JPS61254920A - Optical deflecting element - Google Patents

Optical deflecting element

Info

Publication number
JPS61254920A
JPS61254920A JP60096503A JP9650385A JPS61254920A JP S61254920 A JPS61254920 A JP S61254920A JP 60096503 A JP60096503 A JP 60096503A JP 9650385 A JP9650385 A JP 9650385A JP S61254920 A JPS61254920 A JP S61254920A
Authority
JP
Japan
Prior art keywords
slope
light beam
angle
theta
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60096503A
Other languages
Japanese (ja)
Other versions
JPH0668578B2 (en
Inventor
Taizo Sakaki
泰三 坂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60096503A priority Critical patent/JPH0668578B2/en
Publication of JPS61254920A publication Critical patent/JPS61254920A/en
Publication of JPH0668578B2 publication Critical patent/JPH0668578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To provide an ftheta characteristic to the cylindrical optical deflecting element itself and to make possible uniform speed scanning without a costly ftheta lens by the constitution consisting in reflecting the incident light beam on the element in the optical axis direction thereof at the slope thereof and emitting the beam from the non-cylindrical side face. CONSTITUTION:The incident light beam L on the transparent cylindrical optical deflecting element 10 in the optical axis direction from the inside thereof is reflected by the slope 10A and is emitted from the non-cylindrical face 10B. The beam L inclines by an angle theta as well when the element 10 turns by the angle theta from the reference position where the face 10B is symmetrical to the center line with respect to the x-axis. The inclined beam is then further refracted by an angle beta and is thereby deflected at the angle (theta-beta). The value of the angle beta is determined as a function of theta by the distance De between the axis AX of rotation and incident point P and the beam has consequently the ftheta characteristic. The uniform speed scanning of the surface to be scanned is thus made possible without the need for the costly ftheta lens and the reduction of the cost is made possible.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光偏向素子、詳しくは回転によって光ビーム
を偏向させる光偏向素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light deflection element, and more particularly to a light deflection element that deflects a light beam by rotation.

(従来技術) 回転によって光ビームを偏向させる光偏向素子としては
、従来、光プリンター等に関連して、回転多面鏡やホロ
グラムディスクが知られている。
(Prior Art) As an optical deflection element that deflects a light beam by rotation, a rotating polygon mirror and a hologram disk are conventionally known in connection with optical printers and the like.

しかし、回転多面鏡やホログラムディスクにより偏向さ
れる光ビームは、偏向の角速度が一定である。従って、
かかる偏向ビームを用いて被走査面を等速走査しようと
すると高価なfθレンズが必要となる。また、fθレン
ズを用いる場合、偏向点とfθレンズ位置と被走査面と
の位置関係が一義的に定まってしまうため、設計条件が
かわると、それに応じてfθレンズを−々設計しなおさ
なければならない。
However, a light beam deflected by a rotating polygon mirror or a hologram disk has a constant angular velocity of deflection. Therefore,
If a scanned surface is to be scanned at a constant speed using such a deflected beam, an expensive fθ lens is required. Furthermore, when using an fθ lens, the positional relationship between the deflection point, the fθ lens position, and the scanned surface is uniquely determined, so if the design conditions change, the fθ lens must be redesigned accordingly. No.

(目   的) 本発明は上述の如き事情に鑑みてなされたものであって
、その目的は、素子自体がfθ特性を有する光偏向素子
の提供にある。
(Objective) The present invention has been made in view of the above-mentioned circumstances, and its object is to provide an optical deflection element which itself has an fθ characteristic.

(構  成) 以下1本発明を説明する。(composition) One aspect of the present invention will be explained below.

第1図は1本発明による光偏向素子の一例を示す。第1
図(1)は平面図、第1図(II)は側面図である。こ
の例に即して、本発明の詳細な説明する。
FIG. 1 shows an example of a light deflection element according to the present invention. 1st
Figure (1) is a plan view, and Figure 1 (II) is a side view. The present invention will be described in detail based on this example.

第1図で、符号10は光偏向素子を示している。In FIG. 1, reference numeral 10 indicates a light deflection element.

