JPS6125498A - Reagent for quantitative determination of component in body fluid - Google Patents
Reagent for quantitative determination of component in body fluidInfo
- Publication number
- JPS6125498A JPS6125498A JP14440884A JP14440884A JPS6125498A JP S6125498 A JPS6125498 A JP S6125498A JP 14440884 A JP14440884 A JP 14440884A JP 14440884 A JP14440884 A JP 14440884A JP S6125498 A JPS6125498 A JP S6125498A
- Authority
- JP
- Japan
- Prior art keywords
- dehydrogenase
- electron
- reaction
- reagent
- electron acceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、生体液中の成分の測定に用いる新規な検査試
薬に関する。すなわち主に、生体液の臨床検査に利用さ
れるものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a novel test reagent used for measuring components in biological fluids. That is, it is mainly used for clinical testing of biological fluids.
「従来の技術」
生体液中の成分の測定方法が、繁雑な抽出、濃縮、分離
操作を必要とするもの、或いは特異性の低い化学反応に
よるものから、簡便でしかも特異性の高い正確な測定が
可能となる酵素法へと推移して久しい。これらの測定方
法は、主に次の二種類の酵素系のいずれかを利用する場
合が殆どである。すなわち、目的とする成分を脱水素酵
素を介して水素(電子)量として測定するもの、他方は
、酸化酵素を介して過酸化水素量として測定するもので
ある。と勺わけ、前者の脱水素酵素を用いた方法は、利
用可能な酵素が豊富なため、古くから多用されておシ、
測定は、酵素反応に共役した補酵素の還元量或いは電子
伝達体を介して電子受容体を変化させその変化量を検知
することから行われる。本発明は、この脱水素酵素、電
子伝達体、及び電子受容体を利用した測定方法のための
新規な試薬成分に関するものである。``Prior art'' Methods for measuring components in biological fluids have changed from those that require complicated extraction, concentration, and separation operations, or those that rely on chemical reactions with low specificity, to simple yet highly specific and accurate measurements. It has been a long time since the transition to enzymatic methods that made it possible. Most of these measurement methods mainly utilize one of the following two types of enzyme systems. That is, the target component is measured as the amount of hydrogen (electrons) via a dehydrogenase, and the other component is measured as the amount of hydrogen peroxide via an oxidase. The former method, which uses dehydrogenase, has been widely used since ancient times due to the abundance of available enzymes.
The measurement is performed by detecting the amount of reduction of a coenzyme coupled to an enzyme reaction or changing the electron acceptor via an electron carrier and detecting the amount of change. The present invention relates to novel reagent components for a measurement method using this dehydrogenase, electron carrier, and electron acceptor.
この電子伝達体を介する反応では、脱水素酵素の作用に
より、成分1分子当た92個の電子が放出され、電子伝
達体を介して電子受容体が還元される。従って、電子受
容体の変化量を監視するととKよって、検出系が成立す
ることになる。この検出系は電子の流れを直接電極系へ
導いて生じた電流を電気的に計測する場合や電子受容体
の還元によって光吸収特性に変化を生じさせ、その変化
量を分光光学的に測定する場合が多い。直接短気的変化
量をみる前者においては電子受容体として電池の一方の
電極をなすもの、例えば白金又は適当に処理された炭素
などが用いられ、この電極は第2の電極例えば銀/塩化
銀、フェリシアン化物中の白金などに接続され、塩橋等
がこの二電極間を接続する。勿論これらの電極の形態に
ついては種々である。他方、後者の光吸収特性に変化を
生じる電子受容体には、例えば2.4−ジクロロフェノ
ールインドフェノールや捕々のテトラゾリウム塩などが
あるが、これらを用いた場合には、その還元量を分光光
学的に測定することができる。In this reaction mediated by an electron carrier, 92 electrons are released per component molecule by the action of dehydrogenase, and the electron acceptor is reduced via the electron carrier. Therefore, if the amount of change in the electron acceptor is monitored, a detection system will be established. This detection system can be used to electrically measure the current generated by directing the flow of electrons to an electrode system, or to cause a change in light absorption characteristics by reducing the electron acceptor, and to measure the amount of change spectrophotometrically. There are many cases. In the former case, where short-term changes are directly measured, one electrode of the battery, such as platinum or suitably treated carbon, is used as the electron acceptor, and this electrode is used as the electron acceptor, and this electrode is connected to the second electrode, such as silver/silver chloride, It is connected to platinum etc. in ferricyanide, and a salt bridge etc. connects these two electrodes. Of course, the shapes of these electrodes may vary. On the other hand, examples of electron acceptors that cause changes in the latter's light absorption properties include 2,4-dichlorophenolindophenol and the rare tetrazolium salts. It can be measured optically.
