像信号が別々に同心円状トラックを形成
して記録され、下側の記録領域WAL。
In this embodiment, when considering field mode reproduction, the disk 1 is rotated at, for example, 3600 rpm,
The bracket 22 (magnetic heads 23 to 25) and the bracket 26 (magnetic heads 27 to 29) are intermittently moved forward for each field, and the magnetic head 23
25 and the magnetic heads 27 to 29 are switched and alternately supplied with video signals for each field, and the recording areas WAU, W8 u, and Wcu are supplied with the video signals by the magnetic heads 23, 24, and 25 that are not moving. For example, three types of video signals of odd fields are recorded separately forming concentric tracks in the lower recording area WAL.

We L 、’WCLには移動停止中の磁気ヘッド27
゜28.29により偶数フィールドの上記3種の映像信
号が別々に同心円状トラックを形成して記録される。
We L, 'WCL has a magnetic head 27 that is not moving.
28.29, the three types of video signals of even fields are recorded separately forming concentric tracks.

ここで、上記の3種の映像信号は、カラー映像信号を構
成する3種の映像信号であり、輝度信号と2種の色差信
号との組合わせか、三原色信号の組合わせが考えられる
。前者の場合は、FM輝度信号と、R−Y信号(又はI
信号)で搬送波を周波数変調して得た第1のFM’色差
信号と、B−Y信号(又はQ信号)で別の搬送波を周波
数変調して得た第2のFMa差信号とが記録されるが、
これらのFM信号のうち最も上限周波数の高いのはFM
Ji度信号であり、次に上限周波数の高いのは第1のF
M色差信号である。そこで、最外周記録領域WAU及び
WALには磁気ヘッド23及び27によりFMH度信号
が記録され、中間の記録領域WBLJ及びWBLには磁
気ヘッド24及び”28により第1のFM色差信号が記
録され、最内周記録領域Wcu及びWCLには磁気ヘッ
ド25及び29により第2のFM色差信号が記録される
Here, the above three types of video signals are three types of video signals that constitute a color video signal, and may be a combination of a luminance signal and two types of color difference signals, or a combination of three primary color signals. In the former case, the FM brightness signal and the RY signal (or I
A first FM' color difference signal obtained by frequency modulating a carrier wave with a signal) and a second FMa difference signal obtained by frequency modulating another carrier wave with a B-Y signal (or Q signal) are recorded. However,
Among these FM signals, the one with the highest upper limit frequency is FM
Ji degree signal, and the one with the next highest upper limit frequency is the first F.
This is an M color difference signal. Therefore, the FMH degree signal is recorded in the outermost recording areas WAU and WAL by the magnetic heads 23 and 27, and the first FM color difference signal is recorded in the middle recording areas WBLJ and WBL by the magnetic heads 24 and "28. The second FM color difference signal is recorded in the innermost recording areas Wcu and WCL by the magnetic heads 25 and 29.

他方、上記の3種の映像信号が三原色信号である場合は
、青色信号E6で第1の搬送波を周波数変調して得た第
1のFM原色信号と、赤色信号ERで第2の搬送波を周
波数変調して得た第2のFM原色信号と、緑色信号Ec
で第3の搬送波を周波数変調して得た第3のFM原色信
号とが夫々別々の記録領域に記録される。ここで、上記
第1乃至第3のFM原色信号の各帯域は同一であり、上
限周波数は夫々等しい。他方、輝度信号EvはEY =
 0.30ER+ 0.59 Ee + 0.11 E
eで与えられるから、輝度信号EYを構成する上記三原
色信号の重み付けの割合は ER: EG: Ee −0,30: 0.59:  
0.11となり、緑色信号Ecの割合が最も大で、青色
信号E6の割合が最も小である。そこで、最内周記録領
域Wcu及びWCLには磁気ヘッド25及び29により
上記の第1のFM原色信号が記録され、中間の記録領域
Wau及びWBLには記録ヘッド24及び28により上
記の第2のFM原色信号が記録され、最外周記録領域W
AU及びWALには磁気ヘッド23及び27により上記
の第3のFM原色信号が記録される。このように記録す
ることによって、三原色信号のうち輝度信号を構成する
上において重み付けが最も大なる緑色信号が最もS/N
良く再生されることとなり、高画質のカラー映像信号を
再生することができる。
On the other hand, when the above three types of video signals are three primary color signals, the first FM primary color signal obtained by frequency modulating the first carrier wave with the blue signal E6 and the second carrier wave with the red signal ER are frequency modulated. The second FM primary color signal obtained by modulation and the green signal Ec
The third FM primary color signal obtained by frequency modulating the third carrier wave is recorded in separate recording areas. Here, each band of the first to third FM primary color signals is the same, and the upper limit frequencies are the same. On the other hand, the luminance signal Ev is EY =
0.30ER+ 0.59Ee+0.11E
Since it is given by e, the weighting ratio of the three primary color signals forming the luminance signal EY is ER: EG: Ee -0,30: 0.59:
0.11, the ratio of the green signal Ec is the largest and the ratio of the blue signal E6 is the smallest. Therefore, the first FM primary color signal is recorded in the innermost recording areas Wcu and WCL by the magnetic heads 25 and 29, and the second FM primary color signal is recorded in the intermediate recording areas Wau and WBL by the recording heads 24 and 28. FM primary color signals are recorded in the outermost recording area W
The above third FM primary color signal is recorded on the AU and WAL by the magnetic heads 23 and 27. By recording in this way, the green signal, which has the highest weighting when composing the luminance signal among the three primary color signals, has the highest S/N.
This results in good reproduction, and a high-quality color video signal can be reproduced.

なお、第2図において、フィールド再生を必要としない
場合は、磁気ヘッド23〜25と27〜29のうちいず
れか一方が不要となり、上側か下側のいずれか一方の記
録面のみが使用される。
In addition, in FIG. 2, if field reproduction is not required, one of the magnetic heads 23 to 25 and 27 to 29 is unnecessary, and only the upper or lower recording surface is used. .

なお、本発明は上記の実施例に限定されるものではなく
、磁気ヘッドの個数をディスク片面当り4個としてディ
スクの記録面を4分割し、4個の磁気ヘッドにより三原
色信号の高域周波数成分で搬送波を別々に周波数変調し
て得た3種の広帯°域FM信号と、三原色信号の低域周
波数成分を別々に周波数変調して得た狭帯域FM信号を
夫々周波゛数分割多重して得たーの周波数分割多重信号
とを別々の記録領域に別々に記録してもよい。また、回
転記録媒体は磁気ディスクに限らず、光磁気ディスク等
でもよい。
It should be noted that the present invention is not limited to the above-described embodiment, but the number of magnetic heads is four per side of the disk, the recording surface of the disk is divided into four, and the high frequency components of the three primary color signals are Three types of wideband FM signals obtained by frequency modulating the carrier waves separately and narrowband FM signals obtained by separately frequency modulating the low frequency components of the three primary color signals are frequency division multiplexed. The frequency-division multiplexed signal obtained from the above may be recorded separately in separate recording areas. Further, the rotating recording medium is not limited to a magnetic disk, but may also be a magneto-optical disk or the like.

発明の効果 上述の如く、本発明によれば、2種乃至4種の記録信号
を記録信号の数と同じ数に分割した回転記録媒体上の記
録領域の夫々に、上限周波数に応じて上限周波数が高い
記録信号ほど外周側記録領域に記録するように別々に記
録したので、より一層S/Nが良好で高画質の再生カラ
ー映像信号を再生でき、また、三原色信号は輝度信号を
構成する上において重み付けの大なる(構成比の大なる
)原色信号ほど外周側記録領域に記録したので、より高
画質の再生カラー映像信号が得られるようにできる等の
特長を有するものである。
Effects of the Invention As described above, according to the present invention, an upper limit frequency is set in each of the recording areas on a rotating recording medium in which two to four types of recording signals are divided into the same number of recording signals, according to the upper limit frequency. Since the recording signals with higher values are recorded separately in the outer recording area, it is possible to reproduce reproduced color video signals with an even better S/N ratio and higher image quality. Since the primary color signals with higher weighting (larger composition ratio) are recorded in the outer recording area, it has the advantage that a reproduced color video signal of higher image quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明の各実施例の記録領域及
びヘッド配置等を丞す図、第3図〜第7図は夫々第1図
図示の実施例における記録信号の周波数スペクトラムの
各個を示す図、第8図〜第10図i夫々従来の各個の記
録方法を説明する図である。 1・・・円盤状回転記録媒体(ディスク)、16゜17
.19.20.23〜25.27〜29・・・磁気ヘッ
ド、W+ u、W+ L、WALJ、WAL−外周側記
録領域、W2 u、W2 L、WCU、WCL・・・内
周−記録領域、We u 、 We L・・・中間記録
領域。
1 and 2 are diagrams showing the recording area, head arrangement, etc. of each embodiment of the present invention, and FIGS. 3 to 7 are diagrams showing the frequency spectrum of the recording signal in the embodiment shown in FIG. 1, respectively. FIG. 8 to FIG. 10 are diagrams illustrating the conventional recording method of each individual. 1...Disc-shaped rotating recording medium (disc), 16°17
.. 19.20.23~25.27~29...Magnetic head, W+u, W+L, WALJ, WAL-outer recording area, W2 u, W2 L, WCU, WCL...inner recording area, We u, We L...Intermediate recording area.

Claims (3)

【特許請求の範囲】[Claims] (1)一定周波数で回転せしめられる円盤状回転記録媒
体の記録面を同心円状の複数の記録領域に分割し、カラ
ー映像信号を構成する2種以上の信号を所定の信号形態
に変換して得た2種乃至4種の記録信号のうち、上限周
波数又は重み付けが高い記録信号ほど該複数の記録領域
のうち外周側の記録領域に記録されるように該2種乃至
4種の記録信号をその上限周波数又は重み付けに応じて
別々のヘッドで該複数の記録領域に別々に振り分けて記
録することを特徴とする回転記録媒体への映像信号記録
方法。
(1) The recording surface of a disk-shaped rotating recording medium that is rotated at a constant frequency is divided into a plurality of concentric recording areas, and two or more types of signals that make up a color video signal are converted into a predetermined signal format. Among the two to four types of recording signals, the two to four types of recording signals are arranged so that the recording signal with a higher upper limit frequency or weighting is recorded in an outer recording area among the plurality of recording areas. 1. A method for recording video signals on a rotating recording medium, characterized in that video signals are recorded on the plurality of recording areas separately by separate heads according to an upper limit frequency or weighting.
(2)該カラー映像信号を構成する2種以上の信号は輝
度信号と2種の色差信号であり、該2種乃至4種の記録
信号は該輝度信号で搬送波を周波数変調して得た被周波
数変調輝度信号を含む2種乃至3種の信号であり、該被
周波数変調輝度信号を最外周の記録領域に記録すること
を特徴とする特許請求の範囲第1項記載の回転記録媒体
への映像信号記録方法。
(2) The two or more types of signals constituting the color video signal are a luminance signal and two types of color difference signals, and the two to four types of recording signals are obtained by frequency modulating a carrier wave with the luminance signal. 2 or 3 types of signals including a frequency modulated luminance signal, and the frequency modulated luminance signal is recorded in the outermost recording area of the rotating recording medium according to claim 1. Video signal recording method.
(3)該カラー映像信号を構成する2種以上の信号は青
色信号、赤色信号及び緑色信号よりなる三原色信号であ
り、該2種乃至4種の記録信号は該青色信号、赤色信号
及び緑色信号で搬送波を別々に周波数変調して得た第1
乃至第3の被周波数変調波信号であり、該青色信号を変
調信号とする該第1の被周波数変調波信号を3つの記録
領域のうち最内周の記録領域に記録し、該赤色信号を変
調信号とする該第2の被周波数変調波信号を中間の記録
領域に記録し、輝度信号を構成する三原色信号中最も重
み付けの高い該緑色信号を変調信号とする該第3の被周
波数変調波信号を最外周の記録領域に記録することを特
徴とする特許請求の範囲第1項記載の回転記録媒体への
映像信号記録方法。
(3) The two or more types of signals constituting the color video signal are three primary color signals consisting of a blue signal, a red signal, and a green signal, and the two to four types of recording signals are the blue signal, red signal, and green signal. The first wave obtained by frequency modulating the carrier waves separately with
The first frequency modulated wave signal, which is a third frequency modulated wave signal and uses the blue signal as a modulating signal, is recorded in the innermost recording area of the three recording areas, and the red signal is recorded in the innermost recording area of the three recording areas. The second frequency modulated wave signal, which is used as a modulation signal, is recorded in an intermediate recording area, and the third frequency modulated wave signal, which is the green signal that has the highest weighting among the three primary color signals that constitute the luminance signal, is recorded as a modulation signal. A method for recording video signals on a rotating recording medium according to claim 1, characterized in that the signal is recorded in the outermost recording area.
JP60097167A 1985-05-08 1985-05-08 Method for recording video signal to rotation recording medium Pending JPS61255194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097167A JPS61255194A (en) 1985-05-08 1985-05-08 Method for recording video signal to rotation recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097167A JPS61255194A (en) 1985-05-08 1985-05-08 Method for recording video signal to rotation recording medium

Publications (1)

Publication Number Publication Date
JPS61255194A true JPS61255194A (en) 1986-11-12

Family

ID=14185016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097167A Pending JPS61255194A (en) 1985-05-08 1985-05-08 Method for recording video signal to rotation recording medium

Country Status (1)

Country Link
JP (1) JPS61255194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224576A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Optical disk picture recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224576A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Optical disk picture recording and reproducing device

Similar Documents

Publication Publication Date Title
US4743977A (en) VTR having magnetic-head array capable of recording/reproducing signals of a plurality of recording systems
JPH0410792B2 (en)
US4654724A (en) Recording method for video and audio signals in magnetic picture recording system
US3830961A (en) Magnetic recording and reproducing system
JPS61255194A (en) Method for recording video signal to rotation recording medium
JPS63194494A (en) Video signal recording method
JPS6257104A (en) Magnetic recording method
JPH0239917B2 (en)
JPH05266443A (en) Magnetic recording and reproducing device
JPS6117041B2 (en)
JPH0459831B2 (en)
JPH01175485A (en) Color video signal magnetic recording and reproducing device
JPS61195097A (en) Color video signal recording and reproducing device
JP3019903B2 (en) Video signal recording system
JPH03108985A (en) Magnetic recording and reproducing device for high fidelity color video signal
JPS6246404A (en) Magnetic recording method
JPS62216488A (en) Video signal recording method
JPS61245689A (en) Information signal transmitting device
JPS6257101A (en) Rotary transformer device
JPH0466069B2 (en)
JPS61199203A (en) Magnetic recorder
JPS61248696A (en) Transmission device for color video signal
JPS61195096A (en) Color video signal recording and reproducing device
JPH02276001A (en) Magnetic recording/reproducing device
JPS6233306A (en) Video signal recording and reproducing device