JPS61254839A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device

Info

Publication number
JPS61254839A
JPS61254839A JP60097314A JP9731485A JPS61254839A JP S61254839 A JPS61254839 A JP S61254839A JP 60097314 A JP60097314 A JP 60097314A JP 9731485 A JP9731485 A JP 9731485A JP S61254839 A JPS61254839 A JP S61254839A
Authority
JP
Japan
Prior art keywords
magnetic field
static magnetic
gradient
frequency
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60097314A
Other languages
Japanese (ja)
Other versions
JPH0322775B2 (en
Inventor
Masahiko Hatanaka
畑中 雅彦
Fumitoshi Kojima
富美敏 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60097314A priority Critical patent/JPS61254839A/en
Publication of JPS61254839A publication Critical patent/JPS61254839A/en
Publication of JPH0322775B2 publication Critical patent/JPH0322775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3607RF waveform generators, e.g. frequency generators, amplitude-, frequency- or phase modulators or shifters, pulse programmers, digital to analog converters for the RF signal, means for filtering or attenuating of the RF signal

Abstract

PURPOSE:To always obtain an MR (magnetic resonance) image with high spatial resolution, by detecting frequency deviation of a static magnetic field H0 at positions other than the position for collecting picture data and synthesizing frequencies by adjusting a power source for static magnetic field even when picture data collection is processed. CONSTITUTION:Air core coil systems 4A and 4B are excited by means of a static magnetic field power source 13 and a uniform magnetic field H0 is impressed upon an object P to be inspected. Then an inclined magnetic field having a magnetic field gradient GZ in the direction vertical to the cross section is superposed by means of a coil 5 under this condition and, simultaneously, a selected excitation pulse SEP is impressed upon the object P to be inspected from a transmitter 9. After the magnetic field gradient GZ and pulse SEP are impressed, an inclined magnetic field having a magnetic field gradient GXY in the direction along the cross section is superposed upon the static magnetic field H0. Thereafter, an MR echo signal from the object P to be inspected is received by means of a transmitting-receiving high-frequency coil system 7. The signal is processed by an adder 11 and an arithmetic mean is obtained. This data is Fourier-transformed by means of a fast Fourier transformer 12 and projecting data are obtained. This data are found for each direction by changing the inclining direction of the magnetic field gradient GXY.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は磁気共鳴(以下rMRJと称する)現象を用い
て被検体中に存在する成る特定の原子核のスピン密度、
および緩和時(間)定数等の反映された画像を得る例え
ば診断用MRtii置のごときMRイメージング装置に
関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention uses magnetic resonance (hereinafter referred to as rMRJ) phenomenon to determine the spin density,
The present invention also relates to an MR imaging apparatus, such as a diagnostic MRtii system, which obtains images that reflect relaxation time constants and the like.

[発明の技術的背II] 例えば診断用MR装置では、被検体の成る特定の位置に
おける断層像(断層面における特定原子核の例えばスピ
ン密度分布像)を次のようにして得る。
[Technical background of the invention II] For example, in a diagnostic MR apparatus, a tomographic image (for example, a spin density distribution image of a specific atomic nucleus on a tomographic plane) at a specific position of a subject is obtained as follows.

第1図に示すように、被検体Pに対して図示Z軸方向に
沿う非常に均一な静磁場Haを作用させ、さらに一対の
傾斜磁場コイル1A、IBにより静磁場Haに2軸方向
についての線型磁場勾配Gzを付加する。静磁場Haに
対して特定原子核は次式で示される角周波数ω0で共鳴
する。
As shown in FIG. 1, a very uniform static magnetic field Ha along the illustrated Z-axis direction is applied to the subject P, and a pair of gradient magnetic field coils 1A and IB are applied to the static magnetic field Ha in two axial directions. Add a linear magnetic field gradient Gz. A specific atomic nucleus resonates with the static magnetic field Ha at an angular frequency ω0 expressed by the following equation.

ωa−γHa      ・・・(1)この(1)式に
おいて、γは磁気回転比であり原子核の種類に固有のも
のである。そこでさらに、特定の原子核のみを共鳴させ
る角周波数0口の回転磁場H1を一対の送信コイル2A
、2Bを介して被検体Pに作用させる。このようにする
と、磁場勾配GzによりZ軸方向について選択選定され
る図示X−Y平面部分くZ軸に直角な平面状の部分であ
るが現実にはある厚みをもつ)のみに選択的にMR現象
が生ずる。このMR現象は一対の受信コイル3A、3B
を介して観測され、得られるMR倍信号フーリエ変換す
ることにより、特定原子核スピンの回転角周波数につい
ての単一のスペクトルが得られる。断層像をコンピュー
タ断層(CT)法により得るためにはスライス部分であ
るX−Y平面内の多方向についての投影像が必要である
ωa−γHa (1) In equation (1), γ is the gyromagnetic ratio and is specific to the type of atomic nucleus. Therefore, a rotating magnetic field H1 with an angular frequency of 0 that makes only specific atomic nuclei resonate is applied to a pair of transmitting coils 2A.
, 2B on the subject P. In this way, the MR can be selectively performed only on the X-Y plane portion shown in the figure, which is selected in the Z-axis direction by the magnetic field gradient Gz (although it is a planar portion perpendicular to the Z-axis, in reality it has a certain thickness). A phenomenon occurs. This MR phenomenon is caused by a pair of receiving coils 3A and 3B.
By Fourier transforming the obtained MR multiplied signal, a single spectrum for the rotational angular frequency of a specific nuclear spin can be obtained. In order to obtain a tomographic image using a computerized tomography (CT) method, projection images in multiple directions within the X-Y plane, which is a slice portion, are required.