これらは、しばしば可視領域における色の変化を伴なう
。実際に病院等での生体液中の成分の分析には、もっば
らこの簡便な吸光度分析が利用されている。中でも電子
受容体にテトラゾリウム塩を用いて、この還元反応によ
り生成するホルマザン量をインディケータ−とする場合
が一般的である。These are often accompanied by color changes in the visible region. In fact, this simple absorbance analysis is often used in the analysis of components in biological fluids in hospitals and the like. Among these, it is common to use a tetrazolium salt as an electron acceptor and use the amount of formazan produced by this reduction reaction as an indicator.
「発明が解決しようとする問題点」
ホルマザンの発色反応は、組織切片中の目的成分の染色
や心気泳動像の染色など難溶性という性質がメリットと
なる反面、試験管や比色時に用いるキュベツト、チュー
ブ類に著しく吸着するため、自動分析機など高価な機材
での使用は敬遠されており、その利用度はかなり低い。``Problems to be solved by the invention''Formazan's color reaction has the advantage of being poorly soluble, such as staining target components in tissue sections and staining electrophoresis images, but it is difficult to use in test tubes or cuvettes used for colorimetry. Because it adsorbs significantly to tubes, its use in expensive equipment such as automatic analyzers is avoided, and its usage is quite low.
さらに、水溶性のインディケータ−の場合には一定のモ
ル吸光係数を示すものに対してホルマザンは難溶性なた
めに、反応溶媒の脂溶性の程度によってモル吸光係数が
変動するという欠点を持つ。(又モル吸光係数は、最大
でも約2万である。)従って生体液中に比較的、高濃度
に含有される成分、或いは他の方法が適用できない成分
に限られることになる。Furthermore, in the case of water-soluble indicators, which exhibit a constant molar extinction coefficient, formazan is sparingly soluble, so it has the disadvantage that the molar extinction coefficient varies depending on the degree of fat solubility of the reaction solvent. (Also, the molar extinction coefficient is approximately 20,000 at most.) Therefore, it is limited to components that are contained in biological fluids at relatively high concentrations or to components to which other methods cannot be applied.
さらに、この反応系を構成す、る補酵素、電子伝達体、
或いは電子受容体への当該反応以外の干渉反応もあって
、決して満足できる測定法にはなっていない。この生体
液の分析に伴なう干渉反応は、分光光学的分析法、電気
的分析法のいかんに関らず、脱水素酵素、電子伝達体、
電子受容体から成る反応系に本質的なものであシ、本発
明の第1の目的は、これを改良する試薬を提供すること
である。Furthermore, coenzymes, electron carriers, and
Alternatively, there may be interference reactions other than the reaction to the electron acceptor, so the measurement method is never satisfactory. Interference reactions accompanying the analysis of biological fluids are caused by dehydrogenases, electron carriers,
This is essential to a reaction system consisting of an electron acceptor, and the first object of the present invention is to provide a reagent that improves this.
最近、F−を電子受容体とするトリグリセリドの測定法
が提案され(公開特許公報昭54−80192)、ホル
マザンと異なる水溶性の発色性電子受容体の脱水素酵素
への適用が示唆された。しかし、この反応例では特に生
体液中に存在する目的成分以外の成分による干渉作用を
受は易いため、この場合においても、測定可能々成分は
、検体量が微量ですむ比較的高濃度に含有されるものに
限られてしまう。又、F−自身の保存性が悪く、しはし
は赤褐色の沈殿形成やF−への還元が自然におこる結果
、経時的な試薬ブランク値の上昇が著しい。このように
、試薬として著しく不安定であり、検体の添加以前に発
色が見られるため、検体ごとに試薬ブランク値を読みと
る必要があって、非常に取り扱いにくい。これらのこと
は日常の検査においては非常に不便である。さらに鉄を
含む重金属類は、酵素特にSH酵素などに阻害的な影響
を与えて失活させ、又、鉄キレート剤も鉄を含有する金
属酵素類に失活をおこさせることが、一般に認識されて
いる。この意味において、F−と、鉄キレート剤を用い
た方法を広く種々の成分の測定に適用するのは、何らか
の対策なくしては困難である。Recently, a method for measuring triglycerides using F- as an electron acceptor has been proposed (Publication of Patent Publication No. 54-80192), and the application of a water-soluble chromogenic electron acceptor different from formazan to dehydrogenases has been suggested. However, in this reaction example, it is particularly easy to receive interference from components other than the target component present in the biological fluid, so even in this case, the measurable component is contained in a relatively high concentration that requires only a small amount of sample. It is limited to what can be done. Furthermore, F- itself has poor storage stability, and as a result of the formation of reddish-brown precipitates and reduction to F-, the reagent blank value increases markedly over time. As described above, it is extremely unstable as a reagent and develops color before adding the sample, so it is necessary to read the reagent blank value for each sample, making it extremely difficult to handle. These things are extremely inconvenient in daily testing. Furthermore, it is generally recognized that heavy metals containing iron have an inhibitory effect on enzymes, especially SH enzymes, causing their inactivation, and that iron chelating agents also deactivate metalloenzymes containing iron. ing. In this sense, it is difficult to apply the method using F- and an iron chelating agent to the measurement of a wide variety of components without some countermeasures.
