JPS61254850A - Method for nondestructive inspection of bonded part - Google Patents

Method for nondestructive inspection of bonded part

Info

Publication number
JPS61254850A
JPS61254850A JP60096384A JP9638485A JPS61254850A JP S61254850 A JPS61254850 A JP S61254850A JP 60096384 A JP60096384 A JP 60096384A JP 9638485 A JP9638485 A JP 9638485A JP S61254850 A JPS61254850 A JP S61254850A
Authority
JP
Japan
Prior art keywords
reflecting
waves
fourier
wave
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60096384A
Other languages
Japanese (ja)
Inventor
Setsuo Akiyama
秋山 節夫
Tomio Oyachi
大矢知 富雄
Toshio Naito
内藤 壽夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60096384A priority Critical patent/JPS61254850A/en
Publication of JPS61254850A publication Critical patent/JPS61254850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To inspect a bonded part by making acoustic waves to be made incident on one of bonded two materials from the surface and, at the same time, detecting the reflecting waves of the acoustic waves, and then, preparing frequency spectra by Fourier-transforming the detected reflecting wave signals and discriminating the pattern. CONSTITUTION:A plastic delay 5 for providing intervals between each reflecting wave component is joined to the surface of a steel plate 1 and the acoustic waves of 10MHz are made incident on the plastic delay 5 from the steel plate 1 side. For this purpose, acoustic waves A(t) are made incident by using an ultrasonic flaw detector 6 and wide-band probe 7 and, at the same time, multiple reflecting waves from internal interfaces are received and monitored by means of an oscilloscope 8. Moreover, the multiple reflecting waves are electrically fetched and inputted in a spectrum analyzer 9. Then the reflecting waves are subjected to Fourier transformation process in such a way that only the 1st reflecting wave I1(t) from the joined interface is first fetched and Fourier-transformed. The Fourier-transformed reflecting wave is displayed on a screen in dB display and, simultaneously, stored in the analyzer 9 as a memory A. Then a totally reflecting wave R(t) is Fourier-transformed and used as a memory B and the joined condition is discriminated by finding (B-A).

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、接着された材料に音波を入射し、検出反射波
に基づいて接着伏Iat−検査する接着部■非破壊検査
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for non-destructive testing of bonded parts by injecting sound waves into bonded materials and inspecting the bond based on detected reflected waves.

〔従来技術〕[Prior art]

金属とゴム、金属とグラスチック、グラスチックとゴム
など、2つ■材Sを接層した接合部材(接合部材)は各
分野で広く使用されている。
Bonding members (bonding members) in which two materials S are bonded together, such as metal and rubber, metal and glass, and glass and rubber, are widely used in various fields.

これらO接合部材ではそ0内部に接着層が形成されてお
シ、接着状aO良否によって接合部材O機能品質が大き
く左右される。
In these O-joining members, an adhesive layer is formed inside the O-joining member, and the functional quality of the joining member O is greatly influenced by the quality of the adhesive aO.

そこで、これら0接合部材t−製造する者にとっては、
品質保証0点から接層状線を非破壊的に検査する技術が
強く要請されている。
Therefore, for those who manufacture these 0-joint members,
There is a strong demand for technology for non-destructively inspecting tangential lines from zero points for quality assurance.

こDためD検査方法として、超音波を利用する方法が従
来から採用されている。
Therefore, a method using ultrasonic waves has been conventionally adopted as the D inspection method.

千01つとして超音波反射法がある。One example is the ultrasonic reflection method.

こ0方法は、一方0材料表面から超音波を入射するとと
もに接着界面(内部界面)から0反射波を入射波と同じ
面で検出し、反射波0強度変化または位相変化によシ接
着部θ状態を判断しようとする方法である。
This method involves injecting ultrasonic waves from the surface of the material and detecting reflected waves from the adhesive interface (internal interface) on the same surface as the incident waves, and changing the intensity or phase of the reflected waves at the bonded part θ. This is a method of trying to judge the state.

ところで、従来O超音波反射法では、音響インピーダ/
スが高い方O材料Q表面から入射すると、接層部O伏a
の始何にか\わらず、音波が接着界面で原理的には!完
全に反射してしまい、接層状店が不明になってしまう。
By the way, in the conventional O ultrasonic reflection method, the acoustic impeder/
If the radiation is incident from the surface of the material Q, which has a higher
In principle, sound waves are generated at the adhesive interface! It is completely reflected, and the tangential store becomes unclear.

一方、前述○ような接合部材は°一方0材料が構造物O
内部にかくざn池方O材料■衣面○みが4出した構造に
なっている場合が多い。こθため、従来■超d波反射法
は、η善イ/ビーダy x O+傷い側が表面に露出し
ている構造θ接合部材に適用することができず、適用範
囲が制限されるという問題があった。
On the other hand, in the case of joining members like ○ mentioned above, the 0 material is the structure O
In many cases, the inside has a structure with 4 layers of Kakuza n Ikekata O material. For this reason, the conventional ultra-d wave reflection method cannot be applied to θ bonded members with a structure in which the damaged side is exposed on the surface, and the range of application is limited. was there.

超音波を利用するもう一つの検査方法として、超肝波共
振法がある。
Another testing method that uses ultrasound is the ultra-hepatic resonance method.

この方法は、検査部分に適当な周波数の超音波を入射す
るとともに周波数をわずかに掃引して共振状態をつくシ
出し、接層良好部と接着不良部とQ#振周波aQ相異か
ら接層状頭金判定するも■である。
This method involves injecting ultrasonic waves at an appropriate frequency into the inspection area and slightly sweeping the frequency to create a resonant state. Determining the down payment is also ■.

しかし、こθ検査方法では、共振状頭金っくり出丁適当
な周波数t−見つけ出すことが・帷しいなど、操作技術
上0@かしさかあるという問題がある。また、前述■従
来の超音波反射法Q場合と同様、高音響インピーダンス
側から入射すると検査不能になるθで適用範囲が制Ui
テれるという問題もある。
However, this θ testing method has a problem in that it is difficult to find an appropriate frequency t for resonant head-cutting, which is difficult in terms of operational technology. In addition, as in the case of the conventional ultrasonic reflection method Q described above, the applicable range is limited by θ, which becomes impossible to inspect if incident from the high acoustic impedance side.
There is also the problem of being exposed.