そのため、スライス部分を励起してMR現象を生じさせ
た後、磁場HOにX−Y平面上の特定方向に直線的な傾
斜を持つ線型磁場勾配GXYを(図示していないコイル
等により)作用させると、被写体Pのスライス部分にお
ける等磁場線は磁場勾配Gxyの傾斜方向に直角な平行
直線となり、この各等磁場線上の特定原子核スピンの回
転角周波数が上記(1)式であられされる。そこで、こ
のような状態で観測されるMR倍信号フーリエ変換する
ことによってスライス部分の磁場勾配GXY方向の投影
情報、すなわち上記等磁場線に平行な軸上への投影情報
(一次元像)を得る。このようにして磁場勾配GXYを
X−Y平面内で回転させ(この磁場勾配Gxyの回転は
例えば2対の傾斜磁場コイルを用い、X、Y各方向につ
いての磁場勾配Gx、Gyの合成磁場として磁場勾配G
xyを作り、上記磁場勾配Gx、Gyの合成比率を変化
させることによって行う。)ることにより、上述と同様
にしてX−Y平面内の各方向への投影情報が得られ、こ
れらの情報に基づく画像再構成処理によって断層像を得
ることができる。
Therefore, after exciting the sliced portion to cause the MR phenomenon, a linear magnetic field gradient GXY having a linear gradient in a specific direction on the X-Y plane is applied to the magnetic field HO (by a coil, etc. not shown). Then, the isomagnetic field lines in the sliced portion of the object P are parallel straight lines perpendicular to the inclination direction of the magnetic field gradient Gxy, and the rotational angular frequency of a specific nuclear spin on each of these isomagnetic field lines is given by the above equation (1). Therefore, by Fourier transforming the MR multiplied signal observed in such a state, projection information in the magnetic field gradient GXY direction of the sliced portion, that is, projection information (one-dimensional image) on the axis parallel to the above-mentioned isomagnetic field lines is obtained. . In this way, the magnetic field gradient GXY is rotated within the X-Y plane (the rotation of the magnetic field gradient Gxy is performed using, for example, two pairs of gradient magnetic field coils, and the magnetic field gradient GXY is rotated as a composite magnetic field of the magnetic field gradients Gx and Gy in each of the X and Y directions. magnetic field gradient G
This is done by creating xy and changing the composite ratio of the magnetic field gradients Gx and Gy. ), projection information in each direction within the XY plane can be obtained in the same manner as described above, and a tomographic image can be obtained by image reconstruction processing based on this information.

なお上述におけるMRの励起、MR倍信号収集およびこ
れらに伴なう磁場勾配の印加のシーケンスについては種
々のパターンがあり、上述ではその基本的な一例を示し
たにすぎない。
Note that there are various patterns for the sequence of MR excitation, MR multiplied signal collection, and application of magnetic field gradients in connection with these, and the above is just a basic example.

ところで、この種の診断用MR装置においては、一様静
磁場HOの発生部その他のドリフト等が避は難く、長時
間にわたって所定の共鳴条件を維持するのが困難であり
、このため時間の経過とともに共鳴条件からはずれてゆ
く傾向がある。これによる共鳴周波数0口のずれΔωが
例えば従来の装置の場合数kHzのオーダでずれるとも
はや共鳴が生じなくなりMRの励起ができなくなる。ま
た、同様の場合において共鳴周波数ずれΔωが数10H
2〜数100H2のオーダでずれると、一応励起は可能
であるが、結果として得られる画像がぼけたり、アーチ
ファクトがあられれたりする。したがって、この種の装
置においては上記ずれΔωを数)−12以下におさえな
ければならない。
By the way, in this type of diagnostic MR apparatus, it is difficult to avoid drifts in the uniform static magnetic field HO generation part and other parts, and it is difficult to maintain a predetermined resonance condition for a long period of time. There is a tendency for the resonance condition to deviate from the resonance condition. If the resulting deviation Δω of the resonance frequency 0 is on the order of several kHz in the case of a conventional device, resonance will no longer occur and MR excitation will no longer be possible. Moreover, in the same case, the resonant frequency shift Δω is several tens of H.
If the deviation is on the order of 2 to several 100 H2, excitation is possible, but the resulting image may be blurred or have artifacts. Therefore, in this type of device, the above-mentioned deviation Δω must be kept below -12.

一般的に上記共鳴条件を合せる方法として次の2つの方
法が考えられる。
Generally, the following two methods can be considered as methods for matching the above resonance conditions.

(a)静磁場HOを可変として調整する。(a) Adjust the static magnetic field HO as variable.

(b)共鳴周波数ωaを可変として調整する。(b) Adjusting the resonance frequency ωa as a variable.

そして、上記(b)の方法においては次のような問題点
がある。
The method (b) above has the following problems.

(イ)周波数帯域を広くとるため、外乱によるノイズを
ひろい易く、S/N (信号対雑音比)の劣化のおそれ
がある。
(b) Since the frequency band is wide, it is easy to pick up noise due to disturbances, and there is a risk of deterioration of the S/N (signal-to-noise ratio).

(ロ)送受信関係の周波数帯域を変化するため、送受信
関係の回路定数を変えなければならない。
(b) In order to change the frequency band related to transmission and reception, it is necessary to change the circuit constants related to transmission and reception.