−力説水素酵素反応のインディケータ−としての鉄錯体
は、上記のホルマザンに比べ、有利な特性を有する。す
なわち、1分子の成分の脱水素反応によって生成される
2個の電子が、そのまま2分子のFe″+を還元するた
め、感度が倍増し、非常に高感度な測定系が成立する。Iron complexes as indicators of powerful hydrogen enzyme reactions have advantageous properties compared to the above-mentioned formazan. In other words, two electrons generated by the dehydrogenation reaction of one molecule of components directly reduce two molecules of Fe''+, thereby doubling the sensitivity and establishing an extremely sensitive measurement system.
しかも、生成した錯体は、水溶性であるので、従来のホ
ルマザンの持つ難溶性という問題点が完全に除去できる
性質を持つものである。従って、この発色剤は胆汁酸ク
レアチニン、クレアチン等の生体液中に微ff1K含有
される成分の測定に有利な方法を提供するものであるが
、先に述べたように、干渉物質の影響を受は易いために
1 しばしば目的成分由来の反応に比べて干渉物質によ
る反応が大きくなってしまい、測定の信頼度を著しく損
う。又、この干渉作用は、各種検査機関等ですでに日常
検査として汎用されている分光分析法においても、充分
に回避されていないものであるから、上述の色素系にお
ける徨々の課題と合わせこれを解決すること、すなわち
、脱水素酵素、電子伝達体、電子受容体の反応に本質的
に存在する干渉作用を抑制して日常検査をより簡便でよ
シ正確なものとし、さらに微量成分の測定が可能な色素
系を実用化させることは、重要なテーマでアシ、実際面
への寄与も太きいものである。Moreover, since the generated complex is water-soluble, it has the property of completely eliminating the problem of poor solubility of conventional formazan. Therefore, this coloring agent provides an advantageous method for measuring components such as the bile acids creatinine and creatine that are contained in small amounts of FF1K in biological fluids, but as mentioned above, it is susceptible to interference substances. Because it is easy to use, the reaction caused by the interfering substance often becomes larger than the reaction caused by the target component, significantly impairing the reliability of the measurement. Furthermore, this interference effect has not been fully avoided even in spectroscopic analysis methods that are already widely used as routine tests at various inspection institutions, so this interference effect, along with the numerous problems with dye systems mentioned above, must be avoided. In other words, by suppressing the interference that inherently exists in the reactions of dehydrogenases, electron carriers, and electron acceptors, we can make daily tests easier and more accurate, and also measure trace components. The practical application of dye systems that can be used for this purpose is an important theme and will make a significant contribution to practical matters.
本発明者らは、かかる要件に着目し、鋭意研究した結果
、本発明を完成するに至った。The inventors of the present invention focused on these requirements and, as a result of intensive research, completed the present invention.
「問題点を解決するための手段」(及び効果)すなわち
本発明社電子伝達体及び検出に要す電子受容体の存在下
、遊離の補酵素を必要とする脱水素酵素或いは、補酵素
を補欠分子族として保持する脱水素酵素を介する反応に
より生成される電子を検出することによる生体液中の成
分の測定方法において、当該反応以外の干渉反応を抑制
する試薬として酒石酸或いはそのアルカリ塩を添加して
成る仁とを特徴とする生体液中の成分の定量用試薬であ
る。"Means for solving the problem" (and effects), namely, dehydrogenases that require free coenzymes or supplementary coenzymes in the presence of electron carriers and electron acceptors required for detection. In a method for measuring components in a biological fluid by detecting electrons generated by a reaction mediated by a dehydrogenase held as a molecular group, tartaric acid or its alkali salt is added as a reagent to suppress interference reactions other than the relevant reaction. This is a reagent for quantifying components in biological fluids, which is characterized by a kernel consisting of:
以下本発明の詳細な説明する。本発明は脱水素酵素、電
子伝達体、電子受容体への一連の反応を行なわしめる時
、そこに酒石酸或いはそのアルカリ塩を共存させると、
干渉作用の影響が著しく減少することに基き、これによ
って脱水素酵素を用いた測定法をより正確で信頼度の高
いものとしたものである。第1図は血清由来干渉反応に
対する0、2Mの酒石酸ナトリウムによる干渉作用の低
下(図中Tで示されるグラフ)の状況を対称(図中Cで
示されるグラフ)と対比して吸光度(564nm)と反
応時間の関係で表わしたもの(但し、血清100μA!