〔目 的〕〔the purpose〕

本発明の目的は、このような従来技WiQ間瀧を解決で
き、接層さnた2つO材料Qいずれ■側から音aを入射
しても検査することができ、しかも操作が簡単な接4部
の非破壊検査方法?提供することである。
The purpose of the present invention is to solve the problem of the conventional WiQ, to be able to inspect even if the sound a is incident from either side of the contact layer n or two O material Q, and to be easy to operate. Non-destructive testing method for contact 4 parts? It is to provide.

〔構 成〕〔composition〕

本発明は、接着された2つD材料量O接層部を非破壊検
査する方法において、一方θ材料■表面から音波を入射
するとともにその反射波を検出し、検出反射波信号を7
−リエ変換してそθ周波数ス(クトルをIIシ、該スペ
クトルO)母ターンから接着部O伏ネを判定することに
より、と記目的を達成するも0である。
The present invention is a method for non-destructively inspecting a bonded layer between two D materials and a contact layer, in which a sound wave is incident from the surface of one θ material and the reflected wave is detected, and the detected reflected wave signal is 7
The purpose described above can be achieved by determining the bonding part O from the mother turn of the θ frequency S (the vector is II, the spectrum O).

使用する音波0周波数は、−重または多産反射波すなわ
ち1以上O反射波を検出できる範囲であ11ばよく、例
えば0.1〜10QOMHz  θ広い範囲内で自由に
設定することができる。
The zero frequency of the sound wave to be used may be within a range of 11 in which negative or multiple reflected waves, that is, one or more O reflected waves can be detected, and can be freely set within a wide range of, for example, 0.1 to 10 QOMHz θ.

また、接層される2つQ材料としては、金属、ゴムある
いはグラスチックなど各d o材料ka宜組合せたもの
に対して適用することができる。
Further, as the two Q materials to be brought into contact with each other, metal, rubber, glass, or any other suitable combination of materials can be used.

本発明による接層部■非破壊検査方法は、鋭意攻究0&
II果、音波O検出反射波信号を7−りエ変換して得ら
れる周波数スペクトル強度ぐターンが接着状態すなわち
空隙(通常欠かんになる)の有無などによって異なシ、
接着良好0時はスペクトル強度が高く接着不良の時はス
(クトル強度が低いという現象を見い出して完成された
もOである。また、本発明方法は理論的にも立証するこ
とができる。
The non-destructive inspection method of the contact layer according to the present invention is
As a result, the frequency spectrum intensity obtained by 7-RIE conversion of the acoustic wave O detection reflected wave signal varies depending on the adhesion state, that is, the presence or absence of voids (usually missing).
The method was completed by discovering the phenomenon that when the adhesion is good, the spectral intensity is high, and when the adhesion is poor, the spectrum intensity is low.The method of the present invention can also be proven theoretically.

検出される音波O検出反射波信号は各0回(n=1.2
・・・・・)反射波成分0重ね合せで表わすことができ
、また、こO各n@反射波成分Oそれぞれは入射波波形
関数に材料物性に関する係数(減衰係数、界面で■反射
係数および透過係数など)1乗じるとともに反射回数に
よる位相補正を施した関数で表わすことができ、検出反
射波信号を数式化して7−リエ変換すれば材料O物性に
関する係数(または物性値)を含んだ周波数スペクトル
が得られる。
The detected sound wave O detection reflected wave signal is detected 0 times each (n=1.2
...) can be expressed as a superposition of 0 reflected wave components, and each n@reflected wave component O has the coefficients related to material properties (attenuation coefficient, reflection coefficient and Transmission coefficient, etc.) can be expressed as a function that is multiplied by 1 and subjected to phase correction based on the number of reflections.If the detected reflected wave signal is expressed mathematically and subjected to 7-Lier transformation, the frequency that includes the coefficient (or physical property value) related to the physical properties of the material can be expressed. A spectrum is obtained.

例えば、第1図に示すように、厚さd工■材料1と厚さ
d217)材料2とを接層した接合部材に対し、材料1
0表面から波形関数A (t) o音波を入射すると、
各n1g1反射波成分は次Oように表わすことができる
For example, as shown in FIG.
When a waveform function A (t) o sound wave is input from the surface,
Each n1g1 reflected wave component can be expressed as follows.

貝t)=(klRよ、に工) A(t)2J。Shell t) = (klRyo, Niko) A(t)2J.

Iノt) = klR工、klR工。(klRよ、に□
) A(t−−)こ\で、kは減衰係数、Rは界面での
反射係数−、Tは界面で0透過係数、Cは音速、!は伝
播距離であり、サフィックス0,1,2.3はそれぞれ
探触子、材料1、材料2、反対dlD界面物質(例えば
空気)に関するもo1表わす。
Inot) = klR engineering, klR engineering. (klR, ni□
) A(t--) where k is the attenuation coefficient, R is the reflection coefficient at the interface -, T is the zero transmission coefficient at the interface, and C is the speed of sound. are the propagation distances, and the suffixes 0, 1, 2.3 represent the probe, material 1, material 2, and o1 for the opposite dlD interface material (eg, air), respectively.

また、上記各係数と材料O物性値と0間には欠Oような
関係がある。
Furthermore, there is a lack of relationship between each of the above coefficients, the physical property value of the material, and 0.

k1=e″″a1x α、: 材料IC)吸収係数 X:伝播距離 R12”(1’1cl−ρ2c2)/ (/’L°1士
/12c2)ρi:材料1■密度 C1:材料i中で■音速 T12 =2 P IC工/ (PIC1+ /’2C
2)C工=/a工/ρ、 E工:材料10弾性率 全反射波R(t)は各反射波成分0重ね合せで表わせる
k1=e″″a1x α,: Material IC) Absorption coefficient ■Sound speed T12 = 2 P IC/ (PIC1+/'2C
2) C work = / a work / ρ, E work: Material 10 elastic modulus The total reflected wave R(t) is expressed by the superposition of each reflected wave component 0.