したがって、この場合上記(a)の方法すなわち静磁場
Hoを可変にする方法が上記(イ)。
Therefore, in this case, the method (a) above, that is, the method of making the static magnetic field Ho variable, is the method (b) above.

(ロ)の問題点もなく、一応望ましいと考えられるので
、ここではこの方法により上記共鳴条件を安定に維持す
ることを検討する。
Since there is no problem (b) and it is considered to be preferable, we will consider stably maintaining the above-mentioned resonance conditions using this method.

このように静磁場HOを可変調整して、共鳴条件のずれ
を補正する従来の方法としては、静磁場)ioのずれを
検知するためのプローブを本来のMR信号検出用とは別
途に設け、このプローブによる補正のために設定した基
準データにより該プローブを用いて静磁場HOを補正す
る方法、あるいはやはり別途に設けた磁気センサにより
静磁場HOのずれを検知し静磁場HOを補正する方法が
あり、これらはいずれも画像を得るためのMR信号デー
タ収集処理(以下「画像データ収集処理」と称する)を
行なう前にのみ実行されていた。
The conventional method of variably adjusting the static magnetic field HO to correct deviations in the resonance conditions is to provide a probe for detecting deviations in the static magnetic field (IO) separately from the original one for detecting MR signals; There is a method of correcting the static magnetic field HO using the probe based on reference data set for correction by this probe, or a method of detecting the deviation of the static magnetic field HO using a separately provided magnetic sensor and correcting the static magnetic field HO. Both of these processes were executed only before performing MR signal data collection processing (hereinafter referred to as "image data collection processing") for obtaining images.

[背景技術の問題点] しかし乍ら、上記両方法においては、特別な外部装置を
付加する必要があり、また補正に要する時間は信号の処
理等に伴い必要以上に多くかかる等の不都合があった。
[Problems in the background art] However, both of the above methods require the addition of special external equipment, and there are disadvantages such as the time required for correction being longer than necessary due to signal processing, etc. Ta.

これに対し発明者らは撮影する被検体を利用することに
より、特別な外部装置を付加することなく、共鳴条件の
ずれを高精度に補正し、常に共鳴条件を満足する状態で
MR映像のWi像が行え、結果的に常に空間分解能の高
いMR映像を得ることを可能とした技術を提案した。
In contrast, by using the subject to be photographed, the inventors have been able to correct the deviation in resonance conditions with high precision without adding any special external equipment, and the Wi We proposed a technology that makes it possible to obtain MR images with high spatial resolution at all times.

即ち、静磁場に重畳して用いる傾斜磁場として撮像対象
面に垂直な方向についての傾斜磁場のみを用いて、MR
エコー信号を検出し、それをフーリエ変換して得られる
投影信号のピークを検出することにより、周波数のずれ
Δωを検出し静磁場変動分ΔHOを γ より算出し、この静磁場変動分ΔHOを静磁場電源にフ
ィードバックすることにより静磁場HOを調整し周波数
を合せること(以下このような制御を「11場ロツク」
と称する)を行なう。
In other words, MR
By detecting the echo signal and detecting the peak of the projection signal obtained by Fourier transforming it, the frequency deviation Δω is detected, and the static magnetic field variation ΔHO is calculated from γ. Adjusting the static magnetic field HO and matching the frequency by feeding back to the magnetic field power supply (hereinafter, such control is referred to as "11 field lock")
).

しかし乍、この方法の場合、静磁場HOの周波数ずれが
生じたとしても、画像データ収集処理中には、静磁場電
源を調整することによる補正はできなく、特に長時間の
画像データ収集処理時には問題であった。
However, in this method, even if a frequency deviation of the static magnetic field HO occurs, it cannot be corrected by adjusting the static magnetic field power supply during the image data collection process, especially during the long-term image data collection process. That was a problem.

[発明の目的] 本発明は、長時間の画像データ収集処理においても静磁
場HOの周波数のずれが生じなく、しかも特別な外部装
置を付加することなくして共鳴条件のずれを高精度に補
正し、常に共鳴条件を満足する状態でMR映像のm像が
行え、結果的に常に空間分解能の高いMR映像を得るこ
との可能なMRイメージング装置を提供することを目的
としている。
[Object of the Invention] The present invention is capable of correcting deviations in resonance conditions with high precision without causing any deviation in the frequency of the static magnetic field HO even during long-term image data collection processing, and without adding any special external equipment. It is an object of the present invention to provide an MR imaging apparatus that can perform m-images of MR images while always satisfying resonance conditions, and as a result can always obtain MR images with high spatial resolution.

[発明の概要コ 本発明の特徴とするところは、マルチスライシイングの
技術を応用して磁場ロックの手法を適用しつつ、画像デ
ータ収集を行なう部位以外の部位にて、静磁場HOの周
波数ずれを検出し画像データ収集処理中でも静磁場電源
を調整し周波数を合せることを特徴とする。
[Summary of the Invention] The present invention is characterized by applying a magnetic field locking method using multi-slicing technology, and adjusting the frequency of the static magnetic field HO in a region other than the region where image data is collected. It is characterized by detecting deviation and adjusting the static magnetic field power source to match the frequency even during image data collection processing.

[発明の実施例〕 第2図に本発明の一実施例の構成を示す。[Embodiments of the invention] FIG. 2 shows the configuration of an embodiment of the present invention.