/1.(ロ)であるが、顕著な効果が認められる。The present invention will be explained in detail below. In the present invention, when performing a series of reactions to dehydrogenase, electron carrier, and electron acceptor, if tartaric acid or its alkali salt is coexisting therein,
This makes the measurement method using dehydrogenase more accurate and reliable, since the influence of interference effects is significantly reduced. Figure 1 shows the decrease in the interference effect of 0 and 2M sodium tartrate on the serum-derived interference reaction (the graph indicated by T in the figure), in contrast to the symmetrical state (the graph indicated by C in the figure), and the absorbance (564 nm). Expressed in relation to reaction time (however, serum 100μA!
/1. (b) However, a remarkable effect is recognized.
更に本発明においては、色素系として感度が高く水溶性
であるという面で有利なF−及びその発色性キレート剤
を用いる時、鉄自身の安定性、酸化状態でのF−と鉄キ
レート剤間の安定性反応後の還元発色状態での安定性を
保持ししかも脱水素酵素への阻害を回避し、干渉反応を
抑制するためKはシュウ酸或いはそのアルカリ塩を共存
させるとよシ好ましい効果が得られる。第2図は最終濃
度0.2モラーのF−のFe+への変化に対する−の影
響において1ミリモラーのシュウ酸ナトリウムの存在が
その影響を緩和してF−を安定化させている状況(図中
Oで示されるグラフ)を対称(図中Cで示されるグラフ
)と対比して表したものである。Furthermore, in the present invention, when using F-, which is advantageous in terms of high sensitivity and water solubility as a dye system, and its color-forming chelating agent, the stability of iron itself and the relationship between F- and the iron chelating agent in the oxidized state are important. In order to maintain stability in the reduced coloring state after the stability reaction, avoid inhibition of dehydrogenase, and suppress interference reactions, it is recommended that K coexist with oxalic acid or its alkali salt for a favorable effect. can get. Figure 2 shows a situation where the presence of 1 millimolar sodium oxalate alleviates the influence of - on the change of F- to Fe+ at a final concentration of 0.2 molar and stabilizes F- (in the figure). The graph shown in FIG.
生体試料中に含まれ、干渉作用を有すると思われる物質
としては、例えばアスコルビン酸、尿酸ビリルビンに代
表される還元性物質が挙げられる。Examples of substances that are contained in biological samples and are thought to have an interfering effect include reducing substances such as ascorbic acid and bilirubin urate.
又、試料中に含まれる他の脱水素酵素の反応或いは種々
の低分子物質を吸着したアルジミン等も、Fe”+等の
電子受容体を還元し、誤差の要因になると考えられる。In addition, reactions of other dehydrogenases contained in the sample or aldimine adsorbing various low-molecular substances are also thought to reduce electron acceptors such as Fe''+ and cause errors.
第2図に示したようにFe”は酸性から中性において、
徐々にFe丑へと変化し、反応時に不都合な着色をもた
らす。又弱酸性からアルカリ性においてヒドロキソ錯体
Fe”(OH−)ゎを生じOH−がとの錯体同志を架橋
するだめに重合が起こって、沈殿を形成してしまうこと
もある。これらの現象を防ぐためには、F−の弱い配位
子となる物質を安定剤として共存させる必要があるが、
この安定剤はF−或いはF−と鉄キレート剤間の安定性
のみならず、F−と電子伝達体との反応性にも影響を与
え、干渉反応を抑制する作用をも有していた。すなわち
、F−の安定化効果は、しばしば本反応や干渉反応を抑
制する傾向にあった。シュウ酸はF−を安定に保ち、し
かも電子伝達体からの電子の流れを妨げることなく、円
滑に行わせる最も適切な安定剤として選ばれたものであ
る。As shown in Figure 2, Fe'' is
It gradually transforms into Fe ox, resulting in unfavorable coloring during the reaction. In addition, in weakly acidic to alkaline conditions, the hydroxo complex Fe"(OH-) is formed, and OH- crosslinks the complexes with each other, leading to polymerization and formation of precipitates. To prevent these phenomena, It is necessary to coexist with a substance that becomes a weak ligand of F- as a stabilizer,
This stabilizer affected not only the stability between F- or F- and the iron chelating agent, but also the reactivity between F- and the electron carrier, and had the effect of suppressing interference reactions. That is, the stabilizing effect of F- often tended to suppress main reactions and interference reactions. Oxalic acid was selected as the most suitable stabilizer to keep F- stable and to facilitate the flow of electrons from the electron carrier without interfering with it.