胆)= I、(tl + l2(tl+・・・・・+J
工(t) + J、!tl+・・・・・7−リエ変換を
F[]で表わすと矢の関係が成立する。
bile) = I, (tl + l2(tl+...+J
Engineering (t) + J,! tl+...7-If the Rie transformation is represented by F[], the relationship shown by the arrow holds true.

FCh(t))壬、f”h(t)e −’ ”td を
三h(#)そこで、全反射波R(tlを7−リエ変換す
る。
FCh(t)), f''h(t)e -' ``td is 3h(#) Then, the total reflected wave R(tl) is subjected to 7-Lier transform.

F(fat)]= FCI、(tl〕+F(: l2(
t)] +−−−−−+・・・・・・・・・・ 7−リエ変換では一般に次式が成立する。
F(fat)]=FCI,(tl)+F(: l2(
t)] +−−−−−+・・・・・・・・・・ In the 7-lier transform, the following equation generally holds true.

F(h(t−to))=e−’(′”h(m)したがっ
て、 こ\で次c*Jlst一定義する。
F(h(t-to))=e−'(′”h(m) Therefore, we define the following c*Jlst.

S =20 log l F CR(t))/F C1
1(t)月こうして得られたSはk + Rt T z
 Ce 1等■材料定数Oみから成り、しかも周波数−
O周期関数であり、理論的にも算出できる。したがつて
、量St−観測すれば材料物性や界面(接着部など)情
報が得られる。
S = 20 log l F CR(t))/F C1
1(t) month S obtained in this way is k + Rt T z
Ce 1st grade ■Consists of material constant O, and frequency -
It is an O periodic function and can be calculated theoretically. Therefore, by observing the quantity St, information on material properties and interfaces (adhesion parts, etc.) can be obtained.

また、後述するように、2つの材料1.2+り音−イン
ピーダンスが著しく異なる場合は適当な近似法を用いる
こと(より関数St−簡略化することができ、材料1.
2間0接層部(界面を形成する)で○接着状態が良好な
場合と不良0場合とでは、関数SOスペクトル・ンター
ンは顕著な相違を示すことが証明できるOで関数Sを接
着O判定に利用できる。
In addition, as will be described later, if the impedances of the two materials are significantly different, an appropriate approximation method should be used (the function St- can be simplified, and the material 1.
It can be proven that the function SO spectrum/turn shows a significant difference between the two 0 contact areas (forming an interface) when the adhesion condition is good and when the adhesion condition is 0. Available for

ざらにfた、関数Sでは強い入射波A (t) の影響
が消去されているQで、入射波が接着部(界面)でほと
んど反射され該接着部を透過して反対側表面(界面)か
ら反射してくる音波が弱い場合でも、この音波による情
報を確実に検出することができる。すなわち、入射側■
材料1が金属などθ高音響インピーダンスを有する場合
でも、接層部■状態によ#)関数S“Oス(クトル強度
が変化するQで、接着状態を確実に判定することができ
る。
Roughly speaking, in the function S, the influence of the strong incident wave A (t) is canceled, and at Q, the incident wave is mostly reflected at the adhesive part (interface) and transmitted through the adhesive part to the opposite surface (interface). Even if the sound waves reflected from the sensor are weak, information from these sound waves can be reliably detected. In other words, the incident side ■
Even if the material 1 has high acoustic impedance θ, such as metal, the adhesion state can be reliably determined by the function S'Os (Q, which changes the vector strength) depending on the state of the contact layer.

さらに、関数Sに入射波波形関数A(tlが含まれてい
ないことから、測定系O影響が除去された統測値が得ら
れるという利点もある。
Furthermore, since the function S does not include the incident waveform function A (tl), there is an advantage that a statistical value from which the influence of the measurement system O is removed can be obtained.

以下、本発明方法により実際に検査を行なったμ施例を
説明する。
Hereinafter, μ examples in which tests were actually performed using the method of the present invention will be described.

実施例 I: 鋼板と凛準配合の天然コ9ムとをケムロツク205/2
20(cI−ド社IIIりで加硫接着した接合部材O接
着部を検査した。第2図は被検査部材を示し、鋼板10
厚さf 2 am sボッ−2Q厚さf3rnmとし、
広さは50 am X 50 mmとじた。また、鋼板
10表面に各反射波成分間■間隔(時間)t−設けるた
めOfテラスックディレィ(アクリルディレィ)5を接
合し、これを介して鋼板1側から10 MHz C)音
波を入射した。
Example I: Steel plate and Rinjun blended natural comb were made into Chemlock 205/2.
20 (cI-do Co., Ltd. III) was used to inspect the bonded part of the joint member O bonded by vulcanization. Figure 2 shows the member to be inspected, and
The thickness is f 2 am sbo-2Q thickness f3rnm,
The size was 50 am x 50 mm. In addition, an Of Terrace delay (acrylic delay) 5 was bonded to the surface of the steel plate 10 to provide an interval (time) t between each reflected wave component, and a 10 MHz C) sound wave was incident from the steel plate 1 side through this.

第3図は測定システムを示し、超音波探傷装置615よ
び広帯域探触子7を使用して、音波A (t)を入射す
るとともに内部界面から■多重反射波を受け、これをオ
シミスコーグ8でモニターした。さらに1多重反射波を
電気的に取カ出してスペクトルアナライデー9に入力し
7−りエ変換処理を行なった。
Figure 3 shows a measurement system in which an ultrasonic flaw detector 615 and a broadband probe 7 are used to inject a sound wave A (t) and receive multiple reflected waves from the internal interface, which are monitored by an Osimiskog 8. did. Furthermore, one multiple reflected wave was electrically extracted and inputted to the spectrum analyzer 9, where it was subjected to 7-RIE conversion processing.