第2図において、4A、4Bは被検体Pに一様な静磁場
HOを印加するための空心磁場コイル系、5は断層面に
垂直な方向(断層面をX−Y平面とすればZ軸方向)に
磁場勾配Gzをもつ傾斜磁場を発生するための傾斜磁場
コイル系、6は断層面方向(断層面X−Y平面上の各方
向)に磁場勾配G X Y lまたは−GXYをもつ傾
斜磁場を発生するだめの傾斜磁場コイル系である。7は
送受信用の高周波コイル系、8はMRエコー受信信号の
基準信号に対する同相成分(実部)と90°位相成分(
虚部)とを検波してMRエコー信号を得る(直角)二位
相検波方式の位相検波装置、9は角周波数ωの高周波パ
ルスからなる選択励起パルス(90°パルス)および非
選択励起パルス(180’パルス)を発生し高周波コイ
ル系7を介して送信する送信器、10は位相検波装置8
のMRエコー検波出力をディジタル値に変換するA/D
 (アナログ−ディジタル)変換器、11はA/D変換
器10のMRエコーデータ出力を所定回数平均加締する
加算器、12は加算器11で平均加算されたMRエコー
データを高速フーリエ変換する高速フーリエ変換器であ
る。13は静磁場HOを発生するため空心磁場コイル系
4A、4Bを励磁する静磁場電源、14は磁場ロック動
作時に高速フーリエ変換器12で得られた情報により静
磁場電源13を制御する静磁場w制御器である。15は
高速フーリエ変換器12の(磁場ロック動作時以外の)
出力に基づき画像再構成処理を行う画像再構成装置、1
6は画像再構成装置15で得られた画像を表示するディ
スプレイ装置、そして17は上記構成における各部の動
作タイミングを管理するタイミング制御系である。
In Fig. 2, 4A and 4B are air-core magnetic field coil systems for applying a uniform static magnetic field HO to the subject P, and 5 is a direction perpendicular to the tomographic plane (if the tomographic plane is the X-Y plane, the Z-axis 6 is a gradient magnetic field coil system for generating a gradient magnetic field having a magnetic field gradient Gz in the direction); 6 is a gradient coil system having a magnetic field gradient G X Y l or -GXY in the fault plane direction (each direction on the fault plane This is a gradient magnetic field coil system that generates a magnetic field. 7 is a high-frequency coil system for transmitting and receiving, and 8 is an in-phase component (real part) and a 90° phase component (with respect to the reference signal of the MR echo reception signal).
imaginary part) to obtain an MR echo signal (quadrature) two-phase detection type phase detection device; reference numeral 9 indicates a selective excitation pulse (90° pulse) consisting of a high-frequency pulse with an angular frequency ω and a non-selective excitation pulse (180° pulse); 10 is a phase detection device 8
A/D that converts the MR echo detection output of
(analog-digital) converter; 11 is an adder that averages and corrects the MR echo data output of the A/D converter 10 a predetermined number of times; 12 is a high-speed Fourier transform of the MR echo data averaged by the adder 11; It is a Fourier transformer. 13 is a static magnetic field power source that excites the air-core magnetic field coil systems 4A and 4B to generate the static magnetic field HO; 14 is a static magnetic field w that controls the static magnetic field power source 13 based on information obtained by the fast Fourier transformer 12 during magnetic field locking operation. It is a controller. 15 is the fast Fourier transformer 12 (other than during magnetic field lock operation)
Image reconstruction device that performs image reconstruction processing based on output, 1
6 is a display device that displays the image obtained by the image reconstruction device 15, and 17 is a timing control system that manages the operation timing of each part in the above configuration.

次にこのような構成における作用を説明する。Next, the operation in such a configuration will be explained.

まず、通常のMR映像の撮像の場合を第3図に示すタイ
ミングチャートを参照しながら説明する。
First, the case of normal MR imaging will be explained with reference to the timing chart shown in FIG.