さらK、詳しく本発明を説明すれば脱水素酵素、電子伝
達体、電子受容体の存在下に干渉反応抑制のために使用
する酒石酸或いはそのアルカリ塩の反応液中の終濃度は
0゜01〜1.0M、であシ、好ましくけ0.1〜0.
5Mである。一連の反応又はF−と鉄キレート剤間の安
定化のために使用するシュウ酸或いはそのアルカリ塩は
、同反応液中に0.5〜100mMさらに好ましくは、
2〜50rnMの濃度範囲で使用できる。Further, to explain the present invention in detail, the final concentration in the reaction solution of tartaric acid or its alkaline salt used to suppress interference reactions in the presence of dehydrogenase, electron carrier, and electron acceptor is 0.01 to 0.01. 1.0M, solid, preferably 0.1-0.
It is 5M. The oxalic acid or its alkali salt used for the series of reactions or for stabilizing the relationship between F- and the iron chelating agent is more preferably 0.5 to 100 mM in the reaction solution.
It can be used in a concentration range of 2-50 rnM.
電子受容体としてF−と鉄キレート剤を用いる分光分析
では、用いられる鉄キレート剤は、パンフェナンスロリ
ンやそのスルホン酸基、或いは2−(5−ブロモピリジ
ルアゾ)−5−(N−プロピル−N−スルホゾロビルア
ミノ)アニリンナトリウム塩(5−Br−PSAA)、
3−(2−ピリジル)−5,6−ビス(4−スルホフェ
ニル) −lt 214−トリアジン2ナトリウム塩(
PDTS )がこれらの干渉作用に対して最も有利であ
シ、当該の脱水素反応に影響なく円滑に反応を進ませ目
的成分以上の干渉作用を受けにくいものとして姻ばれる
が、これはFc と鉄キレート剤との錯体における固
有の酸化還元電位に由来する問題であって、本発明の干
渉作用を抑制する物質や安定剤の選定に関する本質とは
直接関係しない。又、これまでに述べた脱水素酵素、電
子伝達体、電子受容体への一連の反応を行い得る適切な
声は4〜10、さらに好ましくは、6〜9の範囲である
。以上の条件を用いる時、F−自身の安定性及び酸化状
態でのF−と鉄キレート剤間の安定性は飛躍的に向上し
、脱水素酵素、電子伝達体を介した一連の還元発色反応
においては、生体液由来の干渉反応に殆ど影響されるこ
となく目的成分の正確な測定が可能となる。In spectroscopy using F- and iron chelators as electron acceptors, the iron chelators used are panphenanthroline, its sulfonic acid group, or 2-(5-bromopyridylazo)-5-(N-propyl). -N-sulfozolobylamino)aniline sodium salt (5-Br-PSAA),
3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-lt 214-triazine disodium salt (
PDTS) is the most advantageous against these interference effects, and is said to proceed smoothly without affecting the dehydrogenation reaction, and is less susceptible to interference effects greater than those of the target components. This problem arises from the inherent redox potential of the complex with the chelating agent, and is not directly related to the essence of the selection of the substance and stabilizer that suppresses the interference effect of the present invention. Further, the appropriate range for carrying out the series of reactions to the dehydrogenase, electron carrier, and electron acceptor described above is in the range of 4 to 10, more preferably 6 to 9. When the above conditions are used, the stability of F- itself and the stability between F- and the iron chelating agent in the oxidized state are dramatically improved, and a series of reductive coloring reactions mediated by dehydrogenase and electron carriers occur. In this method, it is possible to accurately measure target components without being affected by interference reactions derived from biological fluids.