なお1前記探傷装置6として日本・譬ナメトリクス社製
Oモデル5052UAを、探触子7として日本ノ4ナメ
トリクス社製12)V115型を、オシロスコーグ8と
してと二−レットパッヵード社111740A型を、ス
ペクトルアナ2イデー9トシテヒユーレツト/ぐツカー
ド社113585AI[を使用した。
Note that 1) the flaw detection device 6 was O model 5052UA manufactured by Manametrics Co., Ltd. of Japan; the probe 7 was a model V115 (12) manufactured by Nametrics Co., Ltd. of Japan; and the oscilloscope 8 was a model 111740A manufactured by Ni-Rett Packard Co., Ltd. A Spectrum Analyzer 2 ID 9 TOSHITEHURET/GUTSUKARD Co., Ltd. 113585AI was used.

まず、接着部界面からO第1反射波I 、(t) Oみ
を取り出して7−リエ変換し、これt−dB表示で画面
に表示するとともにメモリ■としてスペクトルアナライ
デー9に記憶させた。久に、全反射波R(t)’に取り
出して7−リエ変換し、dB表示で画面に表示するとと
もにメモリ■として記憶させた。
First, the first reflected wave I, (t) O was taken out from the adhesive interface and subjected to 7-lier transformation, which was displayed on the screen in t-dB and also stored in the spectrum analyzer 9 as memory ■. . A long time ago, the total reflected wave R(t)' was taken out, subjected to 7-lier transform, displayed on the screen in dB, and stored in memory (2).

絖いて、スペクトルアナ2イデー9で■−@■演算を行
ない、前述O関数Sに対応するスペクトルを求めた。
Then, the -@■ operation was performed using Spectrum Analyzer 2 and ID 9 to obtain the spectrum corresponding to the O function S described above.

以下、接着が良好な場合と不良な場合とく分けて、前述
θ関数SOスペクトルとO対応関係を説明する。
Hereinafter, the θ function SO spectrum and the O correspondence will be explained separately for cases where the adhesion is good and cases where the adhesion is poor.

I)接着良好O場合 接着状線が良好な場合は反射波が第4図囚および第4図
(B)に示すような状[IK1kl入射波をA (t)
とすれば各n回反射波成分は次0ように表わされる。
I) In the case of good adhesion O: If the adhesive line is good, the reflected wave will be as shown in Figure 4 and Figure 4 (B) [IK1kl incident wave A (t)
Then, each n-times reflected wave component is expressed as 0 below.

凡’t)= k 5R,、k 、A[t)11I Ijt)=に5′r5□’lR工gklR工a’1R1
2’xTxs’!(を−)CI Jit)=に5T51kIT12に2R23に2T21
kIR15kIR12kIT15に5したがって、K(
:、 e K1間O全反射波R(t)は次0ように表わ
せる。
5'r5
2'xTxs'! (-)CI Jit) = to 5T51kIT12 to 2R23 to 2T21
kIR15kIR12kIT155 Therefore, K(
:, e The total reflection wave R(t) between K1 and K1 can be expressed as follows.

i*t) =KOft) +I、(t)+ Ijt)+
・・・・・+J工(t)+JJit+・・・・・これを
7−リエ変換して関数s=2求める。
i*t) =KOft) +I, (t)+ Ijt)+
... + JJit (t) + JJit + ... Perform 7-lier transformation to obtain function s = 2.

Δ三α”5fxs;3+21x512”L23(α5]
、2−β512)cosc”!’)2m1. 20m1
2 +2α5..2α123 COS (+    )CI
     C2 ”512二kl Cr51Tl 5R12/ R51)
α12.): ”z (”よ、T2.ル23/R12)
β512三<R15R12 金j11とゴム2とでは音響イ/ピーダ/スが大きく異
なる0で次の近似がclf能である。
Δ3α”5fxs; 3+21x512”L23(α5)
, 2-β512)cosc"!')2m1.20m1
2 +2α5. .. 2α123 COS (+)CI
C2 ”5122kl Cr51Tl 5R12/R51)
α12. ): "z (", T2.ru23/R12)
β5123<R15R12 The following approximation is clf function when the acoustic I/P/S is greatly different between gold j11 and rubber 2.

kl ”=−1−dVエ (dyよ〉0)k2ζ1−d
y2 (dy2)o) R”q −1+ dz 5 □(a z 51 > o
 )Rx zζ1− d 112 (d Z 12> 
O)R23”’−1−d Z 23  (d Z 23
> 0 )こQ近似を用いるとSは次Qように簡略化さ
れる。すなわち、 工 3 = 201ogrQ(o) +−Q(x)+Q(2
) + Q3)+Q(+) ) 2dz5□+dz、+
2dy工三Wおよびd Z r、□三dzとすれば:3
次の微小量 すなわち、上記0欠17)愼小蓄r見積ると、S″−2
01og (Q(0) )2 金属中でO減衰は充分小さいから dy1 □くく1 であるので、 ”=−2010flO=−■ こQように接着状圃が良好な場合には強度が大きいスペ
クトルが畝浦されることになる。
kl ”=-1-dVe (dyyo〉0)k2ζ1-d
y2 (dy2)o) R”q −1+ dz 5 □(a z 51 > o
) Rx zζ1- d 112 (d Z 12>
O) R23”'-1-d Z 23 (d Z 23
> 0) Using this Q approximation, S is simplified as follows. In other words,
) + Q3)+Q(+) ) 2dz5□+dz, +
2dy Kozo W and d Z r, □3dz: 3
Estimating the next minute amount, that is, the above 0 lack 17)
01og (Q(0) )2 Since the O attenuation is sufficiently small in metals, dy1 □kuku1, ”=-2010flO=-■ If the adhesive field is good like this, the spectrum with high intensity will be Uneura will be done.

第5図(4)中O実線は以上O連成で計痙したSO理論
ス(クトルを示し、第5図(8)は第3図Oシステムで
得られ九観測スペクトルを示す。また、第5図(All
中鎖鎖線実測値を示す。これら0図からも両者がよく一
致することが確認された。
The O solid line in Fig. 5 (4) shows the SO theoretical spectra measured by the above O coupling, and Fig. 5 (8) shows the nine observed spectra obtained with the O system in Fig. 3. Figure 5 (All
The medium chain line shows the measured value. It was confirmed from these 0 figures that the two agree well.