この場合、最初に空心磁場コイル系4A、4Bを静磁場
電源13により励磁して、被検体Pに一様な静磁場HO
を印加する。次にこの状態で所要とする断層面(X−Y
平面)に垂直な方向(2方向)について磁場勾配G2を
もつ傾斜磁場を傾斜磁場コイル5によって一様な静磁場
HOに所定時間重畳し、同時に選択励起パルス(90°
パルス)SEPを送信器9から送受信用高周波コイル系
7を介して磁場内の被検体Pに印加する。これら磁場勾
配Gzと選択励起パルスSEPの印加を終了した後、(
静磁場)−1oは印加したまま)上記断層面に沿う方向
(X−Y平面上の所定方向)に磁場勾配GXYをもつ傾
斜磁場を傾斜磁場コイル系6により静磁場HOに所定時
間重畳する。この磁場勾配GXYの印加終了後、(静磁
場HOは依然として印加したまま)磁場勾配Gzと選択
励起パルス(180@パルス)SEPを送信器9から送
受信用高周波コイル系7及び傾斜磁場コイル系5を介し
て被検体Pに印加し、さらに磁場勾配Gzを静磁場HO
に所定時間重畳し続ける。この磁場勾配Gzの印加終了
後、上記磁場勾配GXYをもつ傾斜磁場を傾斜磁場コイ
ル系6より静磁場HOに所定時間重畳しつつ送受信用高
周波コイル系7により被検体PからのMRエコー信号を
受信する。
In this case, the air-core magnetic field coil systems 4A and 4B are first excited by the static magnetic field power supply 13, and a uniform static magnetic field HO is applied to the subject P.
Apply. Next, in this state, the required tomographic plane (X-Y
A gradient magnetic field having a magnetic field gradient G2 in the direction (two directions) perpendicular to the plane) is superimposed on the uniform static magnetic field HO for a predetermined time by the gradient magnetic field coil 5, and at the same time a selective excitation pulse (90°
A pulse) SEP is applied from the transmitter 9 to the subject P within the magnetic field via the transmitting/receiving high frequency coil system 7. After finishing the application of these magnetic field gradient Gz and selective excitation pulse SEP, (
A gradient magnetic field having a magnetic field gradient GXY in the direction along the above-mentioned tomographic plane (a predetermined direction on the X-Y plane) is superimposed on the static magnetic field HO for a predetermined time by the gradient magnetic field coil system 6, while the static magnetic field (-1o remains applied). After the application of the magnetic field gradient GXY is completed, the magnetic field gradient Gz and the selective excitation pulse (180@pulse) SEP are sent from the transmitter 9 to the high-frequency coil system 7 and the gradient magnetic field coil system 5 (with the static magnetic field HO still applied). The magnetic field gradient Gz is applied to the subject P through the static magnetic field HO.
continues to be superimposed on for a predetermined period of time. After the application of the magnetic field gradient Gz is completed, the gradient magnetic field having the magnetic field gradient GXY is superimposed on the static magnetic field HO from the gradient magnetic field coil system 6 for a predetermined period of time, and the MR echo signal from the subject P is received by the transmitting/receiving high frequency coil system 7. do.

高周波コイル系7で受信されたMRエコー信号を位相検
波装置8で位相検波し、このMRエコー信号の検波波形
をA/D変換器10でディジタル値に変換して加算器1
1に入力する。以後上述の動作を数回繰り返し、加算器
11でMRエコーデータの加算平均をとる。ここで、加
算平均をとっているのはS/N向上のためである。こう
して加算平均されたMRエコーデータを高速フーリエ変
換器12でフーリエ変換して第4図に示すようなプロジ
ェクションデータ(投影データ)を得る。このプロジェ
クションデータを磁場勾配Gxyの傾斜方向を変えて各
方向について求め、これをもとに画像再構成装置115
で再構成処理を行って画像化し、ディスプレイ装置16
により表示する。
The phase of the MR echo signal received by the high frequency coil system 7 is detected by the phase detection device 8, and the detected waveform of this MR echo signal is converted into a digital value by the A/D converter 10, and the detected waveform is converted into a digital value by the adder 1.
Enter 1. Thereafter, the above-described operation is repeated several times, and the adder 11 averages the MR echo data. Here, the purpose of taking the average is to improve the S/N. The thus averaged MR echo data is Fourier-transformed by a fast Fourier transformer 12 to obtain projection data as shown in FIG. This projection data is obtained for each direction by changing the gradient direction of the magnetic field gradient Gxy, and based on this, the image reconstruction device 115
performs reconstruction processing and converts it into an image, which is then displayed on the display device 16.
Displayed by

次に磁場ロックの場合について説明する。Next, the case of magnetic field lock will be explained.

磁場ロックの場合は第5図に示すように通常の搬像の場
合のシーケンスから傾斜磁場コイル系6による磁場勾配
GXYの印加を除外したシーケンスによりプロジェクシ
ョンデータを得る。
In the case of magnetic field lock, projection data is obtained by a sequence obtained by excluding the application of the magnetic field gradient GXY by the gradient magnetic field coil system 6 from the sequence in the case of normal image transfer, as shown in FIG.

すなわち、被検体Pに空心磁場コイル4A、4Bで一様
静磁場Hoを印加し、この状態で所要の断層面に垂直な
方向の勾配Gzの傾斜磁場を傾斜磁場コイル系5により
所定時間重畳し、同時に高周波コイル系7から選択励起
パルスSEP (90゜パルス)を磁場内の被検体Pに
印加する。次に(磁場勾配Gxyをかけずに)磁場勾配
Gzと選択励起パルスSEP (180’パルス)を高
周波コイル系7及び傾斜磁場コイル系5から被検体Pに
印加し、さらに勾配Gzの傾斜磁場を静磁場HOに所定
時間重畳し続ける。しかる後に、高周波コイル系7によ
り被検体PからのMRエコー信号を受信する。そして通
常の撮像の場合と同様、受信されたMRエコー信号を位
相検波装置8で位相検波し、この検波波形をA/D変換
器10でディジタル値に変換して加算器11に入力する
。以後上述の動作を数回繰り返し、加算器11でMRエ
コーデータの加算平均をとる。こうして加算平均された
MRエコーデータを高速フーリエ変換器12でフーリエ
変換して第6図に示すようなプロジェクションデータを
得る。このプロジェクションデータを上述の通常の撮像
時には用いなかった静磁場制御器14に入力する。
That is, a uniform static magnetic field Ho is applied to the subject P by the air-core magnetic field coils 4A and 4B, and in this state, a gradient magnetic field with a gradient Gz in the direction perpendicular to the desired tomographic plane is superimposed for a predetermined time by the gradient magnetic field coil system 5. At the same time, a selective excitation pulse SEP (90° pulse) is applied from the high-frequency coil system 7 to the subject P within the magnetic field. Next, the magnetic field gradient Gz and selective excitation pulse SEP (180' pulse) are applied to the subject P from the high frequency coil system 7 and the gradient magnetic field coil system 5 (without applying the magnetic field gradient Gxy), and the gradient magnetic field of the gradient Gz is further applied. It continues to be superimposed on the static magnetic field HO for a predetermined time. Thereafter, the MR echo signal from the subject P is received by the high frequency coil system 7. Then, as in the case of normal imaging, the phase of the received MR echo signal is detected by the phase detection device 8, and this detected waveform is converted into a digital value by the A/D converter 10 and input to the adder 11. Thereafter, the above-described operation is repeated several times, and the adder 11 averages the MR echo data. The MR echo data thus averaged is Fourier-transformed by a fast Fourier transformer 12 to obtain projection data as shown in FIG. This projection data is input to the static magnetic field controller 14, which was not used during the normal imaging described above.