光偏向素子10は、全体が透明である。光偏向素子を構
成する透明材としては、ガラス、透明プラスチック、ア
クリル、ポリスチロール、ポリカーボネート等を用いる
ことができる。ガラスを用いるときは研磨で、又樹脂材
を用いるときは、成形によって作製できる。
The entire optical deflection element 10 is transparent. As the transparent material constituting the light deflection element, glass, transparent plastic, acrylic, polystyrene, polycarbonate, etc. can be used. When using glass, it can be manufactured by polishing, and when using resin material, it can be manufactured by molding.

光偏向素子10は、回転軸AXに対しαだけ傾いた斜面
10Aを有する。この例ではαは45度であるが。
The optical deflection element 10 has a slope 10A inclined by α with respect to the rotation axis AX. In this example, α is 45 degrees.

αは45度以外の角でもよい。α may be an angle other than 45 degrees.

この斜面10Aに、素子の内側から光ビームLを入射さ
せると、光ビームLは斜面10Aにより反射されて、第
1図(If)に示す如く射出する。なお。
When a light beam L is incident on this slope 10A from inside the element, the light beam L is reflected by the slope 10A and exits as shown in FIG. 1 (If). In addition.

斜面10Aの反射率を高めるために、全反射を利用して
もよいし、あるいは斜面10Aに反射膜を形成してもよ
い。さて、反射光ビームが射出する面10Bは、非円筒
面に形成されている。
In order to increase the reflectance of the slope 10A, total reflection may be used or a reflective film may be formed on the slope 10A. Now, the surface 10B from which the reflected light beam exits is formed into a non-cylindrical surface.

この非円筒面10Bは、側面図第1図(If)に示すよ
うに、回転軸AXに平行な方向では無曲率であるが、平
面図第1図(1)が示すように、回転軸AXに直交する
面内での形状は特殊な面形状となっている。
As shown in the side view of FIG. 1 (If), this non-cylindrical surface 10B has no curvature in the direction parallel to the rotation axis AX, but as shown in the plan view of FIG. The shape in the plane perpendicular to is a special surface shape.

偏向されるべき光ビームLは、第1図(II)に示すよ
うに、素子の内側から、斜面10AのP点に入射する。
The light beam L to be deflected enters a point P on the slope 10A from inside the element, as shown in FIG. 1 (II).

この例では、光ビームLは回転軸AXに平行に、斜面1
0Aに入射しているが、これに限らず、回転軸に対して
傾けて入射させてもよい。ただし、光ビームLの斜面へ
の入射位置Pは1回転軸AXと斜面10Aとの交点以外
の位置でなければならない。
In this example, the light beam L is parallel to the rotation axis AX, and the slope 1
Although the light is incident at 0A, the light is not limited to this and may be made incident at an angle with respect to the rotation axis. However, the incident position P of the light beam L on the slope must be at a position other than the intersection of the one-rotation axis AX and the slope 10A.

なお、上において、光ビームLの斜面10Aへの入射位
置Pとのべたが、素子10の回転により、この入射位置
Pは斜面10Aに対しては相対的に変化する。斜面10
Aに入射する光ビームLと回転軸AXとの位置関係は不
変である。
Note that although the incident position P of the light beam L on the slope 10A was described above, as the element 10 rotates, this incident position P changes relative to the slope 10A. Slope 10
The positional relationship between the light beam L incident on A and the rotation axis AX remains unchanged.

さて、非円筒面10Bは特殊な面形状であるとのべたが
、この非円筒面10Bは、光偏向素子1oを等速回転す
るとき、この非円筒面10Bから射出する光ビームがf
θ特性をもつように定められるのである。fθ特性とは
、偏向光ビームが所定の平面を走査するとき、主走査方
向の走査速度成分が等速となるような特性をいう。
Now, it was mentioned that the non-cylindrical surface 10B has a special surface shape, but when the optical deflection element 1o is rotated at a constant speed, the light beam emitted from the non-cylindrical surface 10B is f
It is determined to have a θ characteristic. The fθ characteristic refers to a characteristic such that when a deflected light beam scans a predetermined plane, the scanning speed component in the main scanning direction is constant.

そこで、光偏向素子10に関し、回転軸AXの方向をZ
方向として、第2図の如(xy座標を定める。
Therefore, regarding the optical deflection element 10, the direction of the rotation axis AX is set to Z.
As the direction, determine the x and y coordinates as shown in Figure 2.

xy座標は空間に固定的とし、このxy座標に対し、第
2図の如き態位にあるときを、光偏向素子lOの基準態
位とする。基準態位にあるとき、光ビームは、X軸上を
通って、非円筒面10Bから射出することは容易に理解
されよう0次に第3図に示すように、光偏向素子10が
xy座標に対し基準状態から角θだけ傾いた状態を考え
てみる。
The xy coordinates are fixed in space, and the position shown in FIG. 2 with respect to the xy coordinates is the reference position of the optical deflection element 10. It is easily understood that when in the reference position, the light beam passes on the X axis and exits from the non-cylindrical surface 10B.As shown in FIG. Let us consider a state where the state is tilted by an angle θ from the reference state.

P点において、斜面10Aより反射された光ビームLは
、素子内部においては、X軸に対して角θだけ傾いてい
るが、非円筒面10Bから射出する際、屈折により、角
βだけ方向を転する。従って、素子10を角θだけ回転
すると、非円筒面10Bから射出する光ビームは、角(
θ−β)だけ偏向する。
At point P, the light beam L reflected from the slope 10A is tilted by an angle θ with respect to the X axis inside the element, but when it exits from the non-cylindrical surface 10B, it changes direction by an angle β due to refraction. Turn around. Therefore, when the element 10 is rotated by the angle θ, the light beam emitted from the non-cylindrical surface 10B is rotated by the angle (
deflect by θ−β).

角βの値は、非円筒面10Bの形状、光偏向素子の屈折
率1回転軸AXと、これに平行に入射する光ビームLど
の間の距離Da(第2図参照)によって、一義的に、θ
の函数として定まるので、これらを適当にえらんで、偏
向光ビームがfθ特性を持つようにすることができるの
である。
The value of the angle β is uniquely determined by the shape of the non-cylindrical surface 10B, the distance Da between the refractive index rotation axis AX of the optical deflection element and the light beam L incident parallel thereto (see Fig. 2). ,θ
By appropriately selecting these values, it is possible to make the deflected light beam have fθ characteristics.

以下に具体的な実施例をあげる。Specific examples are given below.

α=45°、素子材料の屈折率を1.5、上記Daを2
0111とし、非円筒面10Bの形状を、第2図に示す
標準状態で、 1xl=f −(ay”+by’+cy’+dy’+e
y”)   (1)とあられし、定数a g b y 
Q p d + et fの値を種々に選んで、fθ特
性を調べたところ、 a =−2,085X 10−@、 b =1.215
X10−’、c =−3,102X10−’、 d =
2.082X10−”、 e =1.307XIO””
、f=1としたときに、良好なfθ特性を得ることがで
きた。
α=45°, the refractive index of the element material is 1.5, and the above Da is 2
0111, and the shape of the non-cylindrical surface 10B is in the standard state shown in FIG.
y'') (1) and constant a g b y
When various values of Q p d + et f were selected and fθ characteristics were investigated, a = -2,085X 10-@, b = 1.215
X10-', c = -3,102X10-', d =
2.082X10-”, e=1.307XIO””
, when f=1, good fθ characteristics could be obtained.

Xe’/の単位は1■である。第2図に示す基準態位に
おいて非円筒面10BとX軸との交点x0は、(1)式
でy=oとして与えられるから、x=fであり、f=P
より1回転軸AXとX、どの距離は1鵬■である。
The unit of Xe'/ is 1. Since the intersection x0 of the non-cylindrical surface 10B and the X-axis in the reference attitude shown in FIG. 2 is given as y=o in equation (1), x=f, and f=P
From 1 rotation axis AX and X, which distance is 1 Peng ■.

第4図に、光偏向素子10による光ビームLの偏向の様
子を示す。光偏向素子10が矢印方向へ回転するにつれ
て、偏向光ビームは、第4図(■)。
FIG. 4 shows how the light beam L is deflected by the light deflection element 10. As the optical deflection element 10 rotates in the direction of the arrow, the deflected light beam changes as shown in FIG. 4 (■).

(II)、(III)のように変化する。すなわち、素
子10の回転角がθの時、光ビームの位置は被走査面P
L上でA点にあり(第4図(■))、θ=Oのときは0
点にあり(第4図(If))、回転角θ′のときはB点
にある。一般に、第4図(I)に示すように、回転角θ
のとき、被走査面PL上で、0点とA点との間の距離を
S(θ)とする、光偏向素子が、完全なfθ特性をもつ
ならば、S(θ)=θ・Loである。ただし、Loは偏
向点すなわちP点と被走査面PLとの間の距離である。
(II) and (III). That is, when the rotation angle of the element 10 is θ, the position of the light beam is on the scanned surface P.
It is at point A on L (Fig. 4 (■)), and when θ=O, it is 0.
It is at point B (Fig. 4 (If)), and when the rotation angle is θ', it is at point B. Generally, as shown in FIG. 4(I), the rotation angle θ
If the optical deflection element has a perfect fθ characteristic, where S(θ) is the distance between point 0 and point A on the scanned surface PL, then S(θ)=θ・Lo It is. However, Lo is the distance between the deflection point, that is, point P, and the scanned surface PL.

そこで、 −り上と」工Ω−X100(%)(2)θ・Lo をもってfθ特性値と称する。理想のfθ特性では、f
θ特性値(2)はθの値に拘らず常にOである。
Therefore, the value of Ω-X100 (%) (2) θ・Lo is called the fθ characteristic value. In the ideal fθ characteristic, f
The θ characteristic value (2) is always O regardless of the value of θ.

上記実施例のfθ特性を第5図に示す、縦軸は、偏向角
すなわち光偏向素子lOの回転角θと補正角βの差(θ
−β)、横軸は上記(2)式で示されるfθ特性値であ
る。曲線5−1はL 0= 200+asに対するもの
であり1曲線5−2はり。=300+amに対するもの
である。 L O= 200+mmのときはθ−β=3
1.4@ まで0,074%(0,18w+n) 、 
L 、 = 300mmのときはθ−β= 21.4°
まで0.023%(0,055mm)と、すぐれたfθ
特性を示し、Loの値の変化に拘らず、同一の光偏向素
子を使用できる。
The fθ characteristics of the above embodiment are shown in FIG. 5. The vertical axis represents the deflection angle, that is, the difference (θ
-β), and the horizontal axis is the fθ characteristic value shown by the above equation (2). Curve 5-1 is for L 0 = 200+as, and 1 curve 5-2 beams. =300+am. When L O = 200+mm, θ-β = 3
0,074% (0,18w+n) up to 1.4@,
When L, = 300mm, θ-β = 21.4°
Excellent fθ of 0.023% (0,055mm)
The same optical deflection element can be used regardless of the change in the value of Lo.

(効  果) 以上1本発明によれば、新規な光偏向素子を提供できる
。この光偏向素子は素子自体がfθ特性を有しているの
で、高価なfθレンズを必要としないで被走査面の等速
走査が可能であり、光プリンター等のコストを低減でき
る。また、偏向点の被走査面の距離が変化しても、すぐ
れたfθ特性を有するので、光走査装置の設計変更が容
易となる。
(Effects) According to the first aspect of the present invention, a novel optical deflection element can be provided. Since this optical deflection element itself has an fθ characteristic, it is possible to scan a surface to be scanned at a constant speed without requiring an expensive fθ lens, and the cost of an optical printer or the like can be reduced. Furthermore, even if the distance between the deflection point and the scanned surface changes, it has excellent fθ characteristics, making it easy to change the design of the optical scanning device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための図、第2図
ないし第4図は上記実施例による光偏向を説明するため
の図、第5図は実施例のfθ特性を示す図である。 lO・・・光偏向素子、IOA・・・斜面、AX・・・
回転軸、10B・・・非円筒面、L・・・光ビーム。
FIG. 1 is a diagram for explaining one embodiment of the present invention, FIGS. 2 to 4 are diagrams for explaining light deflection according to the above embodiment, and FIG. 5 is a diagram showing fθ characteristics of the embodiment. It is. lO...light deflection element, IOA...slope, AX...
Rotation axis, 10B...non-cylindrical surface, L...light beam.