11)接着不良0場合 接着不良O場合は反射波が第6図体)および第6図(8
)に示すような状態になり、入射波t A (t)とす
れば各n回反射波成分は次Oように表わされる。
11) If the adhesion failure is 0, if the adhesion failure is O, the reflected wave will be
), and if the incident wave is t A (t), each n-times reflected wave component is expressed as O below.

Ko(t) = k 5R5,k 、A(t)′1 したがって、Ko、に0間O全反射波R(t)はrKO
ように表わされる。
Ko(t) = k 5R5,k , A(t)'1 Therefore, the total reflection wave R(t) between 0 and 0 at Ko is rKO
It is expressed as follows.

望t)=、に0(tl+I、(を汁I、(t) +I、
(tJ+・・・・・・・・これを7−IJ工変換して関
数Sを求める。
desired t)=, 0(tl+I, (t)=I, (t) +I,
(tJ+...This is converted to 7-IJ to obtain the function S.

こ\で、 α513三に¥(T51T15R13/R51)β51
3二kl R15R−13 金jllとゴム2とでは音響イ/ピーグ/スが大きく異
なる0で欠の近似が可能である。
Here, α513 three ¥ (T51T15R13/R51) β51
32kl R15R-13 Gold jll and rubber 2 have very different acoustic i/pigs/s, and an approximation of 0 and missing is possible.

kニー1−dyよ  (dy工)0) R# −1+ dz5.(dz5.>  O)R−1−
dz   (dz、、> 0  )この近似を出いると
関数Sは欠Oように簡略化される。
k knee 1-dyyo (dy engineering) 0) R# -1+ dz5. (dz5.>O)R-1-
dz (dz, , > 0) Leaving this approximation, the function S is simplified to lack O.

咲 □〜nπ (n =1 + 2 e・・・・・)■とき
b−20log (1+ d z 5□)トル強度を求
めてみる。
Saki □ ~ nπ (n = 1 + 2 e...) ■ When b - 20 log (1 + d z 5 □) Try to find the torque strength.

dy1 □(く1である0で、 こ○ように接層吠頭が不良Q場合は強度が小さいスペク
トルが観測さnることになる。
dy1 □(ku1 is 0, and if the tangent head is defective like this, a spectrum with low intensity will be observed.

第7図(AJ中Q実纏は以上O算式で計算したSO理論
スペクトルを示し、第7図(B)は第3図Oシステムで
得うれたl1lfsスペクトルを示す。また、第7図(
4)中O膚線は実測値を示す。これらの図からも両者が
よく一致し、接着良好の場合Q第5図(A) 、 (B
) OX−’クトルと明らかに相違していることが確認
された。以と、i)、 il)において1理論O見通し
をよくする為に近似を用いたが、もちろん、近似前0式
■、■をコ/ピユータ−で直接数値計算しても同じ結論
に達することができる。
Figure 7 (AJ middle Q practical) shows the SO theoretical spectrum calculated using the O formula above, and Figure 7 (B) shows the l1lfs spectrum obtained with the Figure 3 O system.
4) The middle O skin line shows the actual measured value. From these figures, the two agree well, and in the case of good adhesion, Q Figures 5 (A) and (B
) It was confirmed that it was clearly different from OX-'ctor. Below, in i) and il), approximations were used to improve the visibility of 1-theory O, but of course, the same conclusion can be reached even if the equations ■ and ■ before the approximation are directly calculated numerically on a computer/computer. I can do it.

実施例 ri: 実施例I(第2図)と同じ接合部材に対し、コ゛ム2側
から音波を入射して周波数スペクトルを求めた。測定シ
ステムは第3図と同じである。
Example ri: A sound wave was applied to the same joining member as in Example I (FIG. 2) from the comb 2 side, and the frequency spectrum was determined. The measurement system is the same as in FIG.

こQ場合Q反射波は第8図(A)および第8図CB)に
示すような状態になり、入射波をA (t)とすれば各
n回反射波成分は欠Oように表わされる。
In this Q case, the Q reflected wave will be in the state shown in Figure 8 (A) and Figure 8 CB), and if the incident wave is A (t), each n reflected wave component can be expressed as missing O. .

Iノt) = k、’r工、に2R23に2R2,に2
R23に2T2、k工A (を−μm)したがって、全
反射波R(t)は次Qように表わされる。
Inot) = k, 'rwork, 2R23, 2R2, 2
R23 is 2T2, kA (-μm) Therefore, the total reflected wave R(t) is expressed as the following Q.

R(t) = Ko(t)+に、(tl+−・・−+ 
I、(t)+I、(tl +−−−−−これをツーIJ
 工変換して関数Sを求める。
R(t) = Ko(t)+, (tl+-...-+
I, (t) + I, (tl +-----This is two IJ
Then, calculate the function S.

こ−で、 α123三’ % (Tx2′r21B−23/’”1
2)β。、2三に7 R工。R工。
Here, α1233'% (Tx2'r21B-23/'”1
2) β. , 7 R engineering on 23rd. R-engineer.