この静磁場制御器14は入力されたプロジェクションデ
ータの最大ピークを検出して周波数のずれΔω(第6図
参照)を求め、上記(2式より静磁場変動分ΔHOを求
めて、これに応じて静磁場電源13を制御するものであ
り、具体的に例えば第7図に示すように構成する。
This static magnetic field controller 14 detects the maximum peak of the input projection data, determines the frequency shift Δω (see Figure 6), determines the static magnetic field variation ΔHO from the above (2 formula), and It controls the static magnetic field power supply 13, and is specifically configured as shown in FIG. 7, for example.

第7図において、14−1は入力プロジェクションデー
タが最大値をとる周波数軸上の値より周波数ずれΔωを
求めるΔω検出器、14−2はΔω検出器14−1で得
た周波数ずれΔωに上記(′2J式を適用し1/Yを乗
算し静磁場変動分ΔHを算出する乗算器、14−3は乗
算器14−2で算出された静磁場変動分ΔHを静磁場補
正量としてアナログ値に変換するD/A (ディジタル
−アナログ)変換器である。モしてD/A変換器14−
3の出力を静磁場電源ΔHに供給して静磁場)−1oを
補正し、周波数ずれΔωをなくすようにする。
In FIG. 7, 14-1 is a Δω detector that calculates the frequency deviation Δω from the value on the frequency axis where the input projection data takes the maximum value, and 14-2 is the Δω detector that calculates the frequency deviation Δω obtained by the Δω detector 14-1. (A multiplier that applies the '2J formula and multiplies by 1/Y to calculate the static magnetic field variation ΔH. 14-3 is an analog value that uses the static magnetic field variation ΔH calculated by the multiplier 14-2 as the static magnetic field correction amount. This is a D/A (digital-to-analog) converter for converting into a D/A converter 14-.
The output of No. 3 is supplied to the static magnetic field power supply ΔH to correct the static magnetic field ()-1o and eliminate the frequency deviation Δω.

ここで、本発明では、画像データ収集処理前に前処理と
して第8図のA面(画像データ収集面)とB面(磁場ロ
ックのためのデータ収集面)にて同時に第5図に示す磁
場ロックのシーケンスにてプロジェクションデータを収
集し、A面の周波数を共鳴周波数に合せる。この時8面
の周波数を保持しておく。
Here, in the present invention, as a preprocessing before the image data collection process, the magnetic field shown in FIG. Collect projection data in the lock sequence and match the frequency of side A to the resonance frequency. At this time, the frequencies of 8 planes are held.

次にA面にて画像データ収集処理中(シーケンスは第3
図)、B面の周波数を検出しくシーケンスは第5図)、
前処理にて得られたB面の周波数からの周波数ずれΔω
を求め、上記手段と同様の処理を行ないΔHを算出し静
磁場HOを補正し共鳴周波数にA面の周波数を合せる。
Next, on side A, image data collection processing is in progress (sequence is 3rd
Figure), the sequence for detecting the frequency of side B is Figure 5),
Frequency deviation Δω from the frequency of surface B obtained in preprocessing
is calculated, ΔH is calculated by performing the same processing as the above means, and the static magnetic field HO is corrected to match the frequency of the A plane to the resonance frequency.

ここで、B面から共鳴信号を得る方法は、A面を励起し
、A面の共鳴信号を得た後、A面の回復時間を利用しA
面の励起周波数と興なる励起周波数でB面を選択励起す
ることで、B面の共鳴信号が得られるものである。
Here, the method of obtaining a resonance signal from the B-plane is to excite the A-plane, obtain the resonance signal of the A-plane, and then utilize the recovery time of the A-plane.
By selectively exciting the B-plane with an excitation frequency different from the excitation frequency of the plane, a resonance signal of the B-plane can be obtained.

こうして、ドリフト等により静磁場HO等が変動して角
周波数のずれΔωが生じて場合、上記磁場ロックの動作
を行わせることより、短時間で静磁場HOの適正な補正
が行え、しかも補正のため特別な外部装置を付加的に用
いたりする必要もなく、長時間の画像データ収集処理に
おいても周波数のずれを生じない。
In this way, when the static magnetic field HO etc. fluctuates due to drift etc. and an angular frequency deviation Δω occurs, by performing the magnetic field locking operation described above, the static magnetic field HO can be appropriately corrected in a short time, and the correction is Therefore, there is no need to additionally use a special external device, and no frequency shift occurs even during long-term image data collection processing.

なお、本発明は上述し且つ図面に示す実施例にのみ限定
されることなくその要旨を変更しない範囲内で種々変形
して実施することができる。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.

例えば、第2図に示した構成のうち、加算器11、高速
フーリエ変換器12、静磁場制御器14およびタイミン
グ制御系17の一部または全部を電子計算機に置き換え
これらの機能を電子計算機によるソフトウェア処理で実
現するようにすることもできる。また、この場合には画
像再構成装置15を構成する電子計算機を共用させるよ
うにしてもよく、このようにするとハードウェア的には
通常の撮像に必要な構成と全く同様の構成で済む。
For example, in the configuration shown in FIG. 2, part or all of the adder 11, fast Fourier transformer 12, static magnetic field controller 14, and timing control system 17 may be replaced with electronic computers, and these functions may be implemented using computer software. It can also be realized through processing. Further, in this case, the electronic computer constituting the image reconstruction device 15 may be shared, and in this case, the hardware configuration can be exactly the same as that required for normal imaging.

第9図に加算器11、フーリエ変換器12、静磁場制御
器14、タイング制御系17を電子計算機に置き換えた
場合の磁場ロックの制御フローチャートを示す。この場
合[制御部にΔ1−1oを書き込む」とは静磁場電源1
3への出力を発生する部分に補正量としてΔHOを与え
ることを意味し静磁場電源13がこれに応じて制御され
る。また、このΔHoの値はイニシャライズ状態ではO
に設定されている。この第9図は実質的には第2図にお
ける該当部分の動作をフローチャートに示したものと何
ら変りはない。
FIG. 9 shows a control flowchart of magnetic field locking when the adder 11, Fourier transformer 12, static magnetic field controller 14, and timing control system 17 are replaced with electronic computers. In this case, [writing Δ1-1o in the control section] means that the static magnetic field power supply 1
This means that ΔHO is given as a correction amount to the part that generates the output to 3, and the static magnetic field power supply 13 is controlled accordingly. Moreover, the value of this ΔHo is O in the initialized state.
is set to . This FIG. 9 is substantially the same as the flowchart showing the operation of the relevant portion in FIG. 2.

[発明の効果] 本発明によれば、特別な外部装置を付加することなく、
撮影する被検体を利用し画像データ収集処理中に静磁場
電源を補正できるため、共鳴条件のずれを高精度に補正
し、常に共鳴条件を満足する状態でMR映像が行え、結
果的に常に空間分解能の高いMR映像を得ることの可能
なMRイメージング装置を提供することができる。
[Effects of the Invention] According to the present invention, without adding any special external device,
Since the static magnetic field power supply can be corrected during the image data collection process using the object to be imaged, deviations in resonance conditions can be corrected with high precision, and MR imaging can be performed while always satisfying the resonance conditions. As a result, the spatial It is possible to provide an MR imaging device that can obtain MR images with high resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMRイメージング装置の原理を説明するための
概略斜視図、第2図は本発明の一実施例の構成を示すブ
ロック図、第3図は同実施例における通常の撮影時のタ
イムスケジュールを示すタイミングチャート、第4図は
同撮影時に得られるプロジェクションデータの一例を示
す図、第5図は同実施例における磁場ロック時のタイム
スケジュールを示すタイミングチャート、第6図は同磁
場ロック時に得られるプロジェクションデータの一例を
示す図、第7図は同実施例における要部の具体的な構成
の一例を詳細に示すブロック図、第8図は同実施例の要
部を説明するための図、第9図は本発明の他の実施例に
おける要部の処理を示すフローチャートである。 4A、4B・・・空心磁場コイル系、5,6・・・傾斜
磁場コイル系、7・・・高周波コイル系、8・・・位相
検波装置、9・・・受信器、10・・・A/D変換器、
11・・・加算器12・・・高速フーリエ変換器、13
・・・静磁場電源、14・・・静磁場制御器、15・・
・画像再構成装置、16・・・ディスプレイ装置、17
・・・タイミング制御系、14−1・・・Δω検出器、
14−2・・・乗算器、14−3・・・D/A変換器。 出願人代理人 弁理士 鈴江武彦 第1図 A 第2図 第31!!11 第41I Q         Li2 第5gm 第6図 第7図 第8R A面     Bffil
Fig. 1 is a schematic perspective view for explaining the principle of an MR imaging device, Fig. 2 is a block diagram showing the configuration of an embodiment of the present invention, and Fig. 3 is a time schedule during normal imaging in the same embodiment. Fig. 4 is a timing chart showing an example of projection data obtained during the same shooting, Fig. 5 is a timing chart showing a time schedule during magnetic field lock in the same example, and Fig. 6 is a timing chart showing an example of projection data obtained during the same magnetic field lock. FIG. 7 is a block diagram showing in detail an example of a specific configuration of the main parts of the embodiment; FIG. 8 is a diagram for explaining the main parts of the embodiment; FIG. 9 is a flowchart showing main processing in another embodiment of the present invention. 4A, 4B... Air core magnetic field coil system, 5, 6... Gradient magnetic field coil system, 7... High frequency coil system, 8... Phase detection device, 9... Receiver, 10... A /D converter,
11... Adder 12... Fast Fourier transformer, 13
... Static magnetic field power supply, 14... Static magnetic field controller, 15...
・Image reconstruction device, 16...Display device, 17
...timing control system, 14-1...Δω detector,
14-2... Multiplier, 14-3... D/A converter. Applicant's agent Patent attorney Takehiko Suzue Figure 1 A Figure 2 Figure 31! ! 11 41st I Q Li2 5th gm Figure 6 Figure 7 Figure 8R A side Bffil

Claims (1)

【特許請求の範囲】[Claims] 一様静磁場を発生する静磁場発生装置と、この一様静磁
場に重畳して予定方向についての傾斜磁場を発生する傾
斜磁場発生装置と、磁気共鳴周波数の高周波パルスから
なる選択励起パルス信号および非選択励起パルス信号を
発生する送信器と、この送信器で発生した信号に基づき
選択励起パルスおよび非選択励起パルスを上記静磁場内
の被検体に印加し且つ被検体に生じた磁気共鳴信号を検
出する送受信部と、上記各部の動作を制御するとともに
上記送受信部で受信された信号に基づく信号処理を行な
つて画像を形成する制御処理部とを備え、被検体に特定
原子核の磁気共鳴を誘起せしめ該共鳴信号より当該原子
核の密度分布、緩和時定数またはこれらに関連した情報
の反映された画像情報を得る磁気共鳴イメージング装置
において、マルチスライシングの技術を応用し上記被検
体に画像データ収集用の第1の面と磁場ロックのための
データ収集用の第2の面とを設定して磁場ロックのシー
ケンスにてプロジェクションデータを収集する手段と、
上記第1の面にて画像データ収集処理中に上記第2の面
の周波数を検出する手段と、この手段からの検出出力に
基づいて上記静磁場発生装置からの静磁場を補正する手
段とを具備したことを特徴とする磁場共鳴イメージング
装置。
A static magnetic field generator that generates a uniform static magnetic field; a gradient magnetic field generator that generates a gradient magnetic field in a predetermined direction by superimposing the uniform static magnetic field; a selective excitation pulse signal consisting of a high-frequency pulse at a magnetic resonance frequency; A transmitter that generates a non-selective excitation pulse signal; and a transmitter that applies a selective excitation pulse and a non-selective excitation pulse to a subject within the static magnetic field based on the signal generated by the transmitter, and a magnetic resonance signal generated in the subject. It is equipped with a transmitter/receiver that detects the magnetic resonance of a specific atomic nucleus in a subject, and a control processor that controls the operation of each of the above components and performs signal processing based on the signal received by the transmitter/receiver to form an image. In a magnetic resonance imaging apparatus that obtains image information reflecting the density distribution, relaxation time constant, or information related to the density distribution of the atomic nucleus from the induced resonance signal, multi-slicing technology is applied to the above-mentioned object for image data collection. means for collecting projection data in a sequence of magnetic field locking by setting a first surface and a second surface for data collection for magnetic field locking;
means for detecting the frequency of the second surface during image data collection processing on the first surface; and means for correcting the static magnetic field from the static magnetic field generator based on the detection output from the means. A magnetic field resonance imaging device characterized by comprising:
JP60097314A 1985-05-08 1985-05-08 Magnetic resonance imaging device Granted JPS61254839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097314A JPS61254839A (en) 1985-05-08 1985-05-08 Magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097314A JPS61254839A (en) 1985-05-08 1985-05-08 Magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JPS61254839A true JPS61254839A (en) 1986-11-12
JPH0322775B2 JPH0322775B2 (en) 1991-03-27

Family

ID=14189024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097314A Granted JPS61254839A (en) 1985-05-08 1985-05-08 Magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPS61254839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363441A (en) * 1986-09-03 1988-03-19 横河電機株式会社 Nuclear magnetic resonance image pickup apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200947A (en) * 1983-04-30 1984-11-14 Toshiba Corp Nuclear magnetic resonance video apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200947A (en) * 1983-04-30 1984-11-14 Toshiba Corp Nuclear magnetic resonance video apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363441A (en) * 1986-09-03 1988-03-19 横河電機株式会社 Nuclear magnetic resonance image pickup apparatus
JPH0527418B2 (en) * 1986-09-03 1993-04-21 Yokogawa Electric Corp

Also Published As

Publication number Publication date
JPH0322775B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
JP4229487B2 (en) How to correct Maxwell term error
US4675608A (en) Magnetic resonance imaging system
JPH07171133A (en) Method and equipment for magnetic resonance imaging
US4845430A (en) Magnetic resonance imaging system
US6329821B1 (en) Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system
JPS59200947A (en) Nuclear magnetic resonance video apparatus
JPH03264046A (en) Method and device for nuclear magnetic resonance imaging
JP3183915B2 (en) Magnetic resonance imaging equipment
JPS61254839A (en) Magnetic resonance imaging device
JP2703545B2 (en) Apparatus for improving S / N ratio of magnetic resonance system
EP0339090A1 (en) Nmr imaging method
JPH0732763B2 (en) Magnetic resonance imaging device
DE60035758T2 (en) Method and apparatus for compensating image artifacts caused by vibration of the magnet in a magnetic resonance imaging system
JPS6267433A (en) Nmr imaging apparatus
JPS61153554A (en) Magnetic resonance imaging device
JP3197635B2 (en) MRI equipment
JP3557286B2 (en) MR image generation method and MRI apparatus
JP2661935B2 (en) Measurement device for nuclear magnetization distribution
JPH0755219B2 (en) MRI equipment
US5101157A (en) Fourier transformation imaging method
JPH1071135A (en) Mr method and device
JPS60168444A (en) Nuclear magnetic resonance imaging apparatus for diagnosis
JP2597098B2 (en) Magnetic resonance imaging equipment
JP2961826B2 (en) MR imaging device
JP2531879B2 (en) Magnetic resonance imaging device