微量成分ヤある胆汁酸、クレアチン、クレアチニンなど
は、従来から前述の問題を有するホルマザン発色法、抗
体を使った免疫学的手法や螢光色素を用いた方法により
測定されているが、抗体の特異性と反応性に関する品質
管理上の難しさや、螢光光度計など特殊な機器が必要で
あった。これらの先行技術に比較して、本発明は、既存
の設備を用いる中で最も高い感度と水溶性というホルマ
ザンには欠く性質を持つ、広く目的成分に関る脱水素酵
素反応に依存した実用的測定試薬を提供するものである
。Trace components such as bile acids, creatine, and creatinine have traditionally been measured using the formazan color method, which has the problems mentioned above, immunological methods using antibodies, and methods using fluorescent dyes. There were difficulties in quality control regarding properties and reactivity, and special equipment such as a fluorometer was required. Compared to these prior art techniques, the present invention provides a practical solution that relies on a dehydrogenase reaction involving a wide range of target components, with the highest sensitivity and water solubility, properties that formazan lacks, using existing equipment. It provides measurement reagents.
「実施例」 以下に実施例によってさらに詳しく説明する。"Example" This will be explained in more detail below using examples.
実施例1
血清中の総胆汁酸の測定
1、 試薬
溶液A
10mM3−(2−ピリジル)−5,6−ビス(4−ス
ルホフェニル) −11214−)リアジン2ナトリウ
ム塩(PDTS )% 0.42M口、シェル塩と80
μMメトキシーフェナジンメトサルフェートを含む0.
1Mトリーエタノールアミン緩衝液−7,0
溶液B
0、55 mM鉄ミ、ウバン、37mMシュウ酸ナトリ
ウム、1 % Trlton X−100、リノク−ゼ
400U〜、3α−ヒドロキシステロイド脱水素酵素0
.4 UARl、 と6成NADを含む0.1 M
)リックノールアミン緩衝液pH7,0
溶液C
3α−ヒドロキシステロイド脱水素酵素を除く溶液Bと
同様の試薬
溶液D
■I′rIMジエチレントリアミン5酢酸(、I)TP
A )を含む0.1M3.3−&メチルグルタル酸緩衝
液pH6,0
2操作方法
血清Zooμ11溶液A0.25m/を試験管にとシ溶
液B O,25rRlを加えて37℃で正確に10分間
反応させた後、ただちに溶液D1mlを添加して室温に
戻す。同時に溶液Bを溶液CK代えて同様に操作したも
のを検体ブランクとして564 nmの吸光度を測定す
る。次に血清検体と同一方法で処理した既知コール酸ナ
トリウムの溶液によって示される吸光度と測定吸光度か
ら検体ブランク吸光度を差し引いた吸光度との比較によ
って血清検体中の総胆汁酸濃度を算出する。上記の諸条
件下で第3図に示す如<in(綜的な吸光度の応答が2
00μMの総胆汁酸のレベルまで認められた。Example 1 Measurement of total bile acids in serum 1, Reagent solution A 10mM 3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-11214-)riazine disodium salt (PDTS) % 0.42M mouth, shell salt and 80
0.01 containing μM methoxyphenazine methosulfate.
1M Triethanolamine Buffer -7.0 Solution B 0, 55mM Iron, Uban, 37mM Sodium Oxalate, 1% Trlton
.. 0.1 M containing 4 UARl, and 6 NAD
) Lichnolamine buffer pH 7.0 Solution C Reagent solution D similar to solution B except for 3α-hydroxysteroid dehydrogenase I'rIM diethylenetriaminepentaacetic acid (,I)TP
A) 0.1M 3.3-& Methylglutarate buffer pH 6,02 containing A) Serum Zooμ11 solution A 0.25m/ml was added to a test tube and Zooμ11 solution B O, 25rRl was added to the test tube for exactly 10 minutes at 37°C. Immediately after the reaction, 1 ml of solution D is added and the temperature is returned to room temperature. At the same time, the absorbance at 564 nm was measured using a sample blank that was operated in the same manner by replacing solution B with solution CK. Next, the total bile acid concentration in the serum sample is calculated by comparing the absorbance shown by a known sodium cholate solution treated in the same manner as the serum sample and the absorbance obtained by subtracting the sample blank absorbance from the measured absorbance. Under the above conditions, the overall absorbance response is <in> as shown in Figure 3.
Levels of up to 00 μM total bile acids were observed.