β123三にμm2R23 上記関数SQ第1項はゴムlからQ寄与を、第2項は金
j12からQ寄与である。0式を直接数値計算すればス
ペクトルが計算できるが、見通しをよくする為に、次O
近似を行なうゴム1と金属2とでは音響インビーダンス
が大きく異なるので、次の近似が可能である。
β1233μm2R23 The first term of the above function SQ is the Q contribution from rubber l, and the second term is the Q contribution from gold j12. The spectrum can be calculated by directly numerically calculating the formula 0, but for better visibility, the following
Since the acoustic impedance of the rubber 1 and the metal 2 for which the approximation is performed is greatly different, the following approximation is possible.

k2ζ1 dy2 (dy2> 0) kl ζ1−dyよ (dyよ〉0) R12”  l + dZ12 (d Z 12> O
)R23””−dz23(dz23”) R1() ””   1 + dZ x 。(d Z 
x o > 0 )こ0近似を用いるとSは久Oように
簡略化される。第1項(ゴムからO寄与)t−8rとす
ると S =S r + 2OA!og (1+ dZx2)
主 S = Sr+20Jog[QfO)+Q(1)+Q(
2)+Q(3)) 2こ−で、 dz12+dz23” 2dy2壬W e dz、、、
==+ dz として2ω!、 cos(−) 第9図(At中中実実線こうして算出したso第2頂部
分(金属から■寄与)O理論スペクト。
k2ζ1 dy2 (dy2> 0) kl ζ1-dy (dy>0) R12" l + dZ12 (d Z 12> O
)R23""-dz23(dz23") R1() "" 1 + dZ x .(d Z
x o > 0) Using the 0 approximation, S is simplified to 0. If the first term (O contribution from rubber) is t-8r, then S = S r + 2OA! og (1+ dZx2)
Main S=Sr+20Jog[QfO)+Q(1)+Q(
2)+Q(3)) With 2, dz12+dz23” 2dy2 壬W e dz,,,
==+ dz as 2ω! , cos (-) Figure 9 (solid solid line in At) So second top portion (■ contribution from metal) O theoretical spectrum calculated in this way.

を示し、第9図(Blはそ■奴測スペクトル’を示t。9 (Bl indicates the spectrum measured by that person).

また、第9図(A)中cDA標は実測値を示す。Moreover, the cDA mark in FIG. 9(A) shows the actually measured value.

これら■スペクトルzJ?ターンを調べるト、全共鳴条
件が成立している。
These ■spectrum zJ? When examining the turn, all resonance conditions are met.

一方、コ゛ム1と金属2との間Q接着部にあるサイズQ
欠かんが存在すると、こ○欠かんのサイズ以下O波長成
分はそこでMfiJ(、コ゛ムlから金属2へ進入でき
なくなる。こ■ため、前記井鳴条件が破られスペクトル
中■当該波畏成分θピークがl自失する。
On the other hand, the size Q at the Q bond between comb 1 and metal 2
If a gap exists, O wavelength components smaller than the size of this gap will not be able to enter the metal 2 from MfiJ (, com l. Therefore, the Inari condition mentioned above is violated and the corresponding wave component θ in the spectrum The peak is lost.

したがって、スペクトル・!ターンを献測することによ
り、接着部(界面)■状態すなわち欠かんO有無を判定
することができ、欠かんがある場合はそ■サイズまで検
査することができる。
Therefore, spectrum! By measuring the turn, it is possible to determine the condition of the bonded portion (interface), that is, the presence or absence of a chip. If there is a chip, the size of the chip can be inspected.

第10図(A)は接層良好○場合O観測ス(クトルを、
第10図(81は接層不良0嚇合O観測スイクトルを例
示する。第10図(B)においては、矢印X0部分でピ
ークが消失しかけており、したがって、接着部にこの位
置でQ波長に近いサイズO欠かんが存在すると判定され
る。供試品を破壊して調べた結果も同じであった。
Figure 10 (A) shows O observation scale (cuttle) when the contact layer is good.
Figure 10 (81 is an example of a contact failure 0 contact O observed squictor. In Figure 10 (B), the peak is about to disappear at the arrow It is determined that there is a chip of similar size O.The same result was obtained when the sample was destroyed and examined.

実施例 mニ ジーIットプラストした金属(JIS規格550C)K
W層剤(メタロツクF’C/ケムロツク220)t−使
用して凛準配合ニトリルゴムを部分的に加硫接着した接
合部材につき、金属側より遅延材(アクリルガイレイ)
を介して5MHzO音波を入射し、接着部と非接着部D
J#波数スペクトルfta定した。試験は実施例IO場
合と同様O方法で行なった。
Example: Plasted metal (JIS standard 550C) K
For the joining member partially vulcanized and bonded with Rinjun blended nitrile rubber using W layer agent (Metalloc F'C/Chemloc 220) T-, a delay material (acrylic gas layer) was applied from the metal side.
A 5MHzO sound wave was applied through the bonded area and the non-bonded area D.
J# wavenumber spectrum fta was determined. The test was conducted in the same manner as in Example IO.

第11図(4)は接層部0観1スペクトルを、第11図
(B)は非接盾部O観測スくクトルを示す。
FIG. 11(4) shows the 0-view 1 spectrum of the contacting part, and FIG. 11(B) shows the O observation spectrum of the non-contacting part.

接着部では周期的に鋭いピークが表われているが、非接
層部ではこれが表われておらず、こ■スペクトルから両
者を明確に識別できることがm認された。
Although periodic sharp peaks appeared in the bonded part, these did not appear in the non-contacted part, and it was confirmed that the two could be clearly distinguished from this spectrum.

実施例 fvニ ブチル糸防振ゴムとショツトブラストした金属とを接層
剤(ケムaツク205/220)で加硫接層するに際し
、一方O試料は熱プレスで加硫接層し、地方はゴム射出
成形で接層した。
Example: When fv nibbutyl yarn vibration isolating rubber and shot-blasted metal were vulcanized and bonded using a bonding agent (Chem-A-Tsuku 205/220), on the other hand, the O sample was vulcanized and bonded using a hot press; Laminated by injection molding.

こ■211!類0接合部材につき、火砲例■と同様の方
法でj゛ム側ら音波を入射し、そ0検出反射波信号勿7
−リエf遺して浦波紋スペクトル(関数SK対応する)
を測定した。
This ■211! For the type 0 joint member, inject a sound wave from the j゛m side in the same manner as in the gun example
- Rie f Isashi Ura ripple spectrum (corresponding to function SK)
was measured.

第12図(A)は熱プレスで圧着したものO観測スペク
トルを、第12図(B)は射出成形したもO■観測スペ
クトルを示す。
FIG. 12(A) shows the O observed spectrum of the product bonded by hot press, and FIG. 12(B) shows the O■ observed spectrum of the product obtained by injection molding.

熱ブレス圧肩■場合は高周波までピークが表われるが、
射出成形では2.768 MH2(λ= 0.29rn
m )および2.64MHz(λ=0.3mm)C)ピ
ークが消出しており、射出成形の方■接合面には約0.
3mm程度■空値が存在すると判定できた。
In the case of heat breath pressure shoulders, peaks appear up to high frequencies,
In injection molding, 2.768 MH2 (λ = 0.29rn
m ) and 2.64 MHz (λ = 0.3 mm) C) peaks have disappeared, indicating that approximately 0.
It was determined that there was a blank value of approximately 3 mm.

実施例 V: 加硫天然ゴムと6ナイロ/とを部分的に接着した試料に
つき、6ナイロ/側から5 MHz■音波を入射し、接
着部と非接層部■周波数スイクトルを測定した。
Example V: For a sample in which vulcanized natural rubber and 6 Nylon were partially adhered, a 5 MHz sound wave was applied from the 6 Nylon side, and the frequency squictre of the bonded part and the non-contacted part was measured.

第13図(A)は接層部OI!煽スペクトルを、第13
図(B)は非接着部O@瀾ス(クトルを示す。
Figure 13 (A) shows the contact layer OI! Inciting the Spectrum, Part 13
Figure (B) shows the non-adhesive part.

こO場合は両材料の音響インピーダンスO差が比較的小
さいOでピーク値自体は小さくなるが、接着部と非接層
部とではスペクトルパターンが明らかに相異している。
In this case, the peak value itself is small because the difference in acoustic impedance O between the two materials is relatively small, but the spectral patterns are clearly different between the bonded portion and the non-contact layer portion.

こQ場合Oスペクトルツリー/も前述O理論中で近似す
る前0式から予想されるも■と一致していることが確認
された。
It was confirmed that the O spectral tree / in this Q case also coincides with ■, which is predicted from the previous equation approximated in the O theory.

〔効 果〕〔effect〕

以上O説明から明らかなごとく、本発明によれば、2つ
θ材料間の接着部O状態(欠かO何無など)を容易にし
かもIE確に検査しつる非破壊検査方法が提供される。
As is clear from the above description, the present invention provides a non-destructive testing method that can easily and accurately inspect the condition of the bond between two θ materials (such as missing parts, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(8)および第1図(B)は接合部材における音
波0入射波および反射波Q状1mヲ例示する説明色、第
2図は金属とゴムを接着した被検査接合部材O斜視図、
第3図は本発明方法を実施するOK好適な測定システム
を例示するブロック図、第4図(4)および第4図t8
)は高音響イ/ビーグン入側入射で接層良好時O反射波
O状態を例示する説明図、第5図(A)および第5図@
)は高音響インピーダンス側入射で接着良好時θ理論ス
ペクトルおよび観測スペクトルを示すグラフ、第6図(
A)および第6図(@は高音響インピーダンス側入射で
接着不良時O反射波O状ta1に例示する説明図、第7
色囲および第7図(囮は高音4イ/ピーダンス側入射で
接着不良時O理論スペクトルおよびl!瀾スペクトルを
示すグラフ、第8図(A)および第8図(B)は低音響
イノビーダンス側から音波を入射した時O反射波O状態
を例示する説明図、I@9図(〜および第9図(B)は
第8図の場合O理論スペクトルおよび観測スペクトルを
示すグラフ、第10図(A)および第10図+8)は第
8図O場合O接着良好時および接着不良時■観測スペク
トルを示す図、第11図な)および第11図(B)は接
着部および非接着部O金jIlIl11入射した時0観
燗スペクトルを示す図、第12図(A)および第12図
(81は=熱プレス加硫接着およびゴム射出成形接着し
たも■Qゴム側入射した時の観測スペクトルを示す図、
第13色囲および第10図+8) Hがふとデラステク
クQ接合部材における接着部および非接着部O@燗スペ
クトルを示す図である。 1.2・・・・・接層された材料、 A (t)・・・・・入射波波形関数、■よ(t) 、
 I 2(t)〜J工(t) e 、y2it)〜・・
・・・反射波成分O波形関数。 代理人 弁理士  大 音 康 毅 第3図 第4 図 ≦     ゛ 第7図 (B) 第8図 (B) 第9図 (A) (IS 第10図 (A) (B) 第11図 (A) (B) fo    3fo      6f。 第12図 (A) fn(MHz) (B) fn(M)−12)
Fig. 1 (8) and Fig. 1 (B) are explanatory colors illustrating a sonic wave 0 incident wave and a reflected wave Q shape 1 m in the bonded member, and Fig. 2 is a perspective view of the inspected bonded member O in which metal and rubber are bonded. ,
FIG. 3 is a block diagram illustrating a suitable measurement system for carrying out the method of the invention, FIG. 4(4) and FIG.
) is an explanatory diagram illustrating the O state of the O reflected wave when the contact layer is good with high acoustic I/Begun input side incidence, Fig. 5 (A) and Fig. 5 @
) is a graph showing the theoretical θ spectrum and observed spectrum when the adhesion is good with incidence on the high acoustic impedance side, and Figure 6 (
A) and Figure 6 (@ is an explanatory diagram illustrating the O-shaped reflected wave O-shaped ta1 at the time of poor adhesion when the incidence is on the high acoustic impedance side, and Fig. 7
Color range and Figure 7 (Decoy is a graph showing the O theoretical spectrum and l! error spectrum when adhesion is poor with high sound 4 impedance side incidence, Figure 8 (A) and Figure 8 (B) are graphs showing low sound I/Pedance side incidence. An explanatory diagram illustrating the reflected wave O state when a sound wave is incident from A) and Figure 10 + 8) are diagrams showing the observed spectra in Figure 8 when the bond is good and when the bond is poor, Figure 11) and Figure 11 (B) are the bonded and non-bonded areas. Figure 12 (A) and Figure 12 (81 = Heat press vulcanization bonding and rubber injection molding bonded material ■ Q shows the observed spectrum when incident on the rubber side. figure,
13th Color Circle and Figure 10+8) H is a diagram showing the bonded part and non-bonded part O@warm spectrum in the Futo Derastechuku Q bonded member. 1.2...Touched material, A(t)...Incident wave waveform function, ■Yo(t),
I 2 (t) ~ J engineering (t) e, y2it) ~...
...Reflected wave component O waveform function. Agent Patent Attorney Yasutake Oto Figure 3 Figure 4 ≦ Figure 7 (B) Figure 8 (B) Figure 9 (A) (IS Figure 10 (A) (B) Figure 11 (A) ) (B) fo 3fo 6f. Fig. 12 (A) fn(MHz) (B) fn(M)-12)

Claims (1)

【特許請求の範囲】[Claims] (1)接着された2つの材料間の接着部の非破壊検査方
法において、一方の材料の表面から音波を入射するとと
もにその反射波を検出し、検出反射波信号をフーリエ変
換してその周波数スペクトルを作り、該スペクトルのパ
ターンから接着部の状態を判定することを特徴とする検
査方法。
(1) In a non-destructive inspection method for a bond between two bonded materials, a sound wave is incident on the surface of one material, the reflected wave is detected, and the detected reflected wave signal is Fourier-transformed to obtain its frequency spectrum. An inspection method characterized in that the state of the bonded portion is determined from the spectral pattern.
JP60096384A 1985-05-07 1985-05-07 Method for nondestructive inspection of bonded part Pending JPS61254850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096384A JPS61254850A (en) 1985-05-07 1985-05-07 Method for nondestructive inspection of bonded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096384A JPS61254850A (en) 1985-05-07 1985-05-07 Method for nondestructive inspection of bonded part

Publications (1)

Publication Number Publication Date
JPS61254850A true JPS61254850A (en) 1986-11-12

Family

ID=14163465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096384A Pending JPS61254850A (en) 1985-05-07 1985-05-07 Method for nondestructive inspection of bonded part

Country Status (1)

Country Link
JP (1) JPS61254850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088327A (en) * 1990-05-17 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Phase cancellation enhancement of ultrasonic evaluation of metal-to-elastomer bonding
US5408881A (en) * 1993-09-15 1995-04-25 National Research Council Of Canada High resolution ultrasonic interferometry for quantitative mondestructive characterization of interfacial adhesion in multilayer composites
GB2504840A (en) * 2012-06-20 2014-02-12 Snecma Determining breaking stress in shear using ultrasound waves
WO2014030615A1 (en) * 2012-08-21 2014-02-27 株式会社Ihi Method and device for inspecting interface of composite structure
WO2021044920A1 (en) * 2019-09-02 2021-03-11 三菱重工業株式会社 Adhesive layer evaluation system and adhesive layer evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164953A (en) * 1980-05-26 1981-12-18 Toyota Central Res & Dev Lab Inc Ultrasonic inspecting device for junction part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164953A (en) * 1980-05-26 1981-12-18 Toyota Central Res & Dev Lab Inc Ultrasonic inspecting device for junction part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088327A (en) * 1990-05-17 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Phase cancellation enhancement of ultrasonic evaluation of metal-to-elastomer bonding
US5408881A (en) * 1993-09-15 1995-04-25 National Research Council Of Canada High resolution ultrasonic interferometry for quantitative mondestructive characterization of interfacial adhesion in multilayer composites
GB2504840A (en) * 2012-06-20 2014-02-12 Snecma Determining breaking stress in shear using ultrasound waves
WO2014030615A1 (en) * 2012-08-21 2014-02-27 株式会社Ihi Method and device for inspecting interface of composite structure
JP5909285B2 (en) * 2012-08-21 2016-04-26 株式会社Ihi Method and apparatus for inspecting interface of composite structure
EP2889613A4 (en) * 2012-08-21 2016-05-04 Ihi Corp Method and device for inspecting interface of composite structure
WO2021044920A1 (en) * 2019-09-02 2021-03-11 三菱重工業株式会社 Adhesive layer evaluation system and adhesive layer evaluation method

Similar Documents

Publication Publication Date Title
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
Hua et al. Time-frequency damage index of Broadband Lamb wave for corrosion inspection
JP5105384B2 (en) Nondestructive inspection method and apparatus
Draudviliene et al. Estimation of the Lamb wave phase velocity dispersion curves using only two adjacent signals
Roach et al. Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints
Allin et al. Adhesive disbond detection of automotive components using first mode ultrasonic resonance
Ghose et al. Guided A0 wave mode interaction with interfacial disbonds in an elastic-viscoelastic bilayer structure
Kupperman et al. Ultrasonic NDE of cast stainless steel
Zima et al. Experimental and numerical identification of corrosion degradation of ageing structural components
Singher Bond strength measurement by ultrasonic guided waves
JPS61254850A (en) Method for nondestructive inspection of bonded part
Cawley Ultrasonic measurements for the quantitative NDE of adhesive joints-potential and challenges
Baghalian et al. Development of comprehensive heterodyne effect based inspection (CHEBI) method for inclusive monitoring of cracks
Ohara et al. Evaluation of amorphous diffusion bonding by nonlinear ultrasonic method
Merdjana et al. A high accuracy ultrasonic measurement system using the prism technique
Yun et al. Imaging of contact acoustic nonlinearity using synthetic aperture technique
EP3622285A1 (en) Ultrasonic inspection methods and systems
Theobald et al. Acoustic emission transducers—development of a facility for traceable out-of-plane displacement calibration
Cawley et al. A comparison of different methods for the detection of a weak adhesive/adherend interface in bonded joints
Pialucha et al. The reflection of ultrasound from interface layers in adhesive joints
Huang et al. Stiffness measurement and defect detection in laminated composites by dry-coupled plate waves
Bar-Cohen et al. Characterization of composite laminates using combined LLW and PBS methods
Pant et al. Paint thickness measurement using acoustic interference
US20070005270A1 (en) Method for examining plate steel on concrete
Bertoncini et al. 10D-3 Long Range Guided Wave Inspection of Pipelines by a New Local Magnetostrictive Transducer