Claims (1)

【特許請求の範囲】[Claims] 回転により光ビームを偏向させる光学素子であつて、全
体が透明であり、所定の回転軸のまわりに回転可能で、
上記回転軸に対して傾く斜面を有し、この斜面に、素子
内側から光をあてるとき反射光が射出する面が非円筒面
に形成されており、上記回転軸と斜面との交点以外の位
置へ、素子内側から定方向的に光ビームを照射しつつ、
素子を回転軸のまわりに等速回転させるとき、上記非円
筒面から射出する、上記斜面による反射光ビームがf_
θ特性を有するように、上記非円筒面の形状を定めたこ
とを特徴とする、光偏向素子。
An optical element that deflects a light beam by rotation, and is entirely transparent and rotatable around a predetermined rotation axis.
It has a slope inclined with respect to the rotation axis, and a non-cylindrical surface is formed on the slope from which reflected light is emitted when light is applied from inside the element, and the slope is located at a position other than the intersection of the rotation axis and the slope. While irradiating a light beam in a directional manner from inside the element,
When the element is rotated around the rotation axis at a constant speed, the light beam emitted from the non-cylindrical surface and reflected by the slope is f_
An optical deflection element characterized in that the shape of the non-cylindrical surface is determined so as to have a θ characteristic.
JP60096503A 1985-05-07 1985-05-07 Light deflection element Expired - Lifetime JPH0668578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096503A JPH0668578B2 (en) 1985-05-07 1985-05-07 Light deflection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096503A JPH0668578B2 (en) 1985-05-07 1985-05-07 Light deflection element

Publications (2)

Publication Number Publication Date
JPS61254920A true JPS61254920A (en) 1986-11-12
JPH0668578B2 JPH0668578B2 (en) 1994-08-31

Family

ID=14166909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096503A Expired - Lifetime JPH0668578B2 (en) 1985-05-07 1985-05-07 Light deflection element

Country Status (1)

Country Link
JP (1) JPH0668578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129314A (en) * 1989-07-04 1991-06-03 Matsushita Electric Ind Co Ltd Rotary mirror

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129314A (en) * 1989-07-04 1991-06-03 Matsushita Electric Ind Co Ltd Rotary mirror

Also Published As

Publication number Publication date
JPH0668578B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4624528A (en) Scanning systems with polygon scanner having curved facets
EP0087586B1 (en) Lens-on-disc type optical scanning apparatus
JPH10142543A (en) Optical scanning device
JPH0782157B2 (en) Scanning optical system with surface tilt correction function
JPS6230214A (en) Optical system for scanning light beam
US8077370B1 (en) Scanning optical apparatus
US5631763A (en) Fθ lens system in a laser scanning unit
US5353047A (en) Beam scanning optical system
US5093745A (en) Light beam scanning optical system
US5038156A (en) Light beam scanning optical system
JP2001147392A (en) Scanning lens and scanning optical system using the same
JPS61254920A (en) Optical deflecting element
JPH0192717A (en) Optical scanner
US4908708A (en) Light beam scanning optical system
JPH0563777B2 (en)
JPH07209599A (en) Optical scanning device and polygon mirror
JPS6362724B2 (en)
JPH0387813A (en) Scanning type optical device
JPS58105104A (en) Rotary polyhedral lens body for optical deflection
JPH06308382A (en) Optical scanning system
JPH0411007B2 (en)
US5648875A (en) Optical scannng system having error correction
JPH0670688B2 (en) Scanning optics
JP3441008B2 (en) Scanning imaging lens and optical scanning device
JP3386164B2 (en) Optical scanning device