実施例2
血清中のクレアチンの測定
1、試薬
溶液A
10mM3−(2−ピリジル)−5+ 6−ビス(4−
スルホフェニル)−1,2,4−)リアジン2ナトリウ
ム塩(PDTS )、0.42Me!、シェル塩と80
μMメトキシフェナ・ゾンーメトサルフェートヲ含む0
.1 M )リッタノールアミン緩衝液p)17.0溶
液B
Z2mM鉄ミ、ウパン、90mMシュウ酸、1%Trl
ton X−1001リ/4’−ゼ400 U、4/、
クレアチナーゼ70 Ufil、デルコシン脱水素酵素
30 U/kl。Example 2 Measurement of creatine in serum 1, Reagent solution A 10mM 3-(2-pyridyl)-5+ 6-bis(4-
Sulfophenyl)-1,2,4-) riazine disodium salt (PDTS), 0.42Me! , shell salt and 80
μM Methoxyphena Zone - Contains Methosulfate 0
.. 1 M) rittanolamine buffer p) 17.0 Solution B Z2mM iron, upan, 90mM oxalic acid, 1% Trl
ton X-1001 li/4'-ze 400 U, 4/,
Creatinase 70 Ufil, Delcosine Dehydrogenase 30 U/kl.
0、1 % (W/V)牛アルブミンを含む0、IM)
リッタノールアミン緩衝液pJ(7,0
溶液C
30mMリン酸ナトリウム緩衝液pH7,02操作方法
血清20μ11溶液A O,5mを試験管にとシ溶液B
O,5mを加えて37℃で10分間反応させた彼、た
だちに溶液01−を添加して室温に戻す。別に血清を加
えずに同様に操作したものを試薬ブランクとじて564
nmの吸光度を測定する。次に血清検体のクレアチン
含量を血清検体と同一方法で処理した既知クレアチン含
量の溶液によって示される吸光度と測定吸光度との比較
によって算出する。0.IM) containing 0.1% (W/V) bovine albumin)
Rittanolamine buffer pJ (7,0 Solution C 30mM sodium phosphate buffer pH 7,02 Procedure method Serum 20μ11 solution A
After adding O.5m and reacting at 37°C for 10 minutes, immediately add solution 01- and return to room temperature. Separately, the same procedure was performed without adding serum, and the reagent blank was used as 564.
Measure the absorbance in nm. Next, the creatine content of the serum sample is calculated by comparing the measured absorbance with the absorbance shown by a solution of known creatine content treated in the same manner as the serum sample.
上記の諸条件下で第4図に示す如く直f9的な吸光度の
応答が20■4tのクレアチンのレベルまで認められた
。Under the above conditions, as shown in FIG. 4, a direct f9 absorbance response was observed up to the level of creatine of 20.4t.
「発明の効果」
以上から明らかな如く、本発明によれば電子伝達体及び
検出に要す電子受容体の存在下、遊離の補酵素を必賛と
する脱水素酵素或いは、補酵素を補欠分子族として保持
する脱水素酵素を介する反応により生成される電子を検
出することによる生体液中の成分の測定方法において、
酒石酸或いはそのアルカリ塩を用いることにより、当該
反応以外の干渉反応を著るしく抑制することができ、測
定を正確にしかもよシ簡便にすることができる。"Effects of the Invention" As is clear from the above, according to the present invention, in the presence of an electron carrier and an electron acceptor required for detection, a dehydrogenase that requires a free coenzyme or a coenzyme as a prosthetic molecule In a method for measuring components in a biological fluid by detecting electrons generated by a reaction mediated by a dehydrogenase that is retained as a group,
By using tartaric acid or its alkali salt, interfering reactions other than the relevant reaction can be significantly suppressed, making measurement accurate and simpler.
第1図は、酒石酸す) リウムの血清由来干渉反応に対
する抑制効果を表すグラフ図であシ、第2図は、F−の
安定性に及はすシュウ酸ナトリウムと−の影響を表すグ
ラフ図であシ、第3図は、胆汁酸測定時の検量線を表す
グラフ図であシ、第4図は、クレアチン測定時の検量線
を表すグラフ図である。
第1図
及た時間(全)
第3図
販ユを滌(アM)
第4図
OIQ 20
りしア今ン(m9/d又)Figure 1 is a graph showing the inhibitory effect of sodium tartrate on serum-derived interference reactions, and Figure 2 is a graph showing the influence of sodium oxalate on the stability of F-. FIG. 3 is a graph showing a calibration curve when measuring bile acids, and FIG. 4 is a graph showing a calibration curve when measuring creatine. Figure 1: Time taken (all) Figure 3: Sales (A M) Figure 4: OIQ 20 Rishi Aaman (m9/d)
Claims (2)
遊離の補酵素を必要とする脱水素酵素或いは、補酵素を
補欠分子族として保持する脱水素酵素を介する反応によ
り生成される電子を検出することによる生体液中の成分
の測定方法において、当該反応以外の干渉反応を抑制す
る試薬として酒石酸或いはそのアルカリ塩を添加して成
ることを特徴とする生体液中の成分の定量用試薬。(1) In the presence of an electron carrier and an electron acceptor required for detection,
In a method for measuring components in a biological fluid by detecting electrons generated by a reaction mediated by a dehydrogenase that requires a free coenzyme or a dehydrogenase that retains a coenzyme as a prosthetic group, the reaction 1. A reagent for quantifying components in biological fluids, which comprises adding tartaric acid or an alkali salt thereof as a reagent for suppressing other interference reactions.
■)及び発色性鉄キレート剤の組合せであり、さらにこ
れらを安定化する試薬としてシュウ酸を加えることより
成る特許請求範囲第1項記載の生体液中の成分の定量用
試薬。(2) The electron acceptor required for detection is ferric ion (Fe^
2) and a color-forming iron chelating agent, and further comprises adding oxalic acid as a stabilizing reagent to the reagent for quantifying components in biological fluids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14440884A JPS6125498A (en) | 1984-07-13 | 1984-07-13 | Reagent for quantitative determination of component in body fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14440884A JPS6125498A (en) | 1984-07-13 | 1984-07-13 | Reagent for quantitative determination of component in body fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6125498A true JPS6125498A (en) | 1986-02-04 |
JPH0534000B2 JPH0534000B2 (en) | 1993-05-20 |
Family
ID=15361476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14440884A Granted JPS6125498A (en) | 1984-07-13 | 1984-07-13 | Reagent for quantitative determination of component in body fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6125498A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63201567A (en) * | 1987-02-17 | 1988-08-19 | Toyobo Co Ltd | Method for removing reducing material in vital ample liquid |
US5639631A (en) * | 1992-09-28 | 1997-06-17 | Boehringer Mannheim Corporation | Stable reagent for ferric ion complex indicator systems |
-
1984
- 1984-07-13 JP JP14440884A patent/JPS6125498A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63201567A (en) * | 1987-02-17 | 1988-08-19 | Toyobo Co Ltd | Method for removing reducing material in vital ample liquid |
US5639631A (en) * | 1992-09-28 | 1997-06-17 | Boehringer Mannheim Corporation | Stable reagent for ferric ion complex indicator systems |
Also Published As
Publication number | Publication date |
---|---|
JPH0534000B2 (en) | 1993-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2052819C1 (en) | Method of assay of electrone-saturated aromatic amine which is a marker of analyte content in biological fluid, and an agent for its realization | |
US4929545A (en) | Method and reagent for determination of an analyte via enzymatic means using a ferricyanide/ferric compound system | |
US5516700A (en) | Automated urinalysis method | |
IE84165B1 (en) | Test for the rapid evaluation of ischemic states and kit | |
JPS6257946B2 (en) | ||
JPH0577399B2 (en) | ||
JPH0470000B2 (en) | ||
JP3537507B2 (en) | Creatinine detection method and detector | |
US4143080A (en) | Method and reagent for the assay of hydroperoxide | |
Ohnishi et al. | Characterization of the catalyzed phosphate assay | |
Tomokuni | New method for determination of aminolaevulinate dehydratase activity of human erythrocytes as an index of lead exposure | |
JPS6125498A (en) | Reagent for quantitative determination of component in body fluid | |
JP2955443B2 (en) | Analytical element and analyte detection method | |
US3822116A (en) | Reagent and method for calcium determination | |
JPS59140899A (en) | Novel method for determination of substrate with oxidase | |
KR100976967B1 (en) | Total cysteine assay | |
Salo et al. | A linear single reagent method for determination of protein in cerebrospinal fluid | |
CN105861631A (en) | Ultraviolet spectrophotometry determination method of creatinine in serum | |
Munoz et al. | Effect of cationic micelles on the formation of the complex oxalate–Alizarin Red S–Zr (IV): Application to the sensitive fluorescence determination of oxalate ion | |
Ijpma et al. | Evaluation of the Du Pont aca ammonia procedure. | |
Uno et al. | Enzymatic method for determining ketone body ratio in arterial blood | |
Baker | Disulfide inhibition of copper-catalyzed oxidation of ascorbic acid: spectrophotometric evidence for accumulation of a stable complex | |
Pincus et al. | CHEMICAL ASSAYS AND BASIS COMMON FOR ANALYTE INTERFERENCES | |
Scopes et al. | Measurement of enzyme activity | |
JP2761768B2 (en) | Method for determining NADH and method for determining bile acid